A. 您好,請問一下可以用離子交換樹脂來對蛋白水解液脫鹽嗎,蛋白水解液主要含鈉離子,氯離子,多肽。
離子交換樹脂可抄以很輕松去除掉水解液中的鹽,Na離子也是非常好脫除,使用H型交換;Cl離子可使用陰離子樹脂OH型交換。
使用離交樹脂對於多肽確實有一定的去除,尤其是強酸和強鹼樹脂;
多肽的脫除一般是在一定PH值范圍內,這取決於氨基酸的等電點,大部分氨基酸在強酸環境下是很容易被幹掉的。
B. 你好,請教一下離子交換樹脂的失效問題
離子交換樹脂變色的原因有很多,可能是樹脂被污染了。
離子交換樹脂為什麼會變色專?
離子交換樹脂是屬一種離子物質,在運輸、儲存或者是使用中,可能會接觸到一些其他的物質,離子交換樹脂會變色主要就是因為與其他物質發生接觸,導致離子形態發生變化,從而導致樹脂變色,樹脂被污染也會導致樹脂變色。
離子交換樹脂變色的因素有哪些?
1.溫度:一般樹脂在長時間在高溫的環境中儲存,就會有一定的殘留物滲漏,導致樹脂顏色變深或者泛紅,如果在使用時溫度達到180℃甚至更高,那麼樹脂就會發生老化,顏色也會變黃。
2.污染:一般樹脂被污染之後,樹脂的顏色就會發生一定變化,樹脂被污染而發生變色是最為常見的一種,比如說001*7樹脂,在被氧化劑污染時,樹脂的顏色就會明顯變淡,再比如201*7,被鐵污染或者有機物污染時,顏色會加深,嚴重可能會變為黑色。
3.樹脂在使用的過程中,樹脂的吸附能力越來越少,樹脂的顏色也會越來越淡,而樹脂再生時,樹脂的顏色就會越來越深,這個是屬於正常現象,只要產水質量沒有問題就可以繼續使用。
點擊了解詳情:網頁鏈接
C. 離子交換樹脂的吸附選擇
離子交換樹脂的吸附交換原理:
樹脂本身的離子內一般是低價離子,所以樹脂在與水接觸時,根據樹脂的容吸附選擇性,會將水中的高價離子吸附,將低價離子釋放,而這些被釋放的低價離子會與水中的其他離子結合,成為無害的物質,而在實際使用的過程中,經常都是將樹脂轉化為其他的離子形式進行使用,比如一般陽離子交換樹脂會轉化為鈉型樹脂再進行使用,從而達到軟化水的目的。
離子交換樹脂的吸附順序:
1、離子交換樹脂對陽離子的吸附順序:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
2、強鹼性陰離子交換樹脂對陰離子的吸附順序:
SO42- > NO3- > Cl- > HCO3- > OH-
3、弱鹼性陰離子交換樹脂對陰離子的吸附順序:
OH- > 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
D. 高效液相色譜常用什麼色譜法
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜
根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)
根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同
根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜
氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。
一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。
分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。
固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。
流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。
二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。
反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。
三、鍵合相色譜
考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物
反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。
反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。
四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。
根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。
SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。
五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離
E. 怎麼除掉多肽中TFA鹽或將其轉換成醋酸鹽
多肽轉鹽或者除鹽一般建議選擇離子交換填料進行,對於填料選擇需要有針對性,一般填料會對多肽進行吸附,經常在轉鹽的過程中遇到多肽洗不下來的情況。因此一般會選取經過改性離子色譜進行轉鹽。針對不同多肽,轉鹽有兩種情況,一種是過柱直接交換離子達到轉鹽目的,一種是多肽掛柱,經過相關鹽溶液過柱轉鹽後再使用相應溶媒將多肽洗滌下來已達到轉鹽的目的。
F. 請教關於離子交換樹脂的使用
一、離子交換樹脂的預處理:
離子交換樹脂在使用之前,為了防止樹脂內含有雜質,對水版質造成權污染,需要對樹脂進行預處理,以下是預處理的步驟:
1.首先使用熱水對樹脂進行清洗,陽樹脂可以使用70-80℃的熱水清洗,陰樹脂的耐熱性較差,一般使用50-60℃的熱水,每隔15分鍾左右需要更換熱水,4-5次之後可以每隔30分鍾左右更換熱水,總共需要7-8次左右,直至出水清澈為止。
2.使用濃度為5%的氯化氫浸泡樹脂,大概浸泡4-8小時左右,然後將水排放,對樹脂進行清洗,直至出水為中性為止。
3.再使用濃度為2-4%的氫氧化鈉浸泡樹脂,浸泡時間與上一步相同,然後將水排放,對樹脂進行清洗,直至出水為中性為止。如此重復2~3次,每次用量為樹脂體積的2倍。
4.陽樹脂最後一次浸泡需要使用濃度為5%的氯化氫,用量加倍效果更好。放盡酸液,用清水淋洗至中性即可。
5.陰樹脂最後一次浸泡需要使用4~5%的NaOH溶液,用量加倍效果更好。放盡鹼液,用清水淋洗至中性即可。
G. XAD-7是什麼樹脂
離子交換樹脂XAD-7
英文名 Amberlite® XAD-7
細小顆粒。本品可吸附多肽類和酶類,是含有丙烯酸酯的非極性離子交換樹脂。表面積450m2/g。顆粒度:20~50目。
H. 陽離子交換樹脂
陽離子交換樹脂是一種化學物質。
陽離子交換樹脂是一種非常有用的高分子材料,它具有許多性質和特點,包括以下幾點:
首先,陽離子交換樹脂有很強的吸附能力,這是因為它具有大量的氧化銨或羥乙基軟鏈上的負離子,所以可以吸附帶有負電荷的分子。
其次,不同的陽離子交換樹脂對於吸附特定離子的選擇性有所差異,也就是說它們具有很強的選擇性。比如,聚苯乙烯型的陽離子交換樹脂比較適合吸附陰離子,而聚丙烯型的適合吸附鹼金屬離子。
此外,陽離子交換樹脂可以通過改變pH值來實現離子的吸附與釋放,從而實現離子的純化,這表明它是一個可逆性很強的材料。
最後,陽離子交換樹脂在不同的pH值下仍念譽然能夠保持穩定的性能,具有較好的耐酸鹼性。同時,在正常情況下,陽離子交換樹脂可以使用多次,性能不會很仔悶段快衰退,因此壽命相對較長。
陽離子交換樹的用途
陽離子交換樹脂具有強大的吸附能力和選擇性,因此被廣泛應用於以下領域:
工業純化:陽離子交換樹脂可用於工業廢水處理,例如處理金屬離子、染料、纖維素等物質。它也可以用於發酵中的分離和提純。
食品加工:陽離子交換樹脂常常用於食品加工領域,如食鹽、糖和醬油的製造。在這些應用中,陽離子交換樹脂的主要作用是去除過多的鈉或鉀離子。
醫葯工業:陽離子交換樹脂可以用於分離和提取葯物,如蛋白質、核酸、多肽和其他生物大分子物質。
生物制葯:陽離子交換樹脂可以按不同的分子大小來提取蛋白質,為生產中國葯到西葯各種成葯奠定基礎。
分子生物學:陽離子交換樹脂可以在DNA和RNA的制備和凈化中使用。
總之,陽離子交換樹脂的應用領域非常廣泛,無論罩散是產業製造、科研領域還是環保治理等行業都得到了廣泛的應用。
以上內容參考網路-陽離子交換樹脂
I. 離子交換樹脂吸附的原理
離子交換樹脂是一類具有離子交換功能的高分子材料.在溶液中它能將本身的離子與溶液中的同號離子進行交換.按交換基團性質的不同,離子交換樹脂可分為陽離子交換樹脂和陰離子交換樹脂兩類.
陽離子交換樹脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基團,其中的氫離子能與溶液中的金屬離子或其他陽離子進行交換.例如苯乙烯和二乙烯苯的高聚物經磺化處理得到強酸性陽離子交換樹脂,其結構式可簡單表示為R—SO3H,式中R代表樹脂母體,其交換原理為 2R—SO3H+Ca2+——(R—SO3)2Ca+2H+
這也是硬水軟化的原理.
陰離子交換樹脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亞胺基(—NH2)等鹼性基團.它們在水中能生成圓談OH-離子,可與各種陰離子起交換作用,其交換原理為
R—N(CH3)3OH+Cl- ——R—N(CH3)3Cl+OH-
由於離子交換作用是可逆的,因此用過的離子跡腔輪交換樹脂一般用適當濃度的無機酸或鹼進行洗滌,可恢復到原狀態而重復使用,這一過程稱為再生.陽離子交換樹脂可用稀鹽酸、稀硫酸等溶液淋洗;陰離子交換樹脂可用氫氧化姿信鈉等溶液處理,進行再生.
離子交換樹脂的用途很廣,主要用於分離和提純.例如用於硬水軟化和製取去離子水、回收工業廢水中的金屬、分離稀有金屬和貴金屬、分離和提純抗生素等.