1. 離子交換柱的工作原理
離子交換柱的工作原理:
採用離子交換方法,可以把水中呈離子態的陽、陰離子去除。
以氯化鈉(NaCl)代表水中無機鹽類,水質除鹽的基本反應可以用下列方程式表達:
1、陽離子交換樹脂:R—H+Na+→R-Na+H+
2、陰離子交換樹脂:R—OH+CL-→R-CL+OH+
陽、陰離子交換樹脂總的反應式即可寫成:
RH+ROH+NaCL—RNa+RCL+H2O
由此可看出,水中的Nacl已分別被樹脂上的H+和OH-所取代,而反應生成物只有H2O,故達到了去除水中鹽的作用。
離子交換柱(ion exchange column)是用來進行離子交換反應的柱狀壓力容器。充填有離子交換樹脂的細長管柱。可由玻璃、不銹鋼、有機玻璃等不被所用的流動相腐蝕的材料製成。離子交換柱(混床)的分類:混床按再生方式分可分為體內再生混床、體外再生混床、陰樹脂外移再生混床三種。
離子交換柱的分類:
混床按再生方式分可分為體內再生混床、體外再生混床、陰樹脂外移再生混床三種。
1、體外再生混床適合小流量、對環保有嚴格要求的企業。但由於體外再生式混床配套設備多,操作復雜,現在已很少使用。
2、體內再生混床和陰樹脂外移再生混床適合大流量,有專門的水處理操作人員及廢水處理的場合。體內再生混床在運行及整個再生過程均在混床內進行,再生時樹脂不移出設備以外,且陽、陰樹脂同時再生,因此所需附屬設備少,操作簡便。
3、陰樹脂外移再生混床:陰樹脂外移再生式混合床及其配套的陰樹脂再生柱基本構造與小型逆流再生固定床大致相同,陰樹脂再生柱厚度較混合床小,所需的膨脹高度為樹脂層高度的50%~60%,故再生柱可較低,但一般為統一起見做成與混合床相同。
2. 常用於分離生物樣品的層析方法還有哪些其原理是什麼
在分離分析特別是蛋白質分離分析中,層析是相當重要、且相當常見的一種技術,其原理較為復雜,對人員的要求相對較高,這里只能做一個相對簡單的介紹。
一、 吸附層析
1、 吸附柱層析
吸附柱層析是以固體吸附劑為固定相,以有機溶劑或緩沖液為流動相構成柱的一種層析方法。
2、 薄層層析
薄層層析是以塗布於玻板或滌綸片等載體上的基質為固定相,以液體為流動相的一種層析方法。這種層析方法是把吸附劑等物質塗布於載體上形成薄層,然後按紙層析操作進行展層。
3、 聚醯胺薄膜層析
聚醯胺對極性物質的吸附作用是由於它能和被分離物之間形成氫鍵。這種氫鍵的強弱就決定了被分離物與聚醯胺薄膜之間吸附能力的大小。層析時,展層劑與被分離物在聚醯胺膜表面競爭形成氫鍵。因此選擇適當的展層劑使分離在聚醯胺膜表面發生吸附、解吸附、再吸附、再解吸附的連續過程,就能導致分離物質達到分離目的。
二、 離子交換層析
離子交換層析是在以離子交換劑為固定相,液體為流動相的系統中進行的。離子交換劑是由基質、電荷基團和反離子構成的。離子交換劑與水溶液中離子或離子化合物的反應主要以離子交換方式進行,或藉助離子交換劑上電荷基團對溶液中離子或離子化合物的吸附作用進行。`
三、 凝膠過濾
凝膠過濾又叫分子篩層析,其原因是凝膠具有網狀結構,小分子物質能進入其內部,而大分子物質卻被排除在外部。當一混合溶液通過凝膠過濾層析柱時,溶液中的物質就按不同分子量篩分開了。
3. 離子交換柱的工作原理是什麼
離子復交換柱的原理制
採用離子交換方法,可以把水中呈離子態的陽、陰離子去除,以氯化鈉(NaCl)代表水中無機鹽類,水質除鹽的基本反應可以用下列方程式表達:
1、陽離子交換樹脂:R—H+Na+→R-Na+H+
2、陰離子交換樹脂:R—OH+CL-→R-CL+OH+
陽、陰離子交換樹脂總的反應式即可寫成:
RH+ROH+NaCL—RNa+RCL+H2O
由此可看出,水中的Nacl已分別被樹脂上的H+和OH-所取代,而反應生成物只有H2O,故達到了去除水中鹽的作用。
3、混合離子交換柱(混床):混床是裝陽、陰樹脂按一定比例(一般為1:2,以便陽、陰樹脂同時達到交換終點而同時再生)裝入混合柱而成,實際上它組合成了水中的H+和OH-立即生成電離度很小的水分子(H2O),幾乎不存在陽床或陰床交換時產生的逆交換現象,故可以使交換反應進行得十分徹底,因而混合床的出水水質優於陽、陰床串聯組成的復床所能達到的水質,能製取純度相當高的成品水。
4. 如何證明花青素的存在
如何證明花青素的存在?
花青素是一種水溶性色素,可以隨著細胞液的酸鹼改變顏色。細胞液呈酸性則偏紅,細胞液呈鹼性則偏藍。花青素(anthocyanins)是構成花瓣和果實顏色的主要色素之一。經由苯基丙酸類合成路徑(phenylpropanoid pathway)和類黃酮生合成途徑(flavonoids biosynthetic pathway)生成。影響花青素呈色的因子包括花青素的構造、pH値、共色作用(copigmentation)等。果皮呈色受內在、外在因子和栽培技術的影響。光可增加花青素含量;高溫會使花青素降解。花青素為植物二級代謝產物,在生理上扮演重要的角色。花瓣和果實的顏色可吸引動物進行授粉和種子傳播 (Stintzing and Carle, 2004)。常見於花、果實的組織中及莖葉的表皮細胞與下表皮層。部分果實以顏色深淺決定果實市場價格。花青素屬於酚類化合物中的類黃酮類(flavonoids)。基本結構包含二個苯環,並由一3碳的單位連結(C6-C3-C6)。花青素經由苯基丙酸路徑和類黃酮生合成途徑生成,由許多酵素調控催化。以天竺葵色素(pelargonidin)、矢車菊素(cyanidin)、花翠素(delphinidin)、芍葯花苷配基(peonidin)、矮牽牛苷配基 (petunidin)及錦葵色素(malvidin)六種非配醣體(aglycone)為主。花青素因所帶羥基數(-OH)、甲基化(methylation)、醣基化(glycosylation)數目、醣種類和連接位置等因素而呈現不同顏色 (范和邱, 1998)。顏色的表現因生化環境條件的改變,如受花青素濃度、共色作用、液胞中pH値的影響 (Clifford, 2000)。本文目的為了解影響花青素生合成的因子,以作為田間栽培管理的參考。
橙色和黃色是胡蘿卜素的作用。1910年在胡蘿卜中發現了β-胡蘿卜素,以後共發現另外2種胡蘿卜素異構體,分別是:α、β、γ三種異構體。1958年β-胡蘿卜素獲得專利(US2849495,1958年8月26日,專利權人:Hoffmann La Roche),目前主要從海洋中提取,也可人工合成
自然界有超過300種不同的花青素。他們來源於不同種水果和蔬菜如越橘、酸果蔓、藍莓、葡萄、接骨木紅、黑加侖、紫胡羅卜和紅甘藍、顏色從紅到藍。這些花青素主要包含飛燕草素(Delchindin)、矢車菊素(Cyanidin)、 牽牛花色素(Petunidin)、芍葯花色素(Peonidin).
花青素顏色隨PH值發生變化,從當PH值為3時的覆盆子紅到當PH值為5時的深藍莓紅。在大多數應用中這些色素具有良好的光、熱和PH穩定性,並且能夠承受巴氏和UHT熱處理。花青素廣泛地應用在飲料、糖果、果凍和果醬中。
近年來對作為多酚的花青素對健康可能帶來的好處的關注越來越集中。將來花青素的這種特性在功能食品和保健食品中有可能得到日益應用。目前市場上有比較成熟的花青素產品,這些花青素主要是越橘花青素、藍莓花青素、蔓越橘花青素、接骨木花青素、黑莓花青素和黑豆皮花青素等,含量均為25%或40%。國內西安天一生物技術有限公司的 薛西峰先生做了詳細的提取工藝研究,並於2001年開始大規模生產25%的花青素成品。
花青素的作用
花青素為人體帶來多種益處。從根本上講,花青素是一種強有力的抗氧化劑,它能夠保護人體免受一種叫做自由基的有害物質的損傷。花青素還能夠增強血管彈性,改善循環系統和增進皮膚的光滑度,抑制炎症和過敏,改善關節的柔韌性。下面列出花青素的部分功效:
1.有助於預防多種與自由基有關的疾病,包括癌症、心臟病、過早衰老和關節炎;
2.通過防止應激反應和吸煙引起的血小板凝集來減少心臟病和中風的發生;
3.增強免疫系統能力來抵禦致癌物質;
4.降低感冒的次數和縮短持續時間;
5.具有抗突變的功能從而減少致癌因子的形成;
6.具有抗炎功效,因而可以預防包括關節炎和腫脹在內的炎症;
7.緩解花粉病和其它過敏症;
8.增強動脈、靜脈和毛細血管彈性;
9.保護動脈血管內壁;
10.保持血細胞正常的柔韌性從而幫助血紅細胞通過細小的毛細血管,因此增強了全身的血液循環、為身體各個部分的器官和系統帶來直接的益處,並增強細胞活力;
11.鬆弛血管從而促進血流和防上高血壓(降血壓功效);
13.防止腎臟釋放出的血管緊張素轉化酶所造成的血壓升高(另一個降血壓功效);
14.作為保護腦細胞的一道屏障,防止澱粉樣β蛋白的形成、谷氨酸鹽的毒性和自由基的攻擊,從而預防阿爾茨海默氏病;
15.通過對彈性蛋白酶和膠原蛋白酶的抑制使皮膚變得光滑而富有彈性,從內部和外部同時防止由於過度日曬所導致的皮膚損傷等等。
5. 花青素的純化方法
微波提取技術
一種採用頻率為2450 MHz或 915 MHz、功率為500 W~15 000 W 的微波對葡萄籽 在選用水、內碳鏈容長為C ~C,的醇、乙醚、丙酮、乙 酸乙酯、甲苯或其混合物的溶劑中進行處理,從葡 萄籽提取原花青素類物質的新方法。該方法較常規 化學法工藝簡便、高效、快速,成本低,廢液排放 量少。
花青素是一種水溶性色素,可以隨著細胞液的酸鹼改變顏色。細胞液呈酸性則偏紅,細胞液呈鹼性則偏藍。花青素(anthocyanidin)是構成花瓣和果實顏色的主要色素之一。花青素為植物二級代謝產物,在生理上扮演重要的角色。花瓣和果實的顏色可吸引動物進行授粉和種子傳播 (Stintzing and Carle, 2004)。常見於花、果實的組織中及莖葉的表皮細胞與下表皮層。部分果實以顏色深淺決定果實市場價格。
6. 如何提取花青素
花青素,是一種熱敏性活性物質。屬於水溶性多酚黃酮類化合物,其特殊的結構和化學成分賦予了花青素多種生物活性,這些活性物質對溫度較為敏感,當所在環境溫度超過一定界限後,就會失活,也就是我們俗話說的死掉。(比如我們都知道,乳酸菌、益生菌等都屬於熱敏性活性物質,不能加熱,否則失去活性就會失去其主要作用。)花青素失活就會失去其特有的功效作用。
有機溶劑萃取法
這是目前國內外最廣泛使用的提取方法。多數選擇甲醇、乙酮、丙酮等混合溶劑對材料進行溶解過濾,通過調節溶液酸鹼度萃取濾液中的花青素。國內吳信子等用鹽酸一甲醇溶液提取,然後用紙層析法(中號)和柱層析法(聚乙醯胺)進行花色苷的分離 。目前,有機溶劑萃取法已成功地應用於諸如葡萄籽、石榴皮、藍莓等絕大多數含花青素物質的提取分離。有機溶劑萃取法的關鍵是選擇有效溶劑,要求既要對被提取的有效成分有較大溶解度,又要避免大量雜質的溶解。該方法原理簡單,對設備要求較低,不足之處是大多數有機溶劑毒副作用大且產物提取率低。
2水溶液提取法
有機溶劑萃取的花青素多有毒性殘留且生產過程環境污染大,有鑒於此,水溶液提取應運而生。該方法一般將植物材料在常壓或高壓下用熱水浸泡,然後用非極性大孔樹脂吸附;或直接使用脫氧熱水提取,再採用超濾或反滲透,濃縮得到粗提物。它是Duncan和Gilmour(1998)發明的提取花青素的方法 ,此方法設備要求簡單,但產品純度低。
3超臨界流體萃取法
超臨界流體萃取是利用壓力和溫度對超臨界流體溶解能力的影響進行提取。這種方法產品提取率高,但設備成本過高。孫傳經 採用超臨界CO:萃取法從銀杏葉、黑加侖籽及葡萄籽中提取花青素工藝進行了研究。該工藝中CO 和改性劑可循環使用,對環境無污染。