1. 石墨烯超級電容器原理
一、成本問題。用 [公式] 模板,然後採用 CVD 工藝用 [公式] 做碳氮源,長出石墨烯材料,再用氫氟酸腐蝕掉模板,得到三維石墨烯塊材料的工藝,確實其成本太高工業化生產難以接受。能否採用其它已有的成熟工藝降低成本呢?這是有可能的。例如:採用溶膠凝膠法用石墨烯微片低成本地制備石墨烯氣凝膠三維塊。眾多的研究文獻已公開了這方面的技術,浙江大學高超及中科院金屬所成會明研究的三維石墨烯氣凝膠制備技術是可以參考的。但是,採用溶膠凝膠法實現低成本的關鍵,是如何低成本地制備石墨烯微片。現廣泛採用化學液相機械剝離法制備二維的氧化態石墨烯微片成本高,還存在使用化學材料對環境影響大、需將石墨烯還原處理工藝長導電性下降、二維微片易粘結成團等等問題。
二、氮化處理對環境的影響問題。若工業化生產中採用實驗室中常用的濃硝酸處理氮化工藝,確實環評很困難通過,必須找到更好的氮化工藝工業化。
三、能量密度問題。能量密度是超級電容器的「死穴」。為提高超級電容器的能量密度,國內外都投入了大量的資金和人力在研究。但是,國內外研究的路線,基本是研究新型電極材料以提高電極的比容量,或研究於電極表面產生化學反應的復合型電極,中科院上海硅酸鹽所的超級電容器公開之前,超級電容器的能量密度問題還沒見突破性進展。通常超級電容器的碳電極的比容量小於250F/g,目前已知最高比容量的材料為氧化釕,其比容量為 900F/g。但氧化釕的價格太貴,工業生產中不可能應用。黃富強研究員等採用氮化技術將石墨烯電極的比容量提高至 855F/g,是目前已報導的高比容量材料的最高水平。
接著,我們從實業的角度來看,寧波中車新能源科技在超級電容單體已經量產了五款產品用在電車上,雖然能量密度最大為 40Wh/kg,但總是比 2015 年的 10.7Wh/kg 有了突破。
我們去年也投入石墨烯超級電容的開發,使用的多孔洞石墨烯具有 350F/g 之比電容,選擇使用水系電解液,因水系電解液之電位窗只有 1V,改用有機電解液製造超級電容可以有效擴大電位窗,提升能量密度。水系電解液和有機電解液適用的石墨烯不太一樣,在有機電解液中,石墨烯之官能基要盡量去除。
另外,對電動載具而言,體積電容量(F/cc)比克電容量(F/g)更為重要。石墨烯可快速充放電並有高克電容量(F/g),但是體積電容(F/cc)很低,因其壓實密度太低。反之,活性碳具有高的體積電容(F/cc),因其壓實密度大;但快速充放電效能差。故我們選擇多孔石墨烯搭配活性碳來提高電極活物的密度,能有效提升體積電容。左圖是每公斤能量與功率,右圖是每公升能量與功率。碳材是氮摻雜多孔石墨烯搭配活性碳,使用有機系電解液(2.5V)。
2. 超級電容和普通電容的具體區別和特點
一、兩者的特點不同:
1、超級電容的特點:充電速度快,充電10秒~10分鍾可達到其額定容量的95%以上;循環使用壽命長,深度充放電循環使用次數可達1~50萬次,沒有「記憶效應」;
大電流放電能力超強,能量轉換效率高,過程損失小,大電流能量循環效率≥90%;功率密度高,可達300W/KG~5000W/KG,相當於電池的5~10倍;產品原材料構成、生產、使用、儲存以及拆解過程均沒有污染,是理想的綠色環保電源。
2、普通電容的特點:體積大,容量小用途:震盪、諧振、退耦及要求不高的電路無極性獨石電容體積比CBB更小,其他同CBB,有感。
二、兩者的概述不同:
1、超級電容的概述:超級電容又名電化學電容,雙電層電容器、黃金電容、法拉電容,是從上世紀七、八十年代發展起來的通過極化電解質來儲能的一種電化學元件。
2、普通電容的概述:普通電容是一種靜態電荷存儲介質,可能電荷會永久存在,這是它的特徵,它的用途較廣,它是電子、電力領域中不可缺少的電子元件。
三、兩者的用途不同:
1、超級電容的用途:超級電容器三十多年的發展歷程中微型超級電容器已經在小型機械設備上得到廣泛應用,例如電腦內存系統、照相機、音頻設備和間歇性用電的輔助設施。而大尺寸的柱狀超級電容器則多被用於汽車領域和自然能源採集上。就未來十年的發展而言,超級電容器將是運輸行業和自然能源採集的重要組成部分。
2、普通電容的概述:主要用於電源濾波、信號濾波、信號耦合、諧振、濾波、補償、充放電、儲能、隔直流等電路中。
3. 請教大神們一個問題,超級電容器中的隔膜,電解液中的離子能透過去嗎和鋰電的隔膜有什麼區別呢
超級電容器的隔膜應滿足具有盡可能高的離子電導和盡可能低的電子電導的條件。
以超級電容兩種基本形式之一的雙電層電容器為例。一對浸在電解質溶液中的固體電極在外加電場的作用下,在電極表面與電解質接觸的界面電荷會重新分布、排列。作為補償,帶正電的正電極吸引電解液中的負離子,負極吸引電解液中的正離子,從而在電極表面形成緊密的雙電層,由此產塵的電容稱為雙電層電容。雙電層是由相距為原子尺寸的微小距離的兩個相反電荷層構成,這兩個相對的電荷層就像平板電容器的兩個平板一樣。
超級電容器充電時,電子通過外加電源從正極流向負極,同時,正負離子從溶液體相中分離並分別移動到電極表面,形成雙電層;充電結束後,電極上的正負電荷與溶液中的相反電荷離子相吸引而使雙電層穩定,在正負極間產生相對穩定的電位差。在放電時,電子通過負載從負極流到正極,在外電路中產生電流,正負離子從電極表面被釋放進入溶液體相呈電中性。
鋰電隔膜和超級電容隔膜有類似的要求,區別在於材質有所不同。因為鋰電的離子運動是化學反應的結果,而超級電容是物理(電場)驅動的結果。