⑴ 什麼是膜分離技術,類型及應用特點
膜分離技術的特點膜分離過程是一個高效、環保的分離過程,是多學科交叉的高新技術,在物理、化學和生物性質上呈現出各種各樣的特性,具有較多的優勢
。膜是具有選擇性分離功能的材料,利用膜的選擇性分離實現料液的不同組分的分離、純化、濃縮的過程稱作膜分離。它與傳統過濾的不同在於,膜可以在分子范圍內進行分離,並且這過程是一種物理過程,不需發生相的變化和添加助劑。
膜的孔徑一般為微米級,依據其孔徑的不同(或稱為截留分子量),可將膜分為微濾膜、超濾膜、納濾膜和反滲透膜,根據材料的不同,可分為無機膜和有機膜,無機膜主要是陶瓷膜和金屬膜,其過濾精度較低,選擇性較小。有機膜是由高分子材料做成的,如醋酸纖維素、芳香族聚醯胺、聚醚碸、聚氟聚合物等等。
微濾(MF)又稱微孔過濾,它屬於精密過濾,其基本原理是篩孔分離過程。微濾膜的材質分為有機和無機兩大類,有機聚合物有醋酸纖維素、聚丙烯、聚碳酸酯、聚碸、聚醯胺等。無機膜材料有陶瓷和金屬等。鑒於微孔濾膜的分離特徵,微孔濾膜的應用范圍主要是從氣相和液相中截留微粒、細菌以及其他污染物,以達到凈化、分離、濃縮的目的。
對於微濾而言,膜的截留特性是以膜的孔徑來表徵,通常孔徑范圍在0.1~1微米,故微濾膜能對大直徑的菌體、懸浮固體等進行分離。可作為一般料液的澄清、保安過濾、空氣除菌。
超濾(UF)
是介於微濾和納濾之間的一種膜過程,膜孔徑在0.05um至1nm之間。超濾是一種能夠將溶液進行凈化、分離、濃縮的膜分離技術,超濾過程通常可以理解成與膜孔徑大小相關的篩分過程。以膜兩側的壓力差為驅動力,以超濾膜為過濾介質,在一定的壓力下,當水流過膜表面時,只允許水及比膜孔徑小的小分子物質通過,達到溶液的凈化、分離、濃縮的目的。
對於超濾而言,膜的截留特性是以對標准有機物的截留分子量來表徵,通常截留分子量范圍在1000~300000,故超濾膜能對大分子有機物(如蛋白質、細菌)、膠體、懸浮固體等進行分離,廣泛應用於料液的澄清、大分子有機物的分離純化、除熱源。
納濾(NF)
是介於超濾與反滲透之間的一種膜分離技術,
其截留分子量在80~1000的范圍內,孔徑為幾納米,因此稱納濾。基於納濾分離技術的優越特性,其在制葯、生物化工、
食品工業等諸多領域顯示出廣闊的應用前景。
對於納濾而言,膜的截留特性是以對標准NaCl、MgSO4、CaCl2溶液的截留率來表徵,通常截留率范圍在60~90%,相應截留分子量范圍在100~1000,故納濾膜能對小分子有機物等與水、無機鹽進行分離,實現脫鹽與濃縮的同時進行。
反滲透(RO)
是利用反滲透膜只能透過溶劑(通常是水)而截留離子物質或小分子物質的選擇透過性,以膜兩側靜壓為推動力,而實現的對液體混合物分離的膜過程。反滲透是膜分離技術的一個重要組成部分,因具有產水水質高、運行成本低、無污染、操作方便運行可靠等諸多優點
,而成為海水和苦鹹水淡化,以及純水制備的最節能、最簡便的技術.已廣泛應用於醫葯、電子、化工、食品、海水淡化等諸多行業。反滲透技術已成為現代工業中首選的水處理技術。
反滲透的截留對象是所有的離子,僅讓水透過膜,對NaCl的截留率在98%以上,出水為無離子水。反滲透法能夠去除可溶性的金屬鹽、有機物、細菌、膠體粒子、發熱物質,也即能截留所有的離子,在生產純凈水、軟化水、無離子水、產品濃縮、廢水處理方面反滲透膜已經應用廣泛,如垃圾滲濾液的處理。
⑵ 電解海水(NaCl)利用離子交換膜進行海水淡化的方法的原理是什麼
首先,電解海水目的是為了製取燒鹼 和氯氣
那麼在陰極區存在大量OH-
所以要將Na+交換到OH-富集的區域內以便提純
陽極區Cl-變成Cl2跑出去必要補充CL-以便繼續電解成為Cl2
⑶ 不用反滲透可以降低tds值嗎
您好,TDS 是英文 total dissolved solids 的縮寫,中文譯名為溶解性總固體,又稱總含鹽量,測量單位為毫克 / 升( mg/L )。
降低TDS的方法比較多,現列舉如下:
第一、陰陽離子樹脂交換吸附
水的離子交換除鹽就是用H型陽離子交換樹脂將水中各種陽離子交換成H+,用OH型陰離子交換樹脂將水中各種陰離子交換成OH-,從而實現除去溶解性鹽,降低TDS的目的。
第二、活性炭吸附
活性炭的多孔結構提供了大量的表面積,從而使其非常容易達到吸收收集雜質的目的。就象磁力一樣,所有的分子之間都具有相互引力。正因為如此,活性炭孔壁上的大量的分子可以產生強大的引力,從而達到將介質中的雜質吸引到孔徑中的目的。但是活性炭降低TDS效率非常低。
第三、電滲析、電除鹽
在外加直流電場作用下,利用離子交換膜的透過性(即陽膜只允許陽離子透過,陰膜只允許陰離子透過),使水中的陰、陽離子作定向遷移,從而達到水中的離子與水分離的一種物理化學過程。電滲析可以實現有效的降低TDS目的。
第四、閃蒸
閃蒸原理很簡單,物質的沸點是隨壓力增大而升高,那麼是不是壓力越低,沸點就越低呢。 那好,這樣就可以讓高壓高溫流體經過減壓,使其沸點降低,進入閃蒸罐。這時,流體溫度高於該壓力下的沸點。 流體在閃蒸罐中迅速沸騰汽化,並進行兩相分離。閃蒸能有效減低TDS,但是成本高。
第五、蒸發、蒸餾
原理很簡單,不多敘述;
第六、反滲透(納濾)
反滲透技術是利用壓力差為動力的膜分離過濾技術,其孔徑小至納米級,在一定的壓力下,
H2O分子可以通過RO膜,而源水中的無機 鹽、重金屬離子、有機物、膠體、細菌、病毒等雜質無法透過RO膜,從而使可以透過的純水和無法透過的濃縮水嚴格區分開來。反滲透是目前應用范圍最廣泛也是最有效的降低TDS的方法。
上述為降低TDS的幾個方法,希望對您有所幫助!
⑷ 採用電滲析過程脫除溶液中的離子應滿足哪些基本條件
電滲析利用半透膜的選擇透過性來分離不同的溶質粒子(如離子)的方法稱為滲析。在電場作用下進行滲析時,溶液中的帶電的溶質粒子(如離子)通過膜而遷移的現象稱為電滲析。利用電滲析進行提純和分離物質的技術稱為電滲析法,它是20世紀50年代發展起來的一種新技術,最初用於海水淡化,現在廣泛用於化工、輕工、冶金、造紙、醫葯工業,尤以制備純水和在環境保護中處理三廢最受重視,例如用於酸鹼回收、電鍍廢液處理以及從工業廢水中回收有用物質等。
原理/電滲析 編輯
電滲析使用的半滲透膜其實是一種離子交換膜。這種離子交換膜按離子的電荷性質可分為陽離子交換膜(陽膜)和陰離子交換膜(陰膜)兩種。在電解質水溶液中,陽膜允許陽離子透過而排斥阻擋陰離子,陰膜允許陰離子透過而排斥阻擋陽離子,這就是離子交換膜的選擇透過性。在電滲析過程中,離子交換膜不像離子交換樹脂那樣與水溶液中的某種離子發生交換,而只是對不同電性的離子起到選擇性透過作用,即離子交換膜不需再生。電滲析工藝的電極和膜組成的隔室稱為極室,其中發生的電化學反應與普通的電極反應相同。陽極室內發生氧化反應,陽極水呈酸性,陽極本身容易被腐蝕。陰極室內發生還原反應,陰極水呈鹼性,陰極上容易結垢。
實際應用/電滲析
電滲析是膜分離過程中較為成熟的一項技術,已廣泛地應用於苦鹹水脫鹽,是世界上某些地區生產淡水的主要方法。由於新開發的荷電膜具有更高的選擇性、更低的膜電阻、更好的熱穩定性相化學穩定性以及更高的機械強度、使電滲析過程不僅限於應用在脫鹽方面,而且在食品、醫葯及化學工業中,電滲析過程還有許多其他的工業應用,如工業廢水的處理,主要包括從酸液清洗金屬表面所形成的廢液中回收酸和金屬;從電鍍廢水中回收重金屬離子;從合成纖維廢水中回收硫酸鹽;從紙漿廢液中回收亞硫酸鹽等。用於食品工業中,如牛奶脫鹽制嬰兒奶粉;用於化學工業分離離子性物質與非離子性物質;在臨床治療中電滲析可作為人工腎使用等
。
自動控制頻繁倒極電滲析(EDR),運行管理更加方便。原水利用率可達80%,一般原水回收率 在45-70%之間。電滲析主要用於水的初級脫鹽,脫鹽率在45-90%之間。它廣泛被用於海水與苦鹹水淡化;制備純水時的初級脫鹽以及鍋爐、動力設備給水的脫鹽軟化等。
實質上,電滲析可以說是一種除鹽技術,因為各種不同的水(包括天然水、自來水、工業廢水)中都有一定量的鹽分,而組成這些鹽的陰、陽離子在直流電場的作用下會分別向相反方向的電極移動。如果在一個電滲析器中插入陰、陽離子交換膜各一個,由於離子交換膜具有選擇透過性,即陽離子交換膜只允許陽離子自由通過,陰離子交換膜只允許陰離子以通過,這樣在兩個膜的中間隔室中,鹽的濃度就會因為離子的定向遷移而降低,而靠近電極的兩個隔室則分別為陰、陽離子的濃縮室,最後在中間的淡化室內達到脫鹽的目的。
實際應用中,一台電滲析器並非由一對陰、陽離子交換膜所組成(因為這樣做效率很低),而是採用一百對,甚至幾百對交換膜,因而大大提高效率。
⑸ 離子交換膜為什麼有選擇透過性
按膜中的含活性基團的各類可分為陽離子交換膜、陰離子交換膜和特種膜三大類.
1、陽離子交換膜(簡稱陽膜) 膜體中含有酸性活性基團,它能選擇性透過陽離子而不讓陰離子透過.這些活性基團主要有:磺酸基、磷酸基、亞磷酸基、羧酸基、酚基等.其中的氫離子能與溶液中的金屬離子或其他陽離子進行交換.例如苯乙烯和二乙烯苯的高聚物經磺化處理得到強酸性陽離子交換膜,其結構式可簡單表示為R-SO3H,式中R代表樹脂母體,其交換原理為
2R-SO3H+Ca2==(R-SO3)2Ca+2H+ 這也是硬水軟化的原理.
2、陰離子交換膜(簡稱陰膜) 膜體中含有鹼性活性基團,它能選擇性透過陰離子而不讓陽離子透過.這結活性基團主要有:季銨基、伯胺基、促胺基、叔胺基等.它們在水中能生成OH-離子,可與各種陰離子起交換作用,其交換原理為
R-N(CH3)3OH+Cl- ====R-N(CH3)3Cl+OH-
3、特種膜 它包括由陽、陰離子活性基團在一張膜內均勻分布的兩性離子交換膜,帶正電荷的膜與帶負電荷的膜兩張貼在一起的復合離子交換膜(亦稱雙極性膜),還有部分正電荷與部分負電荷並列存在於膜的厚度方向的鑲嵌離子交換膜,以及在陽膜或陰膜表面上塗一層陰離子或陽離子交換樹脂的表面塗層膜等
⑹ 反滲透膜的發展史
80年代發明的復合膜,由超薄反滲透膜、多孔支撐層、織物增強自疊加而成,透水量極大,除鹽率高達99%,是理想的反滲透膜。反滲透膜在分離小分子有機化合物時也特別有效,因此對有機化工、釀造工業、三廢處理等領域也得到了很好的應用。
在21世紀以前,反滲透膜技術都是被國外所壟斷,而中國是直到90年代末期才開始掌握了反滲透膜的生產技術.這個歷史要追述到建國初期,當時我們國家的領導人已經意識到海水淡化的前景和將來在社會中的作用。
早在1958年,石松研究員等首先在中國開展離子交換膜電滲析海水淡化研究。而在此前1953年美國C.E.Reid建議美國內務部將反滲透研究列入國家計劃。
隨後1967年,國家科委組織全國海水淡化會戰,組織全國在水處理和分析化學、材料化學、流體力學等各個學科的精英會戰海水淡化。
1970年,會戰主力匯集中國浙江省的杭州市,組織了全國第一個海水淡化研究室。此期間,他們一直用電滲析技術進行海水淡化,研製成功海洋監測專用微孔濾膜,建成了世界最大的電滲析海水淡化站——西沙永興島海水淡化站。一度在海水淡化方面成為世界領軍人物。
1982年,中國海水淡化與水再利用學會經中國科協學會部批准在杭州成立。但是,因為經歷了十年浩劫,畢竟還是衰弱下去了,此時,遠在大洋彼岸的美國的全芳香族聚醯胺復合膜及其卷式元件已經赫然問世。
1984年,國家海洋局以海水淡化研究室為主體,組建國家海洋局杭州水處理技術研究開發中心,中國開始對膜技術重視了,但是,美國海水淡化用復合膜及其卷式元件已經大面積商業化了,投入到了國家和民用中去了。
1992年,國家為了追趕膜方面技術與世界的差距,,國家科委軍頂,以「中心」為依託,組建國家液體分離膜工程技術研究中心,並開始悄悄研製國產反滲透膜。
直到2001年,「中心」實行集團化分體管理,所轄三個控股的中外合資公司,兩個中資公司和一個研發中心。同年,杭州北斗星膜製品有限公司正式公開問世,從此,中國有了自己的反滲透膜產品,享有完全自主知識產權、由中國製造、具有民族品牌的高性能復合膜元件開始投放市場,中國成為世界上第四個掌握自主反滲透膜技術的國家。
⑺ 微濾膜可以攔截多價離子嗎
一、微濾(MF)膜技術
1、微濾(MF)的基本原理
微濾膜能截留0.1-1微米之間的顆粒。微濾膜允許大分子和溶解性固體(無機鹽)等通過,但會截留懸浮物,細菌,及大分子量膠體等物質。微濾膜的運行壓力一般為:0.3-7bar。微濾膜過濾是世界上開發應用最早的膜技術,以天然或人工合成的高分子化合物作為膜材料。對微濾膜而言,其分離機理主要是篩分截留。
2、微濾膜的應用
1)水處理行業:水中懸浮物,微小粒子和細菌的去除;
2)電子工業:半導體工業超純水、集成電路清洗用水終端處理;
3)制葯行業:醫用純水除菌、除熱原,葯物除菌;
4)醫療行業:除去組織液、抗菌素、血清、血漿蛋白質等多種溶液中的菌體;
5)食品工業:飲料、酒類、醬油、醋等食品中的懸濁物、微生物和異味雜質、酵母和黴菌的去除,果汁的澄清過濾。
6)化學工業:各種化學品的過濾澄清。
二、超濾(UF)膜技術
1、超濾(UF)原理
超濾(Ultra-filtration, UF)是一種能將溶液進行凈化和分離的膜分離技術。超濾膜系統是以超濾膜絲為過濾介質,膜兩側的壓力差為驅動力的溶液分離裝置。超濾膜只允許溶液中的溶劑(如水分子)、無機鹽及小分子有機物透過,而將溶液中的懸浮物、膠體、蛋白質和微生物等大分子物質截留,從而達到凈化和分離的目的。
超濾過濾孔徑和截留分子量的范圍一直以來定義較為模糊,一般認為超濾膜的過濾孔徑為0.001-0.1微米,截留分子量(Molecular weigh cut-off, MWCO)為1,000-1,000,000 Dalton。嚴格意義上來說超濾膜的過濾孔徑為0.001-0.01微米,截留分子量為1,000-300,000 Dalton。若過濾孔徑大於0.01微米,或截留分子量大於300,000 Dalton的微孔膜就應該定義為微濾膜或精濾膜。
2、超濾膜的應用
超濾膜的應用范圍極其廣泛,基本上涉及過濾的行業都可以用到過濾設備,基本過濾的行業如下:
純水與超純水制備工藝中作為反滲透預處理以及超純水的終端處理;工業用水中用於分離細菌、熱源、膠體、懸浮雜質及大分子有機物;飲用水、礦泉水凈化;發酵、酶制劑工業、制葯工業的濃縮、純化與澄清;果汁濃縮、分離;大豆、乳品、製糖工業、酒類、茶汁、醋等的分離、濃縮與澄清;工業廢水與生活污水的凈化和回收;電泳漆的回收。
超濾膜分離可取代傳統工藝中的自然沉降,板框過濾,真空轉鼓,離心分離,溶媒萃取,樹脂提純,活性炭脫色等工藝過程。該過程為常溫操作,無相態變化,不產生二次污染。
三、納濾(NF)膜技術
1、納濾(NF)原理
納濾(NF)是一種新型分子級膜分離技術,是目前世界膜分離領域研究的熱點之一。NF膜孔徑在1nm以上,一般在1-2nm;對溶質的截留性能介於RO與UF膜之間;RO膜幾乎對所有的溶質都有很高的脫除率,但NF膜只對特定的溶質具有高脫除率。NF膜能夠去除二價、三價離子,Mn≥200的有機物,以及微生物、膠體、熱源、病毒等。納濾膜的一個很大特徵是膜本體帶有電荷,這是它在很低壓力下(僅0.5MPa)仍具有較高脫鹽性能和截留分子量為數百的膜也可脫除無機鹽的重要原因,也是NF運行成本較低的主要原因。NF適合各種含鹽水源,水利用率一般為75%~85%,海水淡化時在30%~50%,沒有酸鹼廢水排放。
2、納濾膜在水處理中的應用
1)納濾膜在飲用水中的應用
納濾操作壓力小,是飲用水制備和深度凈化的首選工藝。
目前,大多數城市的給水水源均受到不同程度的污染,而自來水廠的常規處理工藝對水中有機物去除率不高,當採用氯殺菌消毒時,氯又會與水中的有機物會生成鹵代副產物。Peltier等4年的跟蹤研究表明:採用納濾系統後水中的DOC降低到平均0.7mgC/L,出水余氯的含量由0.35mg/L降到0.1mg/L,最終網線中三鹵甲烷(THMs)的形成比未採用納濾系統時減少了50%。另外,由於生物降解型溶解有機碳(BCOD)的減少,改進了產水的生物穩定性。
納濾技術能夠去除絕大部分的Ca、Mg等離子,因此脫鹽是納濾技術應用最多的領域。膜法水處理技術在投資、操作和維修及價格等方面與常規的石灰軟化和離子交換過程相近,但具有無污泥、不需再生、完全除去懸浮物和有機物、操作簡便和佔地省等優點,應用實例較多。納濾可以直接用於地下水、地表水和廢水的軟化,還可以作為反滲透、太陽能光伏脫鹽裝置等的預處理。
2)納濾膜在海水淡化中的應用
海水淡化是指將含鹽量為35000mg/L的海水淡化至500mg/L以下的飲用水。
3)納濾膜在廢水處理中的應用
①生活污水
生活污水一般用生物降解/化學氧化法結合處理,但氧化劑的用量太大,殘留物多。薛罡等採用微絮凝纖維球過濾.超濾.納濾組合工藝對賓館洗浴廢水進行了小試試驗。超濾出水水質可達到回用至賓館廁所沖洗、綠化等環節的用水要求,納濾出水水質可達到生活飲用水衛生標准(GB5749.85),可以回用至賓館洗衣、洗浴等用水要求更高的環節。
②紡織、印染廢水
紡織廢水中含有的染料很難用生物的方法去除,Hassani研究了酸性、活性、直接和分散染料水溶液的濃度、壓力、總溶解性固體和無機鹽含量等對納濾膜截留性能的影響。
③製革廢水
製革廢水含有高濃度的有機物、硫酸鹽和氯化物,酸洗工序的廢液電導值達到75mS/cm。Bes-Pia採用NF技術回收了製革廢水,所得到的高濃度硫酸鹽濃水回到酸洗段,而氯化物的產水打回裂化反應鼓。
④電鍍廢水
電鍍工廠往往產生大量廢液,盡管採取酸化、化學無害化、沉降和分離污泥等復雜處理步驟,產水含鹽量高,不能重新回用。
⑤造紙廢水
在紙漿和造紙業中,勻漿、漂白和造紙等工序都需要大量的水。實現水系統的(半)密閉循環是紙漿廠、造紙廠節約水資源降低排放量的最佳途徑。傳統活性污泥法的產水中還含有部分有色化合物、微生物、抗體和少量的生物分解物,懸浮固體等,僅能被用於製造包裝紙,不能用於更高級別紙的生產。另外,該法不能減少無機鹽的含量。Koyuncu對比了水→納濾以及造紙廢水→活性污泥→納濾兩種處理工藝的實用性,實驗表明:兩種方法的出水質量相似,第二種方法的產水通量更好,出水可以用於高級別紙。但納濾產水仍然含有一定量的一價鹽,需要再增加低壓反滲透裝置脫除鹽類才能保證循環水的質量。
四、反滲透(RO)膜技術
1、反滲透(RO)的原理
反滲透是一種以壓力為推動力的膜分離過程在使用中為產生反滲透壓需用水泵給含鹽水溶液或廢水施加壓力以克服自然滲透壓及膜的阻力使水透過反滲透膜,將水中溶解鹽或污染雜質阻止在反滲透膜的另一側。
2、反滲透膜在水處理中的應用
1)在水處理方面的常規應用
水是人們賴以生存和進行生產活動必不可少的物質條件。由於淡水資源日益缺乏,世界上反滲透水處理裝置的能力已達到每天數百萬噸。
2)在城市污水方面的應用
目前,反滲透膜在城市污水深度處理方面的應用尤其是污水處理廠二級出水回用及中水回用等,已受到高度重視。
3)在重金屬廢水處理方面的應用
含重金屬離子廢水的常規處理方法都只是一種污染轉移,即將廢水中溶解的重金屬轉化成沉澱或更加易於處理的形式,其最終處置常常是進行填埋,而重金屬對地下水和地表水環境造成二次污染的危害依然長期存在。
4)在含油廢水方面的應用
含油廢水是一種量大面廣的工業廢水,若直接排入水體,會在水體表層產生油膜阻礙氧氣溶入水中從而致使水中缺氧、生物死亡、發出惡臭,嚴重污染生態環境。油3.5mg/L、總有機碳(TOC)(16~23)mg/L的油田采出水處理到鍋爐用水水質於是處理後的水回用於電站鍋爐給水。
五、滲析膜技術
1、各種滲析膜技術原理
1)滲析
滲析(Dialysis,簡稱D)是溶質在自身的濃度梯度作用下,從膜的上游傳向膜的下游的過程。
滲析是最早被發現並研究的膜分離技術,但因為受到本身體系的限制,滲析過程進行緩慢,效率低下,滲析過程的選擇性不高,因此滲析過程主要用於脫除含有多種溶質溶液中的低分子量組分,如血液滲析,即以滲析膜代替腎來去除尿素、肌酸酐、磷酸鹽和尿酸等有毒的低分子量組分,以緩解腎衰竭和尿毒症患者的病情。
2)電滲析
電滲析(Electrodialysis,簡稱ED)是在直流電場的作用下,以電位差為推動力,利用離子交換膜對溶液中的陰陽離子的選擇性,把電解質從溶液中分離出來,從而實現溶液的濃縮、淡化、精製和提純。
3)倒極電滲析(EDR)
倒極電滲析就是根據ED原理,每隔一定時間(一般為15~20min),正負電極極性相互倒換,能自動清洗離子交換膜和電極表面形成的污垢,以確保離子交換膜工作效率的長期穩定及淡水的水質水量。在20世紀80年代後期,倒極電滲析器的使用,大大提高了電滲析操作電流和水回收率,延長了運行周期。EDR在廢水處理方面尤其有獨到之處,其濃水循環、水回收率最高可達95%。
4)液膜電滲析(EDLM)
液膜電滲析是用具有相同功能的液態膜代替固態離子交換膜,其實驗模型就是用半透玻璃紙將液膜溶液包製成薄層狀的隔板,然後裝入電滲析器中運行。利用萃取劑作液膜電滲析的液態膜,可能為濃縮和提取貴金屬、重金屬、稀有金屬等找到高效的分離方法,因為尋找對某種形式離子具有特殊選擇性的膜與提高電滲析的提取效率有關。提高電滲析的分離效率,直接與液膜結合起來是很有發展前途的。例如,固體離子交換膜對鉑族金屬(鋨、釕等)的鹽溶液進行電滲析時,會在膜上形成金屬二氧化物沉澱,這將引起膜的過早損耗,並破壞整個工藝過程,應用液膜則無此弊端。
5)填充床電滲析(EDI)
填充床電滲析(EDI)是將電滲析與離子交換法結合起來的一種新型水處理方法,它的最大特點是利用水解離產生的H+和OH-自動再生填充在電滲析器淡水室中的混床離子交換樹脂,從而實現了持續深度脫鹽。它集中了電滲析和離子交換法的優點,提高了極限電流密度和電流效率。1983年Ke2dem.o.及其同事們提出了填充混合離子交換樹脂電滲析過程除去離子的思想,1987年,Mlillpore公司推出了這一產品。填充床電滲析技術具有高度先進性和實用性,在電子、醫葯、能源等領域具有廣闊的應用前景,可望成為純水製造的主流技術。
6)雙極性膜電滲析(EDMB)
雙極膜是一種新型離子交換復合膜,它一般由層壓在一起的陽離子交換膜組成,通過膜的水分子即刻分解成H+和OH-,可作為H+和OH-的供應源。雙極性膜電滲析突出的優點是過程簡單,能效高,廢物排放少。目前雙極性膜電滲析工藝的主要應用領域在酸鹼制備。例如,用雙極性膜和陽膜配成的二室膜可以實現有機酸鹽(葡萄糖酸鈉、古龍酸鈉等)的轉化,同時得到鹼(NaOH),但濃度(酸最大濃度2molL-1,鹼最大濃度6molL-1)和純度兩方面都受到限制。現在開發的應用領域還有廢氣脫硫、離子交換樹脂再生、鉀鈉的無機過程等。
7)無極水電滲析
無極水電滲析是傳統電滲析的一種改進形式,它的主要特點是除去了傳統電滲析的極室和極水。例如在裝置的電極緊貼一層或多層離子交換膜,它們在電氣上都是相互聯接的,這樣既可以防止金屬離子進入離子交換膜,同時又防止極板結垢,延長電極的使用壽命。由於取消了極室,無極水排放,大大提高了原水的利用率。無極水電滲析於1991年問世,在應用過程中技術不斷改善,現裝置在運行方式上多採用頻繁倒極的形式。目前,無極水全自動控制電滲析器已在國內20個省、市使用,近來,還遠銷東南亞。
2、滲析膜的應用
1)工業廢水處理
電滲析可用於電鍍廢水、重金屬廢水等的處理,提取廢水中的金屬離子等,既能回收利用水和有用資源,又減少了污染排放。萬詩貴等自製離子膜電解槽研究了銅生產過程中鈍化液處理的可行性,結果發現,不僅可以回收其中的銅和鋅,而且將Cr3+氧化成Cr6+,再生了鈍化液。電滲析法與離子交換法結合從酸洗廢液中回收重金屬和酸的工藝已在工業上應用。
電滲析還可以用於鹼性廢水及有機廢水的處理。污染控制與資源化研究國家重點實驗室對採用離子膜電解法對處理環氧丙烷氯醇化尾氣鹼洗廢水進行了研究。在電解電壓5.0V時,循環處理3h,廢水COD去除率可達78%,廢水中鹼回收率可達73.55%,為後續生化單元起到良好的預處理作用。齊魯石油化工公司利用電滲析法處理高濃度復合有機酸廢水,濃度為3%~15%,無廢渣及二次污染,得到的濃溶液含酸20%~40%,可以回收處理,廢水中含酸量可降至0.05%~0.3%。川化股份有限公司採用特殊電滲析裝置處理冷凝廢水,最大處理量為36t/h,濃水中硝酸銨體積百分比含量為20%,回收率達96%以上,合格淡水排放水中氨氮質量分數含量≤40mg/L。
2)飲用水及過程水處理
我國在西南地區採用電滲析法將鹽泉鹵水制鹽,使NaCl的含量穩定提高到120g/L,與原來採用的單純熬鹽法相比,產量增加而成本降低。山東鋁礦業公司生活飲用水採用濃水頻繁倒極電滲析處理,處理後的水質為:總硬度H0=174.75mg/L;溶解性總固體為255.0mg/L;總鐵量<0.3mg/L。山西某發電廠亞臨界鍋爐補給水系統採用了EDI技術鍋爐補給水電導率<0.06,SiO2為3μg/L。
3)食品工業
在白酒生產中把握質量最關鍵的一環是勾兌,而勾兌用水的質量是很重要的,它不僅影響白酒的內在質量,還影響白酒的外觀質量,使用電滲析法處量勾兌用水,可使水質明顯改善,達到國家標准。用電滲析法祛除葡萄酒中的酒石酸鹽比傳統冷凍法更高效,更加節約能源資源,葡萄酒的感官質量得到提高。有研究人員採用國產離子交換膜運用電滲析技術進行醬油脫鹽的可行性試驗,證明了電滲析對醬油的脫鹽是切實可行的分離方法。採用電滲析技術可一步實現維生素C鈉鹽脫鹽目的,轉化率高達99%,平均電流效率約70%,其副產品NaOH稀溶液也可被有效利用。
4)生化行業
採用高性能離子交換膜,應用電滲析脫鹽法,分離提純N-乙醯-L-半胱氨酸,取得了較為滿意的效果。根據雙極性膜電滲析系統的特點,即雙極性膜的陽膜析出H+,陰膜析出OH-,可以把雙極性膜電滲析技術應用於大豆蛋白質的分離,其有有很多優點:整個生產過程不需要添加酸和鹼,資源可以循環利用,耗水少,分離出的蛋白質中鹽含量明顯減少。
六、正滲透(FO)技術
1、正滲透(FO)的原理
用只能透過溶劑而不能透過溶質分子的半透膜將溶劑和溶液隔開,溶劑分子將在滲透壓的作用下自發地從溶劑側透過膜進入溶液側,這就是滲透現象,也即所謂的「正向滲透」。
2、正滲透膜在水處理中的應用
1) 廢水處理
關於FO在廢水領域的應用在許多文獻中均有報道,主要包括早期高濃度工業廢水的濃縮、垃圾滲濾液的處理、生活污水的處理、市政污水處理廠污泥厭氧消解液的濃縮和空間站上直接將污水處理成飲用水的生命支持系統等。雖然這些研究中FO 過程不是終端工藝,但其在預處理階段具有很高的脫鹽性能。
1998 年,Osmotek 公司組裝了一套實驗室規模的FO系統,對在Corvallis Oregon的Coffin Butte 垃圾填埋廠的垃圾滲濾液進行了濃縮試驗。這個垃圾場所在地區年降水量超過1400 mm,其每年產生的滲濾液大約在20000~40000 m3。試驗進行了3 個月,使用Osmotek 的三乙酸纖維素膜並以NaCl 溶液作為提取液。實驗表明,對未經預處理的滲濾液進行過濾時,此系統對TDS、TSS、TKN、COD 的截留率均在94%~96%,過膜水通量也沒有明顯衰減;但對濃縮的滲濾液進行過濾時,FO膜的水通量衰減了30%~50%,經過清洗後通量基本完全恢復。在實驗室成功運行後,Osmotek 公司設計和組裝了一套大型的膜滲透系統,實現了FO系統的工程應用。
近年來隨著FO工藝的不斷發展,引起了很多學者的關注,將其與傳統的膜分離技術相結合,更是近幾年的研究熱點。J. J. Qin 等將傳統的好氧/厭氧(A/O)活性污泥工藝與FO系統相結合,組成滲透膜生物反應器(OMBR)對生活污水進行處理,獲得了較高的膜通量。經實驗發現,當提取液NaCl 的濃度為0.14 mol/L 時,其膜通量為3.6 L/(m2h);當提取液濃度增大到1.5 mol/L 時,膜通量為17.3 L/(m2h),實驗中廢水先進入生物反應池進行生化降解,隨後進入FO系統進行滲透過濾。
2)水質深度凈化
隨著中水回用技術的發展,FO在飲用水凈化方面目前應用最成功的應屬在空間站中將產生的生活污水直接處理成飲用水。Osmotek 公司研發了一種新型的混合工藝——RO及直接滲透濃縮(DOC),被美國國家航空和宇宙航行局(NASA)用作太空站飲水凈化系統。這個DOC 系統是目前用在太空上的唯一一個膜法廢水處理系統,經NASA測試,它使處理後水質大大提升,在消耗相對較低的能量(15~50 kWh/m3)下可將水質中的大多數指標恢復至原水的95%以上,這樣太空站所需的水供給就極少了。在這個FO 系統中,太空站污水中主要為人體代謝排泄物,包括尿液、潮濕冷凝物及衛生清洗水等混合液。進水中的衛生用水及潮濕冷凝物(大於總廢水的80%)先經過一級FO 進行預處理,被一級FO 濃縮的原料液(不超過總廢水的20%)與尿液混合進入二級FO 進行處理,最後這兩級收集的滲透液在抽吸泵的作用下一起進入RO 系統,作進一步凈化提純。經RO 處理後的濃縮液經泵提升再次迴流至FO系統滲透側,重新作為滲透提取液。因此在RO 單元產生兩種水,一種是高水質飲水,一種是高濃度FO 提取液,在這個系統中,提取液得到了反復使用,大大簡化了處理工藝,也避免了資源浪費。
3)海水淡化
在FO 系統中,與RO 相似,原料液中的水分子通過半透膜滲透到膜的滲透側,將鹽溶液截留在膜的另一側。因此用FO 作為海水淡化工藝和方法一直是研究人員研究的重點,目前已有不少專利。
在FO單元,採用錯流滲透可以減緩懸浮物在膜表面的沉積。為了使原料液與提取液的溫度都維持在60℃左右,在原料液和提取液儲存箱中安裝了控溫器,使溶液溫度變化幅度控制在±1 ℃,同時通過電子天平來計算纖維膜的過膜水通量。當NH3/CO2提取液被FO產生的淡水稀釋後,經過60 ℃左右的中溫加熱,提取液溶質又分解成NH3、CO2重新回到FO過程循環利用。經試驗發現,當提取液原液為0.05mol/L 的NaCl 溶液時,正向滲透壓為23.8 MPa;當提取液原液為2 mol/L 的NaCl溶液時,正向滲透壓為12.7 MPa。