1. 離子交換法富集分離陽離子和陰離子的原理各是什麼
主要利用陰陽離子在樹脂上的吸附與解吸附來完成的,比如陰離子樹脂用於有機酸的富集,而陽離子用於生物鹼的富集.當有機酸的陰離子與陰離子上的羥基負離子交換時被吸附,用酸水去洗脫,把有機酸陰離子置換下來,而達到富集效果.生物鹼原理也一樣,其他成分先區分不同物質的性質來設計富集的方法
2. 分離和富集
鈾在礦石中含量都很低,大量的伴生元素往往妨礙鈾的測定。因此,大部分測定鈾的方法都需先行分離或富集。分離鈾的方法很多,有沉澱法、螯合物形成法、萃取法、色層法、離子交換法和汞陰極電解法等。
65.1.2.1 沉澱分離法
鈾沉澱分離的方法很多。在沒有碳酸鹽、檸檬酸、酒石酸及氟化物存在的適當介質中,用氨水、吡啶或六次甲基四胺都能將鈾沉澱成重鈾酸銨,與鹼金屬、鹼土金屬以及銅、鎳、鈷、鋅、錳等元素分離,鐵、鋁、鋯、鈦、稀土等與鈾一起被沉澱。氟化物、碘酸鹽或草酸鹽在適當的酸性介質中可以沉澱鈾(Ⅳ),而鈾(Ⅵ)不沉澱,可藉此用於分別測定鈾(Ⅳ)和鈾(Ⅵ)。用氟化物作沉澱劑,由於生成水合四氟化鈾,將與很多伴生的陽離子形成復鹽,而使鈾(Ⅳ)與鐵、鋁、鋯、鈦、鈮、和鉭等元素分離。磷酸鹽在(2+98)~(4+96)HCl溶液中,能定量地沉澱鈾(Ⅳ)成UO2HPO4,鋯、釷、鉍等也同樣被沉澱,沉澱溶解於過量的磷酸或其他強酸中,此法在分析中主要用作鈾與釩分離。某些有機試劑亦能沉澱鈾(Ⅳ),如銅鐵試劑可在強硫酸或鹽酸介質中沉澱鈾(Ⅳ),鐵、鋯、鈦、釩、鈮、膽、錫等同時被沉澱。鹼金屬、鹼土金屬、鈾(Ⅵ),以及鋁、磷、鎳、鋅等不被沉澱。鈷試劑(α-亞硝基-β-萘酚)則在弱酸或弱鹼性溶液中沉澱鈾(Ⅵ),鈷、鐵、鎳等同時被沉澱,而鋁、鋅、鹼土金屬等不被沉澱。
65.1.2.2 配位分離法
鈾形成配合物分離,最典型的方法是鈾和碳酸鈉形成Na4UO2(CO3)3配合物進入溶液與鐵、鈦、鈷、鎳、錳、鋅、鈹和鹼土金屬分離。
65.1.2.3 萃取分離法
萃取分離的方法也很多。在0.05~0.5mol/LHNO3中可用乙醚萃取硝酸鈾醯,部分釷、鈰、鐵、釩亦同時被萃取。在(1+9)H2SO4中可用三氯甲烷或乙醚萃取鈾的銅鐵試劑配合物與鋁、氫氧化銨組、鹼土金屬及硫化銨組的其他元素分離。TBP萃取鈾主要在硝酸介質中進行,萃取分配比在5~6mol/LHNO3中達到最大值;但在有大量硝酸鹽存在下,即使硝酸濃度低於1mol/L,鈾也能定量被萃取。常用的鹽析劑有:硝酸鋁、硝酸鈣、硝酸鈉和硝酸銨,同時被萃取的有釷、鈧、釔和金等。在4mol/LHNO3溶液中也可用(2+8)磷酸三丁酯-苯萃取鈾。也有在pH2~3的硝酸介質中,以硝酸鈉作鹽析劑,用磷酸三丁酯萃取鈾(Ⅵ),釷、鋯和稀土元素同時被萃取。
三烷基氧膦(TRPO)和三辛基氧膦(TOPO)都是鈾的有效萃取劑。二者萃取鈾的酸度基本相同,均為0.5~3mol/LHNO3,同時被萃取的有鐵、鈰、釩、鋯、釷和鉬(均為高價)。
65.1.2.4 色層分離法
目前,用於萃取色層分離鈾的萃取劑有:胺類萃取劑N263(氯化三辛基甲基胺)、N235(三正辛胺)、N1923(國產胺型萃取劑);中性配位劑P350(甲基磷酸二甲庚酯)、TBP(磷酸三丁酯)、C1-TBP萃淋樹脂;酸性配位劑P507(2-乙基己基磷酸單2-乙基己酯);亞碸類萃取劑DOSO(二正辛基亞碸)等結合載體聚三氟氯乙烯粉、聚四氟乙烯粉、硅膠、硅烷化硅球、DA201大孔吸附樹脂(二乙基苯-丙烯腈共聚物)、X-5型大孔吸附樹脂(聚二乙烯苯)、交聯聚甲基丙烯酸型樹脂和泡沫塑料(聚氨酯或聚醚酯)等作載體組成的固定相,均能達到在一定濃度的硝酸或鹽酸溶液中富集分離的目的。在實踐中得到廣泛應用的是P350萃取色層、Cl-TBP萃淋樹脂。用DOSO-交聯聚甲基丙烯樹脂組成的固定相,可在1.5mol/LHClO4中定量富集鈾,同時被富集的還有金、鈀、汞等。CL-TBP萃淋樹脂,可在!(HNO3)=12%~50%介質中萃取鈾,同時被萃取的有金、釷、釔、鈧。在!(HNO3)=6%~35%介質中可用P350與DA201或者X-5型聚二乙烯苯組成的萃取色層定量富集鈾,在有鹽析劑硝酸鋁存在下可降低酸度為!(HNO3)=2%,鈾也能定量被萃取,同時被萃取的還有釷。在0.5~3mol/LHCl-2.5~3mol/LNaCl體系中P350也能定量萃取鈾,同時被萃取的還有鎵、鉈、金等。
65.1.2.5 離子交換樹脂分離法
離子交換樹脂的方法也適用於微量鈾的分離,目前應用較廣泛的是大孔陽離子交換樹脂D235,是在4mol/LHCl中(或者在含有100g/LNaCl存在下交換酸度可降至為1mol/LHCl)進行交換分離釷,稀土、鋯、鈦、釩等干擾元素。
在硫酸或高氯酸溶液中,用汞陰極電解法,鈾被還原為四價(部分為三價)留在溶液中鋅、鎘、鐵、鉻、鉈、鈷、鎳、錳、銦、鉛、錫、銻、銅、鉍、金、銀等元素以金屬析出而與鈾分離。稀土、鋯、鈮、鉭等元素與鈾共存於溶液中。
3. 用離子交換法分離和富集水樣中的陽離子和陰離子的原理
離子交換樹脂是利用被分離離子交換能力的差別而實現分離的,一般情況下價態版高的離子選擇系數大權,如鐵離子的交換順序大於鈣離子,具體情況如下:對陽離子的吸附
高價離子通常被優先吸附,而低價離子的吸附較弱.在同價的同類離子中,直徑較大的離子的被吸附較強.一些陽離子被吸附的順序如下:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:SO42-> NO3- > Cl- > HCO3- > OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:OH-> 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
4. 離子交換分離法的應用
1 水處理,這是離子交換法最主要的應用領域。
最早的離子交換法應用是從工業鍋爐用水的處理開始的,水中所含的鈣、鎂離子會使鍋爐結垢,導致鍋爐效率降低,久之還有爆炸風險,人們先後採用天然泡沸石、磺化煤、離子交換樹脂等解決了這一問題,也帶動了離子交換法在其他水處理領域,尤其是飲用水處理領域的應用。常見的離子有硬水軟化處理。
2 分離純化,冶金、醫葯、有機合成。
金屬鹽、有機酸、胺、氨基酸等能夠產生的離子都能夠被吸附到離子交換劑上,進而富集,從而達到 分離的效果,這個方法在分離工程中應用廣泛,尤其是在低濃度大批量樣品的處理中效果顯著。
除了分離某一種特定物質 外,還可以利用離子交換層析等方法,批次分離多種物質。
3 催化劑
離子交換劑分為酸性、鹼性、中性等種類,而不少化學反應需要酸性、鹼性等物質作為催化劑,離子交換劑大量易得,使用方便,分離容易,可以作為很好的傳統酸鹼催化劑替代品使用。
5. 分離和富集
釷和其他伴生元素的分離可用沉澱、萃取、離子交換和萃取色層等方法。
釷的沉澱分離方法很多。苛性鹼、氫氧化銨、吡啶、六次甲基四胺都能使釷生成白色氫氧化物沉澱。小量釷可以用鋁、鐵為聚集劑,沉澱在pH3.5即開始形成,不溶於過量試劑。與釷形成配合物的有機酸如酒石酸等不應存在。此法可將釷與鹼金屬、鹼土金屬、鋅、鎳、銅、銀等元素分離,用吡啶或六次甲基四胺還可將釷與稀土分離。在0.5~1.3mol/L硝酸或鹽酸介質中,草酸濃度為10~50g/L時,釷成草酸鹽沉澱而與鐵、鋁、鋯、鈦等元素分離,鈾(Ⅵ)、稀土、鈣同時沉澱。少量釷可用稀土和鈣做聚集劑。草酸釷不溶於水和稀酸,但溶於過量的草酸銨溶液中。在pH≥1.5時,過氧化氫能沉澱釷為過氧化釷而與鹼金屬、鈦、鈾、錫、鈹、稀土等元素分離,鈰部分共沉澱。在6mol/L硝酸溶液中可用碘酸鹽沉澱大量釷,在0.5~1mol/L硝酸溶液中,以亞汞為聚集劑,可用碘酸鹽沉澱微量釷,鈾(Ⅳ)、鈰(Ⅲ)及稀土元素等不沉澱,鈦、鋯、鐵、鈮、鉭、鈾(Ⅳ)和鈰(Ⅳ)同時被沉澱。碘酸釷不溶於過量試劑及強酸中,能溶於還原性酸中(如鹽酸)。在稀鹽酸溶液中,氫氟酸能將釷沉澱,成難溶的氟化釷,稀土元素同時被沉澱,與鈮、鉭、鋯、鈦、鎢等元素分離。大量氟化銨存在時能使鈧分離,氟化釷能溶於硼酸和硝酸中。在pH2~2.8的鹽酸或硝酸介質中,有機試劑如苯甲酸、間-硝基苯甲酸等都能沉澱釷,與鈹、錳、鋅、鎳、鈷、鈾、鹼土金屬等元素分離,嚴格控制溶液的酸度可與稀土元素定量分離。
萃取分離方法,適用於微量釷的分離。在飽和硝酸鋁的1.5mol/L硝酸溶液中,用異丙叉丙酮[即異丙烯基丙酮(CH3)2C=CHCOCH3]萃取釷,除鈾,釩及少量鋯以外,幾乎能與所有伴生元素分離。在pH>1的硝酸溶液中用等體積的0.25mol/LTTA(噻吩甲醯三氟丙酮)的苯溶液萃取釷,釙(Po)同時被萃取。另外在適當的介質中,磷酸三丁酯亦能萃取釷,與鈾、鐳等分離。在釷的3mol/LHCl溶液中用5g/L苯甲醯苯胲-三氯甲烷萃取鈦使與釷分離。
萃取色層分離方法,同樣也適用於微量釷的分離和富集。目前胺類萃取劑,N263(氯化三辛基甲基胺)、N235(三正辛胺)、N1023(國產胺型萃取劑);中性配位劑,P350(甲基磷酸二甲庚酯)、TBP(磷酸三丁酯)、CL-TBP萃淋樹脂(苯乙烯-二乙烯苯為骨架,含有60%TBP共聚物)、5208萃淋樹脂(異烷基磷酸二丁酯);酸性配位劑,P507(2-乙基己基磷酸單2-乙基己酯)等結合載體聚三氟氯乙烯粉、聚四氟乙烯粉、硅烷化硅球、DA201大孔吸附樹脂(二乙基苯-丙烯腈共聚物)、X-5型大孔吸附樹脂(聚二乙烯苯)、交聯聚甲基丙烯酸型樹脂和泡沫塑料等組成固定相,均能達到在一定濃度的硝酸溶液中富集釷分離鈦、鋯、鈾、稀土等干擾離子。在分析實踐中應用較好的是N263、P350、CL-TBP萃淋樹脂和5208萃淋樹脂等。N203和X-5型聚二乙烯苯或DA201樹脂組成固定相,用2mol/LHNO3(1~7mol/L)上柱液通過色層柱,從而使釷與大量鈾、鋯、磷、鐵和稀土等分離,最後用4~5mol/LHCl淋洗釷。P350與X-5型聚二乙烯苯組成的固定相,以2.5mol/LHNO3(1.5~9.0mol/L)介質上柱可使釷與大量鐵、鋁、鈣、鎂、鉬、銅,鈦、稀土等元素分離,最後以5mol/LHCl解脫釷。CL-TBP萃淋樹脂是在4mol/LHNO3(3~8mol/L)中富集釷與稀土、鈮、鉭等雜質分離,最後用3~5mol/LHCl解脫釷。5208萃淋樹脂是在0.1~6mol/LHNO3中富集釷與大量鈾、鈦、鋯、鋅、鉬(Ⅵ)、砷(Ⅴ)、稀土元素等分離,最後用0.1~6mol/LHCl淋洗解脫釷。
離子交換分離方法,也適用於微量釷的分離。在2~7mol/LHCl介質中,鈦、鋯、鈾、稀土等在743大孔陽離子交換樹脂上的分配系數與釷差別較大。因此,適用於釷與許多元素的分離,特別適用於釷與高量鈦、鋯和稀土元素的分離。根據試樣中鈦,鋯和稀土元素含量的不同,可先用4mol/L或2mol/LHCl淋洗除去這些元素,用氯化銨溶液淋洗,使氫型陽離子交換樹脂轉變為銨型,最後以草酸銨溶液淋洗釷,用光度法測定釷。也有在8mol/LHNO3介質中,用742大孔陰離子交換樹脂富集釷,分離鈾和稀土等干擾,最後以水解脫釷,光度法完成測定。