㈠ 離子交換實驗中如何設法提高軟化水水質
去離子水設備工作原理
去離子水設備採用離子交換方法,可以把水中呈版離子態的陽、陰離子去除,以氯權化鈉(NaCl)代表水中無機鹽類,水質除鹽的基本反應可以用下列方程式表達:
1、陽離子交換樹脂:R—H+Na+
R—Na+H+
2、陰離子交換樹脂:R—OH+Cl-
R—Cl+OH-
陽、陰離子交換樹脂總的反應式即可寫成:RH+ROH+NaCl——RNa+RCL+H2O由此可看出,水中的NaCl已分別被樹脂上的H+和OH-所取代,而反應生成物只有H2O,故達到了去除水中鹽的作用。
去離子水設備採用雙級RO+EDI模塊化設計模式,與前置預處理配套使用,利用反滲透原理,有效去除水中各種鹽份及雜質;系統具有工藝先進、產水水質穩定、操作簡便、運行費用低、綠色環保無污染、維護方便等優點。
三達水處理北京市去離子水設備、軟化水設備專業生產廠家,提供專業的水處理方案。
㈡ 離子交換法處理除鹽水 何為母管制和單元制,各有什麼優缺點
母管制指的是不管你有多少套復床系統,進出水都是一根母管,即是n台陽床+一台中間專水箱+n台陰床;屬單元制指的是每台復床系統都是單獨的進出水管道,即是一台陽床+一個中間水箱+一台陰床。
混床等情況類似。
優缺點主要是操作運行上的差別如下:
母管制系統優點:可靠性大,有一定的靈活性,可以進行床子之問的最有利水力負荷分配。
母管制缺點:管道長,閥門多。適用於工作運行參數不太髙及裝有備用鍋爐的電廠。
單元制系統的優點是系統簡單、集中控制,管道短、附件少、投資少、管道的壓力損失小、檢修工作量小、系統 本身發生事故的可能性小。
單元制系統的缺點是相鄰單元之間不能切換運行,單元中任何一個主要設備發生故障,整個單元都要被迫停止運行,運行靈活性差。
㈢ 如何製作除鹽水
除鹽水
desalted water
除鹽水含很少或不含礦物質,通過蒸餾、反滲透、離子交換或這些方法的結合可以做這點。
對心臟病和癌症的研究表明,健康的水是有一定硬度、含一定TDS的水。除鹽水作為一種人工軟化或純化的水,不含鈣、鎂,總溶解固體也很低,飲用它不利於健康。
然而許多人出於自己的考慮仍舊飲用它,通常他們會這樣想:我知道應該喝水,可是水被氯等各種化學物質和有毒金屬污染,一點兒也不安全,所以我買了蒸餾器或反滲透裝置,它們可以將水中所有物質去除,這樣水就適於飲用了。這些話聽起來耳熟嗎?
當我們這樣想時,我們只看到了事物的一部分,而不是整體。我們只強調了水中有害成分,卻不了解有益的成分。為了喝到健康的水,我們必須從兩方面看問題:我們要大幅度減少或消除有害物質,但仍需保留水中有益的礦物質。 大多數情況下,適當的過濾系統或合適的瓶裝礦泉水能達到要求——除鹽水卻不能!
贊成喝脫鹽水的人稱水中無機礦物質(如鈣、鎂、硒等)不能被新陳代謝,因而不會導致健康問題,但這是不對的。
事實上,水中的礦物質要比食物中的更易、更好地被人體吸收!礦物質新陳代謝理論權威 John Sorenson博士(西葯化學家)說:「飲用水中的礦物質能很好地被吸收。」他發現參與新陳代謝的主要金屬元素與非主要元素的比例受水中主要元素數量的影響非常的大;如果所需主要元素得到滿足,就很少有或沒有非主要元素的吸收,非主要元素就會被排泄掉。
舉個例子來說,如果水中鈣、鎂含量高而鉛含量低,人體會選擇主要元素(鈣、鎂),而將非主要元素(鉛)排泄掉;但如果鈣、鎂含量也低,細胞就可能選擇非主要元素鉛,從而導致蛋白質或酶的機能發生障礙。如果發生這種情況,蛋白質或酶就可能變得有毒。
蒸餾器和反滲透裝置能夠生產出軟化的、不含任何礦物質的脫鹽水, 這種軟水中任何有害物質的作用都會被放大,脫鹽水中少量的有害物質就會比硬水中同等量的有害物質對我們的健康產生更有害、更消極的作用。 所以,出於完全不同的原因,喝被污染的水和除鹽水都會對我們的健康造成傷害
㈣ 離子交換樹脂如何去除水中無機鹽
離子交換樹脂原理即是離子交換樹把溶液中的鹽分脫離出來的過程:
離子交版換樹脂作用環境權中的水溶液中,含有的金屬陽離子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)與陽離子交換樹脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基團,在水中易生成H+離子)上的H+ 進行離子交換,使得溶液中的陽離子被轉移到樹脂上,而樹脂上的H+交換到水中,(即為陽離子交換樹脂原理)。
水溶液中的陰離子(Cl-、HCO3-等)與陰離子交換樹脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亞胺基(—NH2)等鹼性基團,在水中易生成OH-離子)上的OH-進行交換,水中陰離子被轉移到樹脂上,而樹脂上的OH-交換到水中,(即為陰離子交換樹脂原理)。而H+與OH-相結合生成水,從而達到脫鹽的目的。
㈤ 離子交換器的工作原理
工作原理就是離子的交換。
運行時:陽樹脂(H-R)+(M+)-->:(M-R)+(H+)
陰樹脂(OH-R)+(X-)-->:(X-R)+(OH-)
其中M+為金屬離子,X-為陰離子。
再生過程為其逆過程。
離子交換器的失效控制
離子交換除鹽水處理最簡單的流程為 陽床-陰床 組成的一級復床除鹽系統。有的一級復床除鹽系統採用單元制,即每套一級復床除鹽系統包括 陽床、(除碳器)、陰床各一台,在離子交換除鹽運行過程中,無論是陽床還是陰床先失效,都是同時再生;還有的一級復床除鹽系統採用母管制,即陽床與陽床或陰床與陰床是並聯運行的,哪一台交換器失效就再生哪一台。
1 檢測和控制原理
強酸性陽樹脂對水中各種陽離子的吸附順序為:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金屬離子Na+被吸附的能力最弱,所以當離子交換時樹脂層的各種離子吸附層逐漸下移,H+.最後被其他陽離子置換下來,當保護層穿透時,首先泄漏的是最下層的Na+;因此監督陽離子交換器失效是以漏鈉為標準的;其反應方程為(A代表金屬陽離子,R為樹脂基團):
An+ +nRH=RnA+n H+
HCO3- + H+ =H2O+CO2↑
強鹼性陰樹脂對水中各種陰離子的吸附順序為:SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以當離子交換時樹脂層的各種離子吸附層逐漸下移,OH-.被其他陰離子置換下來,當保護層穿透時,首先泄漏的是最下層的HSiO3-;因此監督陰離子交換器失效是以漏硅為標準的;其反應方程為(B代表酸根陰離子,R為樹脂基團):
Bm- +mROH=RmB+mOH-
2 控制點和控制方法
由於母管制系統包含了單元制系統,而且它具有能充分使用樹脂、提高交換器的出水能力、降低酸鹼消耗等優點,我們在研究中主要討論以這種結構為基礎的離子交換除鹽水處理系統。
以成都生物製品研究所蛋白分離車間純水站為例,該系統為母管制水處理系統,系統的結構為:砂濾-活性炭過濾-粗濾-陽床- 一陰-二陰-混床-精濾-純水罐,系統產水能力為5 t/h,在系統的失效控制研究中,我們提出單元失效控制概念,也就是充分利用了母管制制水系統的優點對系統進行失效控制。
(1)RO對各有機溶質的去除率大於NF膜。(2)不同有機溶質的去除率不相同,有的甚至相差很大(例如,RO和NF膜對乙酸的吸光度去除率分別為95.34%、81.45%,而對苯胺的吸光度去除率則分別為61.50%、46.82%)。
3 出水水質
原水經一級復床除鹽後,電導率(25℃)低於10μS/cm,水中硅含量低於100μg/L。
㈥ 什麼是脫鹽水脫鹽有哪些方法一般工藝流程怎樣
脫鹽水(來desalted water)是將所含自易於除去的強電解質除去或減少到一定程度的水。脫鹽水中的剩餘含鹽量應在1~5 毫克/升之間。
製取脫鹽水的方法主要有以下三種:
①蒸餾法,使含鹽的水加熱蒸發,將蒸氣冷凝即得脫鹽水;
②離子交換法,使含鹽的水通過裝有泡沸石或離子交換劑的交換柱(見離子交換),鈣、鎂等離子留在交換柱上,濾過的水為脫鹽水;
③電滲析法,借離子交換膜對離子的選擇透過性,在外加電場作用下,使兩種離子交換膜之間的水中的陽、陰離子,分別通過交換膜向陰、陽兩極集中。於是膜間區成為淡水區,膜外為濃水區。從淡水區引出的水即為脫鹽水。
蒸餾法多用於實驗室用來洗刷容器或制備溶液,適用於量不多純度要求較高場所。離子交換法與電滲析法多用於化工業如鍋爐用水可以減少結垢和腐蝕,適用於量大純度要求不是很高的場所。
㈦ 離子交換法樹脂的處理與再生
離子交換法樹脂的處理與再生:
1. 首先對床層進行反吹,將進口吸附的雜質吹掉,防止樹脂柱壓力增加。
2. 用再生液從出口進入,對樹脂柱進行再生。
3. 再生完畢,用純水對樹脂柱進行清洗,洗滌至符合要求時,再生完畢,重新投入使用。
㈧ 離子交換膜法電解食鹽水具體原理 謝謝
二、離子交換膜法制燒鹼
1.離子交換膜電解槽的構成
離子交換膜電解槽
主要由陽極、陰極、離子交換膜、電解槽框和導電銅棒等組成;每台電解槽由若干個單元槽串聯或並聯組成。陽極用金屬鈦網製成,為了延長電極使用壽命和提高電解效率,陽極網上塗有鈦、釕等氧化物塗層;陰極由碳鋼網製成,上面塗有鎳塗層;離子交換膜把電解槽分成陰極室和陽極室。
電極均為網狀,可增大反應接觸面積,陽極表面的特殊處理是考慮陽極產物Cl2的強腐蝕性。
離子交換膜法制燒鹼名稱的由來,主要是因為使用的陽離子交換膜,該膜有特殊的選擇透過性,只允許陽離子通過而阻止陰離子和氣體通過,即只允許H+、Na+通過,而Cl-、OH-和兩極產物H2和Cl2無法通過,因而起到了防止陽極產物Cl2和陰極產物H2相混合而可能導致爆炸的危險,還起到了避免Cl2和陰極另一產物NaOH反應而生成NaClO影響燒鹼純度的作用。
上海天原化工廠電解車間的離子交換膜電解槽
2.離子交換膜法電解制鹼的主要生產流程
如圖,精製的飽和食鹽水進入陽極室;純水(加入一定量的NaOH溶液)加入陰極室,通電後H2O在陰極表面放電生成H2,Na+則穿過離子膜由陽極室進入陰極室,此時陰極室導入的陰極液中含有NaOH;Cl-則在陽極表面放電生成Cl2。電解後的淡鹽水則從陽極室導出,經添加食鹽增加濃度後可循環利用。
陰極室注入純水而非NaCl溶液的原因是陰極室發生反應為2H++2e-=H2↑;而Na+則可透過離子膜到達陰極室生成NaOH溶液,但在電解開始時,為增強溶液導電性,同時又不引入新雜質,陰極室水中往往加入一定量NaOH溶液。
氯鹼工業的主要原料:飽和食鹽水,但由於粗鹽水中含有泥沙、Ca2+、Mg2+、Fe3+、SO等雜質,遠不能達到電解要求,因此必須經過提純精製。
㈨ 除鹽水是什麼
未經處理,含有鈣離於、鎂離子等鹽類的水稱硬水。
經過陽離了交換器處理,除去鈣、鎂等離子的水稱為軟化水。
經過陽、陰離子交換器處理,水中的陽、陰離子基本上全部除去的水稱為除鹽水。
㈩ 離子交換法和反滲透技術的應用你了解多少呢
若採用自動控制,則控制點多、閥門要求高,投資很大。同時酸鹼耗量大,再生廢水也多。另外由於樹脂對非極性的大分子沒有去除能力,所以制水過程中可能會出現細菌殖生。反滲法流程簡介:原水經原水泵送到石英砂過濾器降低濁度,在活性炭過器中降低COD,膠體及有機大分子的含量。活性炭出水再送至保安過濾器進行最後的預處理,使原水SDI<5mg/l,滿足反滲透(RO)主機的進水要求。經保安過濾器後的合格水由高壓泵送至RO主機反滲透進行除鹽處理。反滲透膜截留下的有機物、膠體和鹽無機鹽由濃水側直接排掉,不會給環境造成污染。產品水由膜清水側送出至脫碳塔,除去滲透至清水的二氧化碳氣體。脫氣後的一級除鹽水送至混床進行最後的精除鹽。