導航:首頁 > 凈水問答 > 離子交換實驗總結

離子交換實驗總結

發布時間:2023-08-09 16:46:25

『壹』 離子交換層析法分離單核苷酸 求一份實驗結果

氨基酸的分離鑒定——紙層析法
一,實驗目的
掌握氨基酸紙層析的方法和原理,學會分析待
測樣品的氨基酸成分.
二,實驗原理
紙層析是以濾紙為惰性支持物的分配層析.濾紙纖維上的羥基具有親水性,吸附一層水作為固定相,有機溶劑為流動相.當有機相流經固定相時,物質在兩相間不斷分配而得到分離.
溶質在濾紙上的移動速度用Rf值表示:
Rf=原點到層析斑點中心的距離/原點到溶劑前沿的距離
在一定的條件下某種物質的Rf值是常數.Rf值的大小與物質的結構,性質,溶劑系統,層析濾紙的質量和層析溫度等因素有關.本實驗利用紙層析法分離氨基酸.
三,實驗器材
(1)大燒杯(5000mL):1隻/組
(2)微量注射器(100 L):1隻/ 組.
(3)噴霧器:公用.
(4)培養皿:1隻/組.
(5)層析濾紙(長22cm,寬14cm的新華一號濾紙):1張/組.
(6)直尺,鉛筆:自備.
(7)電吹風:1隻/組.
(8)托盤,針,白線:1套/組.
(9)手套:1雙/組.
(10)塑料薄膜:公用.
(11)小燒杯:50mL,1隻/組.
四,實驗試劑
(1)擴展劑:將4體積正丁醇和1體積冰醋酸放入分液漏斗中,與5體積水混合,充分振盪,靜置後分層,棄去下層水層.
(2)氨基酸溶液:0.5%的已知氨基酸溶液3種(賴氨酸,苯丙氨酸,纈氨酸),0.5%的待測氨基酸液1種.
(3)顯色劑:0.1%水合茚三酮正丁醇溶液.
實驗試劑
五,實驗操作
檢查培養皿是否乾燥,潔凈;若否,將其洗凈並置於乾燥箱內120℃烘乾.
(1)平衡:剪一大塊塑料薄膜鋪在桌面上,將層析缸或大燒杯到置於塑料薄膜上,再把盛有約20mL展層溶液的小燒杯置於倒置的層析缸或大燒杯中,用塑料薄膜密封起來,平衡20min.
(2)規劃:帶上手套,取寬約14cm,高約22cm的層析濾紙一張.在紙的下端距邊緣2cm處輕輕用鉛筆劃一條平行於底邊的直線A,在直線上做4個記號,記號之間間隔2cm,這就是原點的位置.另在距左邊緣1cm處畫一條平行於左邊緣的直線B,在B線上以A,B兩線的交點為原點標明刻度(以厘米為單位),參見左圖.
(3)點樣:用微量注射器分別取10mL左右的氨基酸樣品(每取一個樣之前都要用蒸餾水洗滌微量注射器,以免交叉污染),點在這四個位置上.擠一滴點一次,同一位置上需點2~3次,2~3mL/次,每點完一點,立刻用電吹風熱風吹乾後再點,以保證每點在紙上擴散的直徑最大不超過3mm.每人須點4個樣,其中3個是已知樣,1個是待測樣品.
(4)層析:用針,線將濾紙縫成筒狀,紙的兩側
邊緣不能接觸且要保持平行,參見圖3-3.向培養皿中加入擴展劑,使其液面高度達到1cm左右,將點好樣的濾紙筒直立於培養皿中(點樣的一端在下,擴展劑的液面在A線下約1cm),罩上大燒杯,仍用塑料薄膜密封.當擴展劑上升到A線時開始計時,每隔一定時間測定一下擴展劑上升的高度,填入表3-1中.當上升到15~18cm,取出濾紙,剪斷連線,立即用鉛筆描出溶劑前沿線,迅速用電吹風熱風吹乾.
(5)顯色:用噴霧器在通風廚中向濾紙上均勻噴上0.1%茚三酮正丁醇溶液,然後立即用熱風吹乾,即可顯出各層析斑點,參見左圖.
(6)計算各種氨基酸的Rf值,並判斷混合樣品中都有哪些氨基酸,各人將自己的實驗結果貼在實驗報告上,見表3-2.
(7)以層析時間為橫坐標,擴展劑上升高度為縱坐標畫圖,求出擴展劑上升到18cm時所需要的時間.
(8)將微量注射器內外用蒸餾水清洗干凈,倒掉用過的展層液和平衡液,將培養皿洗凈,整理好桌面上的儀器和試劑

『貳』 離子交換過程的5個步驟

離子交換過程歸納為如下幾個過程1.水中離子在水溶液中向樹脂表面擴散2.水中離子進入樹脂顆粒的交聯網孔,並進行擴散3.水中離子與樹脂交換基團接觸,發生復分解反應,進行離子交換4.被交換下來的離子,在樹脂的交聯網孔內向樹脂表面擴散5.被交換下來的離子,向水溶液中擴散影響交換的主要因素有流速、原料液濃度、溫度等。流速原料液的流速實際上反映了達到反應平衡的時間,在交換過程中,離子進行擴散—交換—擴散一系列步驟,有效地控制流速很重要。一般,交換液流速大,離子的透析量就高,未來及交換而通過樹脂層流失的量增多。因此,應根據交換容量等選擇適宜的流速。原料液濃度樹脂中可交換的離子與溶液中同性離子既有可能進行交換,也有可能相斥,液相離子濃度高,樹脂接觸機會多,較易進入樹脂網孔內,液相濃度低,樹脂交換容量大時,則相反。但液相離子濃度過高,將引起樹脂表面及內部交聯網孔收縮,也會影響離子進入網孔。實驗證明,在流速一定時,溶液濃度越高,溶質的流失量液越大。溫度溫度越提高,離子的熱運動越劇烈。單位時間碰撞次數增加,可加快反應速率。但溫度太高,離子的吸附強度會降低,甚至還會影響樹脂的熱穩定性,經濟上不利,實際生產中採用室溫操作較宜。

贊同0
暫無評論

『叄』 離子交換法制純水實驗的結論

這個設備中,存在陽離子樹脂+惰性樹脂+陰離子樹脂陰陽離子樹脂在出廠時是處在失效狀態,因此要先用酸鹼分別將兩種樹脂激活才能正常使用

『肆』 由實驗總結得出的離子交換選擇性有哪些主要規律

由實驗總結得出的離子交換選擇性有哪些主要規律
陽離子交換樹脂在稀溶液中的的選回擇性順序如下答:Fe3+>A13+>Ca2+>Mg2+>K+≈NH4+>Na+>H+
這可歸納為①離子所帶電荷越大,越易被吸著;②當離子所帶電荷量相同時,離子水合半徑較小的易被吸著。
弱酸性陽樹脂對H+的選擇性向前移動,羧酸型樹脂對H+的選擇性居於Fe3+之前。

『伍』 離子交換法原理

採用鹼性陰離子交換樹脂,A-Cl + I- =A-I + Cl-。離子交換法一般應用於生化產品的制備、純水的制備等。原理內:根據目的物與雜質在容不同pH下所帶電荷的不同選擇相應的離子交換樹脂。你的實驗是提取碘,在溶液中,碘離子帶負電荷,那麼就要選擇陰離子交換樹脂,要麼強鹼性,要麼弱鹼性,如果原液ph>9,就必須用強鹼性樹脂,在9以下,強鹼弱鹼都可以。你可以都試試。碘酸屬於中強酸,優先選擇弱鹼性陽離子交換樹脂。

『陸』 根據實驗結果,關於離子交換軟化除鹼系統可以得出什麼結論

關於離子交換軟化除鹼系統可以得出什麼結論
離子交換器是利用陰、陽離子交換樹脂的交換吸附性能,去除水中的各種陰、陽離子,達到脫鹽的目的.離子交換器按單台設備分類有陽床、陰床、混床,在水處理應用中,以多種組合形式組成多種除鹽系統,以達到設計要求.離子交換器是制備高純水的必備設備,廣泛應用於醫葯、化工、電子、電鍍、鍋爐等領域,與反滲透、電滲析組合處理後的水質電阻率可達到1~18M .CM.電除離子系統(EDI) EDI(Electrodeionization)技術將電滲析技術和離子交換技術有機地結合在一起,可有效地去除水中微量的電解質離子雜質,連續24小時製取高品質純水,具有安裝簡單、作維護方便、無需酸鹼再生、不污染環境等優點.工作原理EDI膜堆是由夾在兩個電極之間一定對數的單元組成.在每個單元內有兩類不同的室:待除鹽的淡水室和收集所除去雜質離子的濃水室.淡水室中用混勻的陽、陰離子交換樹脂填滿,這些樹脂位於兩個膜之間:只允許陽離子透過的陽離子交換膜及只允許陰離子透過的陰離子交換膜.

『柒』 離子交換怎麼試驗

離子交換法是一種藉助於離子交換劑上的離子和廢水中的離子進行交換反應而除去廢水中有害離子的方法。離子交換是一種特殊吸附過程,通常是可逆性化學吸附;其特點是吸附水中離子化物質,並進行等電荷的離子交換。
離子交換劑分無機的離子交換劑如天然沸石,人工合成沸石,及有機的離子交換劑如磺化煤和各種離子交換樹脂。
在應用離子交換法進行水處理時,需要根據離子交換樹脂的性能設計離子交換設備,決定交換設備的運行周期和再生處理。通過本實驗希望達到下述目的:
1) 加深對離子交換基本理論的理解;學會離子交換樹脂的鑒別;
2) 學會離子交換設備操作方法;
3) 學會使用手持式鹽度計,掌握pH計、電導率儀的校正及測量方法。
二、實驗內容和原理
由於離子交換樹脂具有交換基因,其中的可游離交換離子能與水中的同性離子進行等當量交換。 用酸性陽離子交換樹脂除去水中陽離子,反應式如下:
nRH + M+n → RnM + nH+
M——陽離子 n——離子價數
R——交換樹脂
用鹼性陰離子交換樹脂除去水中的陰離子,反應式如下:
nROH + Y−n → RnY + nOH-
Y——陰離子
離子交換法是固體吸附的一種特殊形式,因此也可以用解吸法來解吸,進行樹脂再生。
本實驗採用自來水為進水,進行離子交換處理。因為自來水中含有較多量的陰、陽離
子,如Cl¯, NH4+,Ca,Mg,Fe,Al,K,Na等。在某些工農業生產、科研、醫療衛生等工作中所用的水,以及某些廢水深度處理過程中,都需要除去水中的這些離子。而採用離子交換樹脂來達到目的是可行的方法。

『捌』 離子交換實驗中,不同交換速度下處理出水的總硬度應如何變化為什麼

水的硬度是指水中含有鹽的量,量越大,則表明硬度越高,檢驗水硬度最方便的方法是取要檢驗的水,然後讓肥皂在水中溶解,之後攪拌,觀察是否有泡末產生,泡末越多表明硬度越小,反之則越大。所謂軟水處理就是除掉其中的鹽分,方法就很多的比如:蒸餾,用活性炭等。1、煮沸法(只適用於暫時硬水)煮沸暫時硬水時的反應: Ca(HCO3)2 =CaCO3 ↓+H2O+CO2↑ Mg(HCO3)2 =MgCO3↓ +H2O+CO2↑ 由於CaCO3不溶,MgCO3 微溶,所以碳酸鎂在進一步加熱的條件下還可以與水反應生成更難溶的氫氧化鎂: MgCO3 +H2O = Mg(OH)2 ↓+CO2↑ 由此可見水垢的主要成分為CaCO3和Mg(OH)2 2、葯劑軟化法工業上的經典水質處理方法是葯劑軟化法,如加入石灰(CaO)、磷酸鈉等。加入石灰,可使水中的二氧化碳、碳酸氫鈣和碳酸氫鎂生成碳酸鈣和氫氧化鎂的沉澱,對永久硬度大的硬水,可再加適量純鹼。軟化時石灰添加量,根據經驗,每降低一千升水中暫時硬度一度,需加純氧化鈣10克。反應過程中,鎂都是以氫氧化鎂的形式沉澱,而鈣都是以碳酸鈣的形式沉澱。 3、離子交換法它是利用離子交換劑,把水中的離子與離子交換劑中可擴散的離子進行交換作用,使水得到軟化的方法。飲料用水大都採用有機合成離子交換樹脂作離子交換劑。在處理水時,先讓水從陽柱自上而下通過,使水中的金屬離子被陽離子交換樹脂吸附,陽離子交換樹脂中的氫離子被交換到水中去;然後再通過陰柱,使水中的陰離子被陰離子樹脂吸附,陰離子樹脂將氫氧根離子交換到水中,和氫離子化合成水,使水得到凈化。工業上用於軟化水的離子交換劑有磺化煤、離子交換樹脂等。它們都是具有復雜結構的物質,為簡便起,用NaR表示。當硬水通過裝有離子交換劑的裝置時,發生離子交換作用: 2NaR+Ca2+ --> CaR2+2Na+ 2NaR+Mg2+ --> MgR2+2Na+ 硬水中的Ca2+、Mg2+被離子交換劑吸附而離開溶液,因此從裝置中流出的水就成為軟水。離子交換劑因離子交換作用的不斷進行而逐步喪失功能,因此需要在一定時間內進行再生,即用Na+把它所吸附的Ca2+、Mg2+置換出來,從而恢復它軟化水的能力。 4、電滲析和超濾技術電滲析法是在外加直流電場的作用下,利用陰、陽離子交換膜對水中離子的選擇透過性,使水中陰、陽離子分別通過陰、陽離子交換膜向陽極和陰極移動,從而達到凈化作用。這項技術常用於將自來水制備初級純水。反滲透法(超濾技術)是以壓力為驅動力,提高水的壓力來克服滲透壓,使水穿過功能性的半透膜而除鹽凈化。反滲透法也能除去膠體物質,對水的利用率可達75%以上;反滲透法產水能力大,操作簡便,能有效使水凈化到符合國家標准。 5、蒸餾法:只適用於制備少量無Ca2+、Mg2+的特殊用水。 6、離子膜電解法:是在離子交換樹脂基礎上發展起來的新技術,主要用於海水和苦鹹水的淡化、工業用水和超純水的制備。

『玖』 陽離子交換

1.陽離子交換

按質量作用定律,陽離子交換反應可以表示為

水文地球化學基礎

式中:KA—B為陽離子交換平衡常數;A和B為水中的離子;AX和BX為吸附在固體顆粒表面的離子;方括弧指活度。

在海水入侵過程中,准確模擬陽離子交換作用是預測陽離子在含水層中運移的前提條件。按照質量作用定律可以用一個平衡常數把離子交換作為一種反應來描述。例如Na+、Ca2+的交換:

水文地球化學基礎

平衡常數為:

水文地球化學基礎

式(3—115)表明,交換反應是等當量的,是個可逆過程;兩個Na+交換一個Ca2+。如果水中的Na+與吸附在固體顆粒表面的Ca2+(即CaX)交換,則反應向右進行;反之,則向左進行。如果反應向右進行,Ca2+是解吸過程,而Na+是吸附過程。所以,陽離子交換實際上是一個吸附—解吸過程。Na+、Ca2+的交換是一種最廣泛的陽離子交換。當海水入侵淡水含水層時,由於海水中Na+遠高於淡水,而且淡水含水層顆粒表面可交換的陽離子主要是Ca2+,因此產生Na+、Ca2+之間的離子交換,Na+被吸附而Ca2+被解吸,方程(3—115)向右進行;當淡水滲入海相地層時,則Na+被解吸而Ca2+被吸附,反應向左進行。

2.質量作用方程

描述離子交換反應的方程式有多種,通常主要是通過對實驗數據的最佳擬合來決定選擇哪一種方程式,眾多的研究者很難達成一致(Gaines et al.,1953;Vanselow,1932;Gapon,1933;Appelo et al.,1993;Grolimund et al.,1995;Vulava et al.,2000),因為目前並沒有一個統一的理論來計算吸附劑上的離子活度,而前面提到的迪拜—休克爾方程、戴維斯方程都是適用於水溶液中的離子活度計算。

交換性陽離子活度有時用摩爾分數來計算,但更為常用的是當量分數作為交換位的數量分數或者作為交換性陽離子的數量分數。在一種理想的標准狀態下,交換劑只被一種離子完全占據,交換離子的活度等於1。對於等價交換使用哪一種方程式沒有區別,但是對於非等價交換影響十分顯著(Grolimund et al.,1995;Vulava et al.,2000)。所有的模型都有相同的函數形式:

水文地球化學基礎

即為交換位濃度(單位質量吸附劑的摩爾數)與無單位函數

)和

)的乘積。這些函數依賴於溶液中陽離子的活度。

海水入侵過程中的交換反應主要為Na+與Ca2+之間的交換,通常寫作:

水文地球化學基礎

X為—1價的表面交換位,交換位X的總濃度為

水文地球化學基礎

式中:S指每單位質量固體的總交換位濃度,mol/g。這種情況下S的量等於陽離子交換容量(只要單位換算統一即可)。

水文地球化學基礎

式(3—120)的書寫方式符合Gaines—Thomas方程式,Gaines(蓋恩斯)和Thomas(托馬斯)(1995)最先給出交換性陽離子熱動力學標准態的嚴格定義。它使用交換性陽離子的當量分數作為吸附離子的活度。若式(3—120)使用摩爾分數,則遵守Vanselow(1932)公式。

如果假定吸附陽離子的活度和被離子占據的交換位的數目成正比,反應式(3—115)則可寫成

水文地球化學基礎

式(3—122)符合Gapon(加彭)方程式。在Gapon方程式中,摩爾分數和當量分數是一樣的,都是電荷為—1的單一交換位。

還有一種交換形式為:

水文地球化學基礎

Y指交換位的電荷為—2,這種反應式同樣是交換反應的一種有效熱力學描述。它假定交換位Y的總濃度為

水文地球化學基礎

S則為陽離子交換容量的二分之一。Cernik(采爾尼克)等根據當量分數利用反應式(3—123),將交換系數表示為:

水文地球化學基礎

3.質量作用方程擬合

利用Gaines—Thomas(GT)方程式、Vanselow(VS)方程式和Gapon(GP)方程式對在砂樣中進行的試驗所獲得的數據進行擬合,根據擬合結果作出 Na+、Ca2+、Mg2+、K+吸附等溫線(劉茜,2007),如圖3—4~圖3—7所示。

圖3—4 Na+吸附等溫線和擬合數據

由吸附等溫線可以看出,砂樣對Na+、Mg2+、K+的吸附量均隨著溶液中離子濃度的增加而逐漸增加,而Ca2+發生解吸。圖3—4中,砂樣對Na+的吸附量隨溶液中離子濃度的增加而緩慢增加。圖3—5中,在Ca2+濃度較低時,解吸量迅速增大,當Ca2+濃度較高時,隨濃度增加解吸量增加緩慢,逐漸趨於平穩狀態。

圖3—6中Mg2+濃度較低時,吸附量增加較慢,在較高濃度時增加較快,但並沒有出現Ca2+的解吸等溫線中的平穩狀態,依然為直線型,且直線的斜率大於低濃度狀態時的斜率,說明Na+、Mg2+的吸附速率在低濃度(海水含量為20%左右)時較小,在高濃度時,吸附速率變大;Ca2+的解吸在高濃度時基本達到平衡,而Na+、Mg2+還有增長趨勢,也較好證明了試驗所用砂樣的交換位主要為Ca2+所佔據。圖3—7中K+實測值的吸附等溫線則沒有出現Ca2+、Na+、Mg2+的規律,雖然整體上隨著溶液離子濃度的增加,吸附量也是增長趨勢,但並沒有出現直線規律。究其原因,主要是陽離子交換吸附作用不大,主要是化學吸附,因為K+的水化膜較薄,所以有較強的結合力,K+被吸附後,大多被牢固吸附在黏土礦物晶格中。

圖3—5 Ca2+吸附等溫線和擬合數據

圖3—6 Mg2+吸附等溫線和擬合數據

圖3—7 K+吸附等溫式和擬合數據

由吸附等溫線模擬圖(圖3—4~圖3—7)及公式與試驗數據擬合的相關系數(表3—17)看出,GT方程式擬合效果較好,能夠很好地預測離子交換趨勢。因此,在多組分離子交換模擬計算中採用Gaines—Thomas方程,為陽離子交換的定量研究提供了依據。

表3—17 GT、GP、VS方程式擬合的相關系數

所以根據Gaines—Thomas方程式(3—126)~式(3—131)計算離子交換系數(表3—18)。由於 9 種配比濃度的離子強度不同,所以各自的交換系數也有所差別。對比

可知3種離子的吸附親和力順序為Mg2+>K+>Na+。但是由於海水中Na+、Mg2+含量遠遠高於地下水,尤其是Na+的含量比地下水高出3個數量級,因此,海水入侵過程中以Ca2+、Na+交換為主,其次為Ca2+、Mg2+交換,交換量最少的為Ca2+、K+

水文地球化學基礎

表3—18 試驗土樣不同濃度下的交換系數

『拾』 離子交換實驗做完本實驗感到有什麼不足有何進一步設想

離子交換法是一種藉助於離子交換劑上的離子和廢水中的離子進行交換內反應而除去廢水中有害離子的方容法。離子交換是一種特殊吸附過程,通常是可逆性化學吸附;其特點是吸附水中離子化物質,並進行等電荷的離子交換。 離子交換劑分無機的離子交換劑

閱讀全文

與離子交換實驗總結相關的資料

熱點內容
電茶壺的水垢怎樣處理 瀏覽:265
廢水怎麼做肥料 瀏覽:552
光固化樹脂激活 瀏覽:814
污水管網怎麼解決 瀏覽:923
常溫除水垢 瀏覽:544
硫酸亞鐵酸性廢水如何處理 瀏覽:290
污水直排的處罰 瀏覽:653
廣德縣污水廠 瀏覽:340
張裕白蘭地蒸餾 瀏覽:168
調速器的認識自我提升評價 瀏覽:39
污水處理色度標準是多少 瀏覽:161
浙江樹脂攪拌機廠家 瀏覽:932
貝親研磨器的過濾網過不好用 瀏覽:694
大桶純凈水怎麼按壓出水 瀏覽:929
家用裝修凈水器什麼時候裝 瀏覽:918
凈化器顯示1500mg是什麼意思 瀏覽:534
污水玻璃鋼管中間有漏水咋處理 瀏覽:293
小區里的純凈水售水機怎麼買 瀏覽:732
可生化性差的工業廢水如何處理 瀏覽:428
杭州的生活污水都到了哪裡 瀏覽:243