Ⅰ 離子交換柱再生進完酸鹼之後怎麼辦直接正洗行不行
下面是離子交換樹脂的再生的一些方法可以參考:<br>
離子交換樹脂的再生 <br>
(1)常規的再生處理 <br>
離子交換樹脂使用一段時間後,吸附的雜質接近飽和狀態,就要進行再生處理,用化學葯劑將樹脂所吸附的離子和其他雜質洗脫除去,使之恢復原來的組成和性能。在實際運用中,為降低再生費用,要適當控制再生劑用量,使樹脂的性能恢復到最經濟合理的再生水平,通常控制性能恢復程度為70~80%。如果要達到更高的再生水平,則再生劑量要大量增加,再生劑的利用率則下降。 <br>
樹脂的再生應當根據樹脂的種類、特性,以及運行的經濟性,選擇適當的再生葯劑和工作條件。 <br>
樹脂的再生特性與它的類型和結構有密切關系。強酸性和強鹼性樹脂的再生比較困難,需用再生劑量比理論值高相當多;而弱酸性或弱鹼性樹脂則較易再生,所用再生劑量只需稍多於理論值。此外,大孔型和交聯度低的樹脂較易再生,而凝膠型和交聯度高的樹脂則要較長的再生反應時間。 <br>
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽。例如:鈉型強酸性陽樹脂可用10%NaCl溶液再生,用葯量為其交換容量的2倍(用NaCl 量為117g/L樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。 <br>
氯型強鹼性樹脂,主要以NaCl溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH的鹼鹽液再生,常規用量為每升樹脂用150~200gNaCl,及3~4gNaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。 <br>
樹脂再生時的化學反應是樹脂原先的交換吸附的逆反應。按化學反應平衡原理,提高化學反應某一方物質的濃度,可促進反應向另一方進行,故提高再生液濃度可加速再生反應,並達到較高的再生水平。 <br>
為加速再生化學反應,通常先將再生液加熱至70~80℃。它通過樹脂的流速一般為1~2BV/h。也可採用先快後慢的方法,以充分發揮再生劑的效能。再生時間約為一小時。隨後用軟水順流沖洗樹脂約一小時(水量約4BV),待洗水排清之後,再用水反洗,至洗出液無色、無混濁為止。 <br>
一些樹脂在再生和反洗之後,要調校pH值。因為再生液常含有鹼,樹脂再生後即使經水洗,也常帶鹼性。而一些脫色樹脂(特別是弱鹼性樹脂)宜在微酸性下工作。此時可通入稀鹽酸,使樹脂pH值下降至6左右,再用水正洗,反洗各一次。 <br>
樹脂在使用較長時間後,由於它所吸附的一部分雜質(特別是大分子有機膠體物質)不易被常規的再生處理所洗脫,逐漸積累而將樹脂污染,使樹脂效能降低。此時要用特殊的方法處理。例如:陽離子樹脂受含氮的兩性化合物污染,可用4%NaOH溶液處理,將它溶解而排掉;陰離子樹脂受有機物污染,可提高鹼鹽溶液中的NaOH濃度至0.5~1.0%,以溶解有機物。 <br>
近年國內研究用糖化鈣溶液對使用過的樹脂進行再生,再生液返回生產流程再用,不需要排放。免除了再生廢液處理的問題。 <br>
(2)特殊的再生處理 <br>
污染較嚴重的樹脂,可用酸或鹼性食鹽溶液反復處理,如先用10%NaCl +1%NaOH鹼鹽溶液溶解有機物,再用4%HCl 或分別用10%NaOH 及1%HCl溶解無機物,隨後再用10%NaCl+1%NaOH處理,在約70℃下進行。 <br>
如果上述處理的效果未達要求,可用氧化法處理。即用水洗滌樹脂後,通入濃度為0.5%的次氯酸鈉溶液,控制流速2~4BV/h,通過量10~20BV,隨即用水洗滌,再用鹽水處理。應當注意,氧化處理可能將樹脂結構中的大分子的連接鍵氧化,造成樹脂的降解,膨脹度增大,容易碎裂,故不宜常用。通常使用50周期後才進行一次氧化處理。由於氯型樹脂有較強的耐氧化性,故樹脂在氧化處理前應用鹽水處理,變為氯型,這還可避免處理過程中的pH值變化,並使氧化作用比較穩定。 <br>
Ⅱ 強酸性陽離子交換樹脂的氫型與鈉型有什麼區別么
一、氫型陽離子交換樹脂是什麼?氫型陽離子交換樹脂(有時簡稱「氫型樹脂」)是一種人造有機聚合物產品。最常用的原料是:苯乙烯或丙烯酸(酯),先經過聚合反應生成具有三度空間立體網狀結構的聚合物骨架(樹脂母體),再於骨架上導入不同的「化學活性基」而成。由於它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氫離子,可在水中解離出來,用於與其它陽離子進行交換,所以特別在陽離子樹脂名稱之前再冠上「氫型」兩字,以與同一系統的「鈉型」種類有所區別。不過「鈉型」可以利用強酸處理成為「氫型」,「氫型」也可以用「氫氧化鈉」溶液處理成為「鈉型」,即兩型樹脂實際上可以互相轉換。氫型陽離子交換樹脂不溶於水和一般溶劑。和其它離子交換樹脂一般,常被製成顆粒狀,外觀看起來有些像魚卵,粒徑大約在0.3
~
1.2
mm之間,但大部分在0.4
~
0.6
mm范圍內。化學性質相當安定,摸起來硬而有彈性,機械強度也足夠承受相當壓力,顏色由白色至近乎黑色都有,顏色淺時呈透明狀,深時呈半透明狀,都有光鮮亮麗的樹脂光澤。氫型陽離子交換樹脂最常應用的地方,就是硬水的軟化,即讓硬水流過樹脂層,把硬水中的「硬度離子」,如鈣、鎂等離子吸收在樹脂中,就變成不帶硬度離子的軟水了,這也是陽離子交換樹脂最初被製造的主要目的,但它在工業上應用沒有「鈉型」來的多,因為在軟化過程中,它會直接釋出氫離子,使水質呈酸性,可能會因此腐蝕相關金屬設備。依需要的不同,它也可以應用到水質預處理工藝中,用作軟化水質及降低pH值之用。
二、種類
樹脂主要性質和類別之差異,在於它們的化學活性基種類之不同,因此氫型陽離子交換樹脂可依活性基(一種官能基)種類不同,分成兩種:強酸性陽離子交換樹脂(strong-
acid
anion
exchange
resin)和弱酸性陽離子交換樹脂(weak
-
acid
anion
exchange
resin)。強酸性陽離子交換樹脂系因它的活性氫離子在水中很容易解離而得名,其骨架均為聚苯乙烯系統,主要產品是「磺酸型」強酸性陽離易解離而得名,骨架均為聚丙烯酸系統,主要產品是「羧酸型」弱酸性陽離子交換樹脂,通常顏色較?白色或淡黃色球狀子交換樹脂,通常顏色較深,棕黃色至綜色球狀顆粒,以綜色最常見;反之,弱酸性陽離子交換樹脂則是因它的活性氫離子在水中比較不容顆粒,以淡黃色最常見。如果用化學反應來表示這兩種樹脂的差異性,我們可以描述如下(R代表樹脂母體):
強酸性:
R-SO3H
→
R-SO3-
+
H+
(H+容易解離,在水中呈強酸性)弱酸性:
R-COOH
→
R-COO-
+
H+
(H+不易解離,在水中呈弱酸性)
由於強酸性陽離子交換樹脂的解離能力很強,所以在任何酸性或鹼性溶液中均能解離和產生離子交換作用,其作用pH范圍介於1~14。反之,弱酸性陽離子交換樹脂的解離能力很弱,只能在弱酸性至鹼性溶液中解離和產生離子交換作用,其作用pH范圍僅介於5~14。
Ⅲ 鈉型陽離子交換樹脂為什麼在使用前要用酸處理,並洗至中性
新樹脂在使用前需清洗是任何類型的樹脂都不可少的一個步驟!
主要是因為,樹回脂在出售時答,並非絕對的「干凈」,多會含有少量低聚物和未參加反應的單體,以及鐵、鉛、銅等無機雜質。這些物質或多或少都對樹脂的交換性能有一定影響,所以應該在使用前予以清洗處理。
而對於陽離子交換樹脂來說,最易受Fe的污染;陰離子交換樹脂則更易受各種有機物的污染。你提到的酸處理也就是最常用的對應清洗劑——
鹽酸和
NaCl-NaOH混合液,當然還有其它的的,這里就不多說了。
ps,陽離子交換樹脂一般分為強酸性和弱酸性兩種,再生時都在酸性條件下。
Ⅳ 離子交換柱交換過程化學方程式
強酸型陽離子交換樹脂:R-SO3H (有許多SO3H基團)
強鹼型陰離子交換樹脂:[R4N]OH (有許多內OH基團)
R-SO3H + M(+) = RSO3M + H(+) 將所有陽離容子吸附到樹脂上,釋放出H(+);
[R4N]OH + X(-) = [R4N]X + OH(-) 將所有陰離子吸附到樹脂上,釋放出OH(-);
H(+) + OH(-) = H2O 陽離子交換產生的H(+)與陰離子交換產生的OH(-)結合成水。
Ⅳ 離子交換柱交換過程化學方程式
強酸型陽離子交換樹脂:R-SO3H
(有許多SO3H基團)
強鹼型陰離子交回換樹脂:[R4N]OH
(有許多OH基團)
R-SO3H
+
M(+)
=
RSO3M
+
H(+)
將所有陽離子吸附答到樹脂上,釋放出H(+);
[R4N]OH
+
X(-)
=
[R4N]X
+
OH(-)
將所有陰離子吸附到樹脂上,釋放出OH(-);
H(+)
+
OH(-)
=
H2O
陽離子交換產生的H(+)與陰離子交換產生的OH(-)結合成水。
Ⅵ 鈉型陽離子交換樹脂和氫型陽離子交換樹脂一樣嗎
鈉型和氫型的陽離子交換樹脂是完全不一樣的。
樹脂的離子形式不同在使用當中差別是完全不同的。比如說鈉型陽樹脂,主要適用於硬水的軟化去除鈣鎂離子;而氫型的陽樹脂主要適用於純水制備和超純水的制備等。
離子交換樹脂帶有官能團(有交換離子的活性基團)、具有網狀結構、不溶性的高分子化合物。通常是球形顆粒物。離子交換樹脂的全名稱由分類名稱、骨架(或基因)名稱、基本名稱組成。
氫型陽離子交換樹脂可依活性基(一種官能基)種類不同,分成兩種:
1、強酸性陽離子交換樹脂:強酸性陽離子交換樹脂系因它的活性氫離舉州子在水中很容易解離而得名,其骨架均為聚苯乙烯系統,主要產品是「磺酸型」強正譽蔽酸性陽離易解離而得名,骨架均為聚丙烯酸系統。
2、弱酸性陽離子交虛粗換樹脂:弱酸性陽離子交換樹脂則是因它的活性氫離子在水中比較不容顆粒,以淡黃色最常見。主要產品是「羧酸型」弱酸性陽離子交換樹脂,通常顏色較白色或淡黃色球狀子交換樹脂,通常顏色較深,棕黃色至綜色球狀顆粒,以綜色最常見。
Ⅶ 在強酸型陽離子交換柱上天冬氨酸,組氨酸,亮氨酸等幾種氨基酸的洗脫順序及原因。
洗脫順序先後依次是:天冬氨酸、亮氨酸、組氨酸。
原因:氨基酸與陽離子交換樹回脂的靜電引力大小答依次是 鹼性氨基酸>中性氨基酸>酸性氨基酸,所以洗脫的順序就先是酸性氨基酸,然後是中性氨基酸,最後是鹼性氨基酸。
天冬氨酸屬於酸性氨基酸,組氨酸屬於鹼性氨基酸,亮氨酸屬於中性氨基酸。
詳見《生物化學》王鏡岩 第三版 上冊 153頁
Ⅷ 請問強酸性苯乙烯系陽離子交換樹脂(鈉型)怎麼轉換成氫型急用。謝謝!
離子交換樹脂能夠轉為哪些類型?
1、陽離子樹脂可以使用氯化鈉,進行轉化成為鈉型樹專脂,屬可以更好的對水中的鈣鎂等離子進行吸附,且樹脂反應時不會釋放出氫離子,再生時不需要使用強酸,而是使用食鹽水進行再生,更加的安全。
2、陰離子交換樹脂可以轉化為氯型樹脂,也可以轉變為碳酸氫型,在工作時可以更好的將陰離子吸附,而且不再具有強鹼性,但是卻仍然具有離解性強和工作的pH范圍寬廣等能力。
3、樹脂還可以使用氯化氫(HCl)轉化,將樹脂轉化成為氫型樹脂,其官能團中含有大量的氫離子,氫型樹脂的大小一般在0.3-1.2mm之間,主要的作用就是將硬水軟化,硬水中含有大量的鈣、鎂等離子,氫型樹脂中的氫離子能夠有效的將這些離子吸附、替換,將硬水軟化成為軟水,氫型樹脂能夠和納型樹脂相互轉換。
詳情點擊:網頁鏈接
Ⅸ 強離子交換柱和弱離子交換柱的區別
陰樹脂和陽樹脂有什麼不同?
交換原理:
陰離子交換樹脂體內含有大量的鹼性基團,是通過氯來與水中的雜質交換,而陽離子交換樹脂則含有大量的酸性基團,是通過鈉離子或者氫離子與水中的雜質進行交換。
交換順序:
1、混床樹脂的交換順序一般是先陽離子,然後才是陰離子,陽離子交換樹脂會釋放出酸性基團,而陰離子交換樹脂則會釋放出鹼性基團,兩者中和,成為純水。
2、離子所帶有的電荷多,就容易被樹脂吸附,而所帶有的電荷較少,則比較難吸附。
3、如果帶有相同電荷量的離子,原子序數大的元素,形成離子的水合半徑小,較易被吸著。
溫度:
陽離子交換樹脂的耐溫性比較好,所以一般陽離子交換樹脂的使用溫度或者儲存溫度都要比陰離子交換樹脂高一些。
預處理:
陰陽離子交換樹脂的功能基團不同,所以樹脂預處理時使用的溶液也不同,陰陽樹脂在使用飽和食鹽水浸泡18-20小時之後,使用清水清洗干凈。
陰樹脂使用濃度為5%的氯化氫進行浸泡4-8小時,清洗干凈,再使用濃度在2%-4%左右的氫氧化鈉浸泡4-8小時,清洗至中性即可。
而陽樹脂則使用濃度在2%-4%左右的氫氧化鈉浸泡2-4小時,清洗干凈後,使用濃度為5%的氯化氫進行浸泡4-8小時,清洗至中性即可。
Ⅹ 處理較硬的水常用陽離子和離子交換樹脂的活性基團是什麼
如果你只想去除原水中的硬度,那麼採用鈉型陽樹脂即可,工作原理如下
Na型強酸性陽樹脂與原水中硬度(即Ca2+、Mg2+離子)的交換反應為:
Ca2+
+
2RNa
→
R2Ca
+
2Na+
Mg2+
+
2RNa
→
R2Mg
+
2Na+
如果你要制備一級除鹽水,那麼應該採用氫型陽樹脂和氫氧型陰樹脂
1.1
氫型陽樹脂的交換反應(陽床交換反應)
H型強酸性陽樹脂與原水中陽離子的交換反應為:
Ca2+
+
2RH
→
R2Ca
+
2H+
Mg2+
+
2RH
→
R2Mg
+
2H+
Na+
+
RH
→
RNa
+
H+
1.2
氫氧型陰樹脂的交換反應(陰床交換反應)
OH型強鹼性陰樹脂與原水中陰離子的交換反應為:
Cl-
+
ROH
→
RCl
+
OH-
HSO4-
+
ROH
→
RHSO4
+
OH-
SO42-
+
2ROH
→
R2SO4
+
2OH-
HCO3-
+
ROH
→
RHCO3
+
OH-
HSiO3-
+
ROH
→
RHSiO3
+
OH-
OH型弱鹼性陰樹脂的交換反應為:
H+
+
Cl-
+
RNHOH
→
RNHCl
+
H2O
H+
+
HSO4-
+
2RNHOH
→
(RNH)2SO4
+
2H2O
2H+
+
SO42-
+
2RNHOH
→
(RNH)2SO4
+
2H2O
經過上述交換反應,水中的陽離子和陰離子各自與H型陽樹脂和OH型陰樹脂反應,分別形成H+和OH-,並結合成水,其反應如下:
H+
+
OH-
→
H2O
在陽離子交換後,水中大量存在的H+和HCO3-結合生成難解離的H2CO3。它可以通過和強鹼性陰離子交換生成H2O,也可以用真空脫碳器除去。和前者相比,後者具有操作簡單、節約運行費用的優點,因此在化學除鹽系統中,一般均設有脫碳器。