MBR膜技術原理
膜生物反應器技術是一種將高效膜分離技術與傳統活性污泥專法相結合屬的新型高效污水處理工藝,膜生物反應器因其有效的截留作用,可保留世代周期較長的微生物,實現對污水深度凈化,同時硝化菌在系統內能充分繁殖,硝化效果明顯,對深度除磷脫氮提供可能。
MBR技術是以膜組件取代傳統生物處理技術末端二沉池,
在生物反應器中保持高活性污泥濃度,提高生物處理有機負荷,從而減少污水處理設施佔地面積,並通過保持低污泥負荷減少剩餘污泥量,主要利用膜分離設備截留水中的活性污泥與大分子有機物。因此,具有高效固液分離性能,同時利用膜的特性,使活性污泥不隨出水流失,在生化池中形成8000
~ 12000m/L超高濃度的活性污泥濃度,使污染物分解徹底,出水水質良好、穩定,出水細菌、懸浮物和濁度接近於零。
首先你需要知道這兩種膜的區別
膜生物反應器( MBR )、超濾( UF )作為反滲透( RO)的預處理工藝在實際中的應用日益廣泛。為給RO工藝提供優質、穩定的水質,比較了兩個工藝的出水水質和運行穩定性。
工藝部分
UF系統由於選用了內壓式中空纖維膜, 為防止懸浮固體干擾其正常運行, 故對二沉池出水進行了氣浮、過濾等預處理, 並以預處理後的出水作為UF系統的進水。
UF系統的工藝參數:設計膜通量為68L/(m2/h),循環倍比為2系統回收率為90%,跨膜壓力為0.04~ 0.12MPa。
MBR系統由於選用了外壓式中空纖維膜, 無需單獨增設預處理設備,只用常規格柵分離後進行調解處理後的出水作為MBR系統的進水。
MBR系統的工藝參數:設計膜通量為40L/(m2/h),平均污泥濃度(MLSS)6.66g/L,水力停留時間(HRT)為7~ 8h氣水比為16:1跨膜壓力為0.016~ 0.02MPa。
結論與建議
MBR與UF系統用於深度處理廢水,其出水水質良好。UF系統出水濁度平均為0.18NTU, COD平均為22.1mg /L, SDI平均為2.50; MBR系統出水濁度平均為0.14 NTU, COD平均為20.1 mg /L, SDI平均為2.22。
在對濁度的去除上, MBR系統無論是出水濁度平均值還是出水濁度的穩定性均優於UF系統。在對 COD的去除上, UF系統對預處理工藝出水的COD去除效果不明顯; MBR系統耐COD沖擊負荷的能力較強, 但對經純氧曝氣工藝處理後的剩餘難生物降解COD的去除效果不佳。
針對廢水的水質特點,為滿足RO工藝對進水水質及其穩定性的要求,可在純氧曝氣池後設置一個水力停留時間較短的膜分離池(池內維持較高的污泥濃度)代替二沉池,以提高系統的出水水質和抗沖擊負荷能力。
⑶ 平板膜和微濾 超濾 納濾膜有什麼區別
平板膜是MBR膜的一種類型。
MBR是膜生物反應器的英文縮寫,M即指膜,MBR膜是指膜生物反應器中使用的膜,滿足膜生物反應器使用條件的膜產品都可以被稱為MBR膜,MBR膜種類很多,常見的有中空纖維膜、管式膜、平板膜、陶瓷膜,按安裝位置又可分為浸沒式和外置式兩種。
微濾:
微濾又稱微孔過濾,是以多孔膜(微孔濾膜)為過濾介質,在0.1~0.3MPa的壓力推動下,截留溶液中的砂礫、淤泥、黏土等顆粒和賈第蟲、隱抱子蟲、藻類和一些細菌等,而大量溶劑、小分子及少量大分子溶質都能透過膜的分離過程。
特點
微濾能截留0.1~1微米之間的顆粒,微濾膜允許大分子有機物和無機鹽等通過,但能阻擋住懸浮物、細菌、部分病毒及大尺度的膠體的透過,微濾膜兩側的運行壓差(有效推動力)一般為0.7bar。
原理
微濾的過濾原理有三種:篩分、濾餅層過濾、深層過濾。一般認為微濾的分離機理為篩分機理,膜的物理結構起決定作用。此外,吸附和電性能等因素對截留率也有影響。其有效分離范圍為0.1-10μm的粒子,操作靜壓差為0.01-0.2MPa。
超濾(UF)
過濾精度在0.001-0.1微米,屬於二十一世紀高新技術之一。是一種利用壓差的膜法分離技術,可濾除水中的鐵銹、泥沙、懸浮物、膠體、細菌、大分子有機物等有害物質,並能保留對人體有益的一些礦物質元素。是礦泉水、山泉水生產工藝中的核心部件。超濾工藝中水的回收率高達95%以上,並且可方便的實現沖洗與反沖洗,不易堵塞,使用壽命相對較長。超濾不需要加電加壓,僅依靠自來水壓力就可進行過濾,流量大,使用成本低廉,較適合家庭飲用水的全面凈化。因此未來生活飲用水的凈化將以超濾技術為主,並結合其他的過濾材料,以達到較寬的處理范圍,更全面地消除水中的污染物質。
納濾(NF)
過濾精度介於超濾和反滲透之間,脫鹽率比反滲透低,也是一種需要加電、加壓的膜法分離技術,水的回收率較低。也就是說用納濾膜制水的過程中,一定會浪費將近30%的自來水。這是一般家庭不能接受的。一般用於工業純水製造。
⑷ 如何區分七孔超濾膜濾芯好壞
如何辨別濾芯
1、一般好的濾芯總是比較整齊:大品牌的濾芯在色澤上也比較內白凈、光鮮,如容果差的濾芯沒孔不通暢,而且材質發黃,保存不好的有發霉跡象,因為濾芯被安置在凈水器內部,所以看起來比較困難,而市場上銷售的濾芯樣品是千挑萬選的,所以看不出來問題。因此購買之前,盡量叫銷售人員拆裝;雖然要求過分,但是管用。當然這也只能從外觀上判斷,專業的做法是要氣壓試水,如果漏氣,則濾芯不達標。消費者無法測試氣壓,只能在使用過程中體驗,所以對售後服務要求比較高。
2、還有一種方法是看濾芯的外殼材質:一般廠家都使用食品級ABS材料(色澤黃,光滑,而且,個別為了節約成本,使用PVC(日豐管,下水道使用,白色,無光澤)。
⑸ MBR一體化污水處理設備工藝原理及特點總結附工藝流程圖
MBR一體化污水處理設備是通過膜組件對污水進行固液分離,把污泥迴流至生物反應器中,再通過水排出。MBR污水處理工藝又被稱之為膜生物反應器,是一種由膜分離單元與生物處理單元相結合的新型污水處理技術。通過膜的運用,強化了生物反應器的作用,因此,膜的應用在MBR一體化污水處理設備中占據重要地位。按照膜的結構可分為平板膜、管狀膜和中空纖維膜等 ,按膜孔徑可劃分為微濾膜、超濾膜、納濾膜、反滲透膜等。它利用膜攔截生化反應池中的大分子有機物與活性污泥,省去二沉池這一步,減少了佔地面積。
MBR一體化污水處理設備運轉流程示意圖:
採用MBR膜生物反應器污水處理設備的特點:
1、高效去除污染物,能夠去除氨氮及難降解有機物,處理出水水質好;
2、污泥濃度高,剩餘污泥產生量低,裝置容積負荷大,佔地面積小;
3、利於增殖緩慢或高效微生物的截留,提高系統的硝化效果和對難降解有機物的處理能力;
4、自動化控制完成度高,操作管理方便;
5、經處理後排放的水SS和濁度都接近於零,加入中水回用設備可實現回用
6、設備的外形採用鋼結構,防腐漆,因此整個設備堅固耐用,壽命高可達20年以上
7、設備應用范圍廣,如:城市污水處理及建築中水回用,工業廢水處理,微污染飲用水凈化,土地填埋場、肥滲濾液處理,糞便污水處理等。
MBR(膜生物反應器)工藝特徵:
1、對污水中的有機物進行降解、硝化菌將Nspan-N硝化為NO3-,對有機物去除率在95%以上;對氨氮去除率在97%以上。
2、預處理過程簡單,不需要大量投加化學葯劑,操作過程簡單;
3、回收率高,水的回收率可達到99%以上,這種靈活性容許操作員在流入的未凈化水品質惡化時通過降低回收率減少對隔膜的「壓力」,但同時產生相同總量和品質的凈化水;
4、系統使用邏輯進程監控系統,包括流量傳送器和壓力傳送器等等。這種高度受控的系統方法可用於設計靈活的系統並提高操作員介面的低要求;
5、空氣沖洗保證在各種流入條件下都能可靠運行;
6、自動反沖保證在較低的過膜壓力下提高整體膜通量;
7、佔地面積小,僅有傳統工藝的10~20%;
8、使用周期長,連續運行時間可達7萬小時,斷絲率低於1%。
MBR工藝缺點:
1、膜的造價高,增加了成本;
2、膜容易出現污染,給操作管理帶來不便;
3、能耗稍高:首先MBR泥水分離過程必須保持一定的膜驅動壓力;其次是MBR池中MLSS濃度非常高,要保持足夠的傳氧速率,必須加大曝氣強度;還有為了加大膜通量、減輕膜污染,必須增大流速,沖洗膜表面,造成MBR的能耗要比傳統的生物處理工藝稍高。
⑹ MBR技術在污水處理中的應用
下面是中達咨詢給大家帶來關於施工臨時用電的存在問題及正確做法的相關內容,以供參考。
膜生物反應器(MembraneBioreactor,簡稱MBR),是由膜分離和生物處理結合而成的一種新型瞎凳、高效的污水處理技術。膜分離技術最早應用於微生物發酵工業,隨著膜材料和制膜技術的發展,其應用領域不斷擴大,已經涉及到化工、電子、輕工、紡織、冶金、食品、石油化工和污水處理等多個領域。
1、MBR技術在國外污水處理中的研究及應用
膜分離技術在污水處理中的應用開始於20世紀60年代末#1969年美國的Smith等人首次將活性污泥法與超濾膜組件相結合用於處理城市污水的工藝研究,該工藝大膽地提出了用膜分離技術取代常規活性污泥法中的二沉池,利用膜具有高效截留的物理特性,使生物反應器內維持較高的污泥濃度,在F/M低比值下工作,這樣就可以使有機物盡可能地得到氧化降解,提高了反應器的去除效率,這就是MBR的最初雛形。
進入20世紀70年代,有關MBR的研究進一步深入開展#1970年,Hardt等人使用完全混合生物反應器與超濾膜組合工藝處理生活污水,獲得了98%的COD去除率和100%去除細菌的結果。1971年,Bemberis等人在污水處理廠進行了MBR試驗,取得了良好的試驗結果。1978年,Bhattacharyya等人將超濾膜用於處理城市污水,獲得了非飲用回用水。1978年,Grethlein利用厭氧消化池與膜分離進行了處理生活污水的研究,BOD和TN的去除率分別為90%和75%.
在這一時期,盡管各國學者對MBR工藝做了大量的研究工作,並獲得了一定的研究成果,但是由於當時膜組件的種類很少,制膜工藝也不是十分成熟,膜的壽命通常很短,這就限制了MBR工藝長期穩定的運行,從而也就限制了MBR技術在實際工程中的推廣應用。
進入20世紀80年代以後,隨著材料科學的發展與制膜水平的提高,推動了膜生物反應器技術的向前發展,MBR工藝也隨之得到迅速發展。日本研究者根據本國國土狹小!地價高的特點對MBR技術進行了大力開發和研究,並在MBR技術的研究和開發上走在了前列,使MBR技術開始走向實磨亮旅際應用。
20世紀90年代以後,MBR技術得到了最為迅猛的發展,人們對MBR在生活污水處理!工業廢水處理!飲用水處理等方面的應用都進行了研究,MBR已經進入實際應用階段,並得到了快速的推廣。
20世紀的最後幾年,人們圍繞著膜生鍵迅物反應器的關鍵問題進行了較多的研究,並取得了一些成果。有關膜生物反應器的研究從實驗室小試!中試規模走向了生產性試驗,應用MBR的中、小型污水處理廠也逐漸見諸報道。1998年初,歐洲第一座應用一體式膜生物反應器的生活污水處理廠在英國的Porlock建成運行,成為英國膜生物反應器技術的里程碑。
本世紀初,人們對膜生物反應器的研究方興未艾,使得該項技術正在逐漸趨於成熟。
2、MBR技術在國內污水處理中的研究及應用
我國對膜生物反應器的研究雖然起步較晚,但發展速度很快。1991年,芩運華對膜生物反應器的應用進行了綜述,介紹了MBR在日本的研究狀況,這是我國學者對膜生物反應器做的較早的報道。隨後,江成璋等人進行了中空纖維超濾膜在生物技術中的應用研究。1995年,樊耀波將MBR用於石油化工污水凈化的研究,研製出一套實驗室規模的好氧分離式MBR.
從1995年以來,我國對膜生物反應器污水處理技術的研究工作開始全面展開,多家科研院所進行了此方面的研究,清華大學、哈爾濱工業大學、中國科學院生態環境研究中心、天津大學、同濟大學等對膜生物反應器的運行特性、膜通量的影響因素、膜污染的防止與清洗等方面做了大量細致的研究工作。2000年,顧平採用國產中空纖維膜對生活污水做了中試規模的MBR研究,結果表明:MBR工藝出水懸浮物為零,細菌總數優於飲用水標准,COD和氨氮的去除率都高於95%,出水可直接回用。2001年,張立秋等對一體式MBR處理生活污水的主要設計參數HRT、SRT等進行了理論推導,為實際工程設計提供了參考,並對膜堵塞機理進行了深入研究探討,提出了膜內部生物堵塞的存在。
雖然,我國在MBR技術的研究探討方面取得了顯著的成績,但是同日本、英國、美國等國家相比,我國的研究試驗水平還比較落後,由於國產膜組件的種類較少,膜質量較差,壽命通常較短,因此在實際應用中存在一定的問題。雖然在我國膜生物反應器用於處理生活污水已有應用,但到目前為止,設計完善、運行良好的應用膜生物反應器的生活污水處理廠還未見報道。
3、MBR工藝的分類
膜生物反應器主要是由膜組件和生物反應器兩部分組成#根據膜組件與生物反應器的組合方式可將膜生物反應器分為以下三種類型:分置式膜生物反應器、一體式膜生物反應器和復合式膜生物反應器。
3.1分置式膜生物反應器
分置式膜生物反應器是指膜組件與生物反應器分開設置,相對獨立,膜組件與生物反應器通過泵與管路相連接#分置式膜生物反應器的工藝流程如圖1所示。
該工藝膜組件和生物反應器各自分開,獨立運行,因而相互干擾較小,易於調節控制,而且,膜組件置於生物反應器之外,更易於清洗更換#但其動力消耗較大,加壓泵提供較高的壓力,造成膜表面高速錯流,延緩膜污染,這是其動力費用大的原因,每噸出水的能耗為2~10kWh,約是傳統活性污泥法能耗的10~20倍,因此能耗較低的一體式膜生物反應器的研究逐漸得到了人們的重視。
3.2一體式膜生物反應器
一體式膜生物反應器起源於日本,主要用於處理生活污水,近年來,歐洲一些國家也熱衷於它的研究和應用#一體式膜生物反應器是將膜組件直接安置在生物反應器內部,有時又稱為淹沒式膜生物反應器(SMBR),依靠重力或水泵抽吸產生的負壓或真空泵作為出水動力#一體式膜生物反應器工藝流程如圖2所示。該工藝由於膜組件置於生物反應器之中,減少了處理系統的佔地面積,而且該工藝用抽吸泵或真空泵抽吸出水,動力消耗費用遠遠低於分置式膜生物反應器,每噸出水的動力消耗約是分置式的1/10.如果採用重力出水,則可完全節省這部分費用。但由於膜組件浸沒在生物反應器的混合液中,污染較快,而且清洗起來較為麻煩,需要將膜組件從反應器中取出。
3.3復合式膜生物反應器
復合式膜生物反應器也是將膜組件置於生物反應器之中,通過重力或負壓出水,但生物反應器的型式不同#復合式MBR,是在生物反應器中安裝填料,形成復合式處理系統。
在復合式膜生物反應器中安裝填料的目的有兩個:一是提高處理系統的抗沖擊負荷,保證系統的處理效果;二是降低反應器中懸浮性活性污泥濃度,減小膜污染的程度,保證較高的膜通量。
復合式膜生物反應器中,由於填料上附著生長著大量微生物,能夠保證系統具有較高的處理效果並有抵抗沖擊負荷的能力,同時又不會使反應器內懸浮污泥濃度過高,影響膜通量。
4、MBR工藝的特點
4.1對污染物的去除效率高
MBR對懸浮固體(SS)濃度和濁度有著非常良好的去除效果。由於膜組件的膜孔徑非常小(0.01~1μm),可將生物反應器內全部的懸浮物和污泥都截留下來,其固液分離效果要遠遠好於二沉池,MBR對SS的去除率在99%以上,甚至達到100%;濁度的去除率也在90%以上,出水濁度與自來水相近。
由於膜組件的高效截留作用,將全部的活性污泥都截留在反應器內,使得反應器內的污泥濃度可達到較高水平,最高可達40~50g/L.這樣,就大大降低了生物反應器內的污泥負荷,提高了MBR對有機物的去除效率,對生活污水COD的平均去除率在94%以上,BOD的平均去除率在96%以上。
同時,由於膜組件的分離作用,使得生物反應器中的水力停留時間(HRT)和污泥停留時間(SRT)是完全分開的,這樣就可以使生長緩慢、世代時間較長的微生物(如硝化細菌)也能在反應器中生存下來,保證了MBR除具有高效降解有機物的作用外,還具有良好的硝化作用。研究表明,MBR在處理生活污水時,對氨氮的去除率平均在98%以上,出水氨氮濃度低於1mg/L.
此外,選擇合適孔徑的膜組件後,MBR對細菌和病毒也有著較好的去除效果,這樣就可以省去傳統處理工藝中的消毒工藝,大大簡化了工藝流程。
另外,在DO濃度較低時,在菌膠團內部存在缺氧或厭氧區,為反硝化創造了條件。僅採用好氧MBR工藝,雖然對TP的去除效率不高,但如果將其與厭氧進行組合,則可大大提高TP的去除率。研究表明,採用A/O復合式MBR工藝,對TP的去除率可達70%以上。
4.2具有較大的靈活性和實用性
在城市污水或工業廢水處理中,傳統的處理工藝(格柵+沉砂池+初沉池+曝氣池+二沉池+消毒池)流程較長,佔地面積大,而出水水質又不能保證。而MBR工藝(篩網過濾+MBR)則因流程短、佔地面積小!處理水量靈活等特點,而呈現出明顯優勢#MBR的出水量根據實際情況,只需增減膜組件的片數就可完成產水量調整,非常簡單、方便。
對於傳統的活性污泥法工藝中出現的污泥膨脹現象,MBR由於不用二沉池進行固液分離,可以輕松解決。這樣,就大大減輕了管理操作的復雜程度,使優質!穩定的出水成為可能。
同時,MBR工藝非常易於實現自動控制,提高了污水處理的自動化水平。
4.3解決了剩餘污泥處置難的問題
剩餘污泥的處置問題,是污水處理廠運行好壞的關鍵問題之一#MBR工藝中,污泥負荷非常低,反應器內營養物質相對缺乏,微生物處在內源呼吸區,污泥產率低,因而使得剩餘污泥的產生量很少,SRT得到延長,排除的剩餘污泥濃度大,可不用進行污泥濃縮,而直接進行脫水,這就大大節省了污泥處理的費用。有研究得出,在處理生活污水時,MBR最佳的排泥時間在35d左右。
由上述可知,MBR工藝所具有的優越性,是目前其他處理工藝無法比擬的#該工藝在城市污水或生活污水處理!高濃度有機廢水、難降解有機廢水以及中水回用等方面都具有廣闊的應用前景。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
⑺ 超濾膜和管式MBR膜的區別
中空纖維超濾膜:
中空纖維超濾膜是超濾膜的一種。它是超濾技術中較為成熟專與先進屬的一種技術。中空纖維分外徑和內徑,中空纖維管壁上布滿微孔,孔徑以能截留物質的分子量表達,截留分子量可達幾千至幾萬。
原水在中空纖維膜外側或內腔加壓流動,原水在中空纖維外側或內腔加壓流動,分別構成外壓式與內壓式。超濾是動態過濾過程,被截留物質可隨濃縮水排除,不致堵塞膜表面,可長期連續運行。
mbr膜:
MBR膜全稱膜生物反應器,它的最大不同就在於取代了二沉池的位置,換成了膜池,同時擔當著生化處理和二沉池的任務。傳統二沉池是通過重力作用將雜質沉澱,這個過程可能出現很多其他的情況,例如污泥的上浮膨脹,出現泡沫等。而膜過濾則更加徹底,廢水處理起來也就更方便了。不過既然都是膜那麼MBR膜也會面對膜污堵的問題。
⑻ 請問MBR膜生物反應器是什麼工藝
MBR一體化污水處理設備通過高效膜分離技術和活性污泥法相結合的一種高效污水處理工藝,目前在污水處理應用領域使用非常廣泛,而且使用效果好。
將MBR污水處理技術、MBR膜處理技術、中水回用系統技術進行高效整合設計,完成污水到中水的完美實現,從而實現污水的資源再利用,真中高濃度氧曝氣技術為國內首創,提高了污水處理效率的同時,降低了中水回用設備的佔地面積。
MBR工藝一般是和AO工藝連用,分兩種,一種是把MBR膜組件放置在好氧池內(也就是O池),稱之為內置式MBR工藝,還有一種是吧MBR膜組件和好氧池分開,單獨放置在池體內,稱為分置式MBR工藝。MBR工藝的特點是將污水的停留時間和污泥的停留時間分開,意味著好氧池內的污泥可以保持較高的濃度,一般傳統的好氧池污泥濃度在2000-4000mg/l,而MBR工藝的好氧池污泥濃度可以達到8000-10000mg/l,提高了一倍多,也就意味著可以處理更大濃度的污水有機負荷,污泥濃度的提高也意味著鼓風量的增加,所以運行能耗要比傳統工藝大很多。同時MBR過濾效果比一般沉澱池的過濾效果要好,所以對於懸浮固體的處理效果也較好,一般可達99%。因此MBR工藝在對COD的去除和SS的去除的效果都要好於傳統活性污泥法。而由於MBR工藝對缺氧段和厭氧段的處理工藝沒有什麼變化,所以對於污水中的總氮和總磷的去除效果提升並不明顯。
⑼ MBR膜污水處理設備是怎麼處理污水的呢
在傳統的污水生物處理技術中,泥水分離是在二沉池中靠重力作用完成的,其專分離效率依賴於活性污屬泥的沉降性能,沉降性越好,泥水分離效率越高。而污泥的沉降性取決於曝氣池的運行狀況,改善污泥沉降性必須嚴格控制曝氣池的操作條件,這限制了該方法的適用范圍。由於二沉池固液分離的要求,曝氣池的污泥不能維持較高濃度,一般在1.5~3.5gL左右,從而限制了生化反應速率。水力停留時間(HRT)與污泥齡(SRT)相互依賴,提高容積負荷與降低污泥負荷往往形成矛盾。系統在運行過程中還產生了大量的剩餘污泥,其處置費用占污水處理廠運行費用的25%~40%。傳統活性污泥處理系統還容易出現污泥膨脹現象,出水中含有懸浮固體,出水水質惡化。
MBR工藝通過將分離工程中的膜分離技術與傳統廢水生物處理技術有機結合,不僅省去了二沉池的建設,而且大大提高了固液分離效率,並且由於曝氣池中活性污泥濃度的增大和污泥中特效菌(特別是優勢菌群)的出現,提高了生化反應速率。同時,通過降低F/M比減少剩餘污泥產生量(甚至為零),從而基本解決了傳統活性污泥法存在的許多突出問題。