⑴ 生物分離高手進
這寫起來復雜了....... 很多地方都有這樣的實驗步驟啊,我看了一下 下面這個,還可以
酶的分離簡單,就是麻煩,時間挺長的
酶的分離純化方法簡介
生物細胞產生的酶有兩類:一類由細胞內產生後分泌到細胞外進行作用的酶,稱為細胞外酶。這類酶大都是水解酶,如酶法生產葡萄糖所用的兩種澱粉酶,就是由枯草桿菌和根酶發酵過程中分泌的。這類酶一般含量較高,容易得到;另一類酶在細胞內產生後並不分泌到細胞外,而在細胞內起催化作用,稱為細胞內酶,如檸檬酸、肌苷酸、味精的發酵生產所進行的一系列化學反應,就是在多種酶催化下在細胞內進行的,在類酶在細胞內往往與細胞結構結合,有一定的分布區域,催化的反應具有一定的順序性,使許多反應能有條不紊地進行。
酶的來源多為生物細胞。生物細胞內產生的總的酶量雖然是很高的,但每一種酶的含量卻很低,如胰臟中期消化作用的水解酶種類很多,但各種酶的含量卻差別很大。
因此,在提取某一種酶時,首先應當根據需要,選擇含此酶最豐富的材料,如胰臟是提取胰蛋白酶、胰凝乳蛋白酶、澱粉酶和脂酶的好材料。由於從動物內臟或植物果實中提取酶制劑受到原料的限制,如不能綜合利用,成本又很大。目前工業上大多採用培養微生物的方法來獲得大量的酶制劑。從微生物中來生產酶制劑的優點有很多,既不受氣候地理條件限制,而且動植物體內酶大都可以在微生物中找到,微生物繁殖快,產酶量又豐富,還可以通過選育菌種來提高產量,用廉價原料可以大量生產。
由於在生物組織中,除了我們所需要的某一種酶之外,往往還有許多其它酶和一般蛋白質以及其他雜質,因此為製取某酶制劑時,必須經過分純化的手續。
酶是具有催化活性的蛋白質,蛋白質很容易變性,所以在酶的提純過程中應避免用強酸強鹼,保持在較低的溫度下操作。在提純的過程中通過測定酶的催化活性可以比較容易跟蹤酶在分離提純過程中的去向。酶的催化活性又可以作為選擇分離純化方法和操作條件的指標,在整個酶的分離純化過程中的每一步驟,始終要測定酶的總活力和比活力,這樣才能知道經過某一步驟回收到多少酶,純度提高了多少,從而決定著一步驟的取捨。
酶的分離純化一般包括三個基本步驟:即抽提、純化、結晶或制劑。首先將所需的酶從原料中引入溶液,此時不可避免地夾帶著一些雜質,然後再將此酶從溶液中選擇性地分離出來,或者從此溶液中選擇性地除去雜質,然後製成純化的酶制劑。下面就酶的分離純化的常用方法作一綜合介紹:
一、預處理及固液分離技術
1.細胞破碎(cell disruption)
高壓均質器法:此法可用於破碎酵母菌、大腸菌、假單胞菌、桿菌甚至黑麴黴菌。將細胞懸浮液在高壓下通入一個孔徑可調的排放孔中,菌體從高壓環境轉到低壓環境,細胞就容易破碎。菌懸液一次通過均質器的細胞破碎率在12%-67%。細胞破碎率與細胞的種類有關。要達到90%以上的細胞破碎率,起碼要將菌懸液通過均質器兩次。最好是提高操作壓力,減少操作次數。但有人報道,當操作壓力達到175Mpa時,破碎率可達100%。當壓力超過70Mpa時,細胞破碎率上升較為緩慢。高壓均質器的閥門是影響細胞破碎率的重要因素。絲狀菌會堵塞均質器的閥門,尤其高濃度菌體時更是如此。在豐富培養基上比在合成培養基上生長的大腸菌更難破碎。
容菌酶處理法:蛋清中含有豐富的溶菌酶,價格便宜,常用來裂解細胞。具體做法是:溶壁微球菌(micrococcus lysodeikticus)43kg,置於0.5%的氯化鈉溶液中,使細胞濃度為5%(乾重),在35℃用0.68kg(乾重)的蛋清處理20min,得到的細胞碎片用相同體積的乙醇處理,用離心機將細胞碎片和胞內蛋白質除去,再將乙醇濃度提高到75%(體積分數),可以得到純度為5%的過氧化氫酶1500g。
2.離心
離心分離過程可分為離心過濾、離心沉澱、離心分離3種類型,所使用的設備有過濾式離心機、沉降式離心機和離心機。過濾式離心機的轉鼓壁上開有小孔,壁上有過濾介質,一般可用於處理懸浮固體顆粒較大、固體含量較高的場合。沉降式離心機用於分離固體濃度較低的固液分離,如發酵液中的菌體,用鹽析法或有機溶劑處理過的蛋白質等。分離機用於分離兩種互不相溶的、密度有微小差別的乳濁液或含微量固體微粒的乳濁液。
在生物領域採用的離心機系統,除了應具備離心機的一般要求外,還應滿足生物生產的技術要求,這包括滅菌、冷卻、密封,以保證產品不受污染並不污染環境。現代哦離心機裝置包括以下三個步驟,並進行程序控制:離心、離心系統的滅菌及就地清洗。如阿法-拉伐公司離心機產品的裝置,具有雙重軸向密封,密封由裝在轉筒主軸上下的碳化硅動環和固定環組成,密封由水連續冷卻和潤滑,可防止產品被污染,也可防止生產過程中排出的廢物對環境的污染。該離心機又如一個密閉的壓力容器,可在121℃溫度下進行蒸汽滅菌,該離心設備設有環繞離心機轉筒的冷卻夾套,對懸浮液和濃縮的固體都能進行充分的冷卻,並能有效地控制溫度,這對於生物製品是非常重要的。如BTPX205型離心機可用於細胞收集、培養液的凈化和細胞碎片的分離,可用於疫苗、酶制劑等的提取。該機的其他輔助系統及控制系統也較為完善,如設有壓力指示器、力量計、溫度感測器和液面感測器。
3.膜分離技術
在蛋白質純化過程中主要用到的膜分離技術多為超濾。在靜壓作用下降溶液通過孔徑非常小的濾膜,使溶液中分子量較小的溶質透過薄膜,而大分子被截留於膜表面。大多數超濾膜是由一層非常薄的功能膜與較厚的支撐膜結合在一起而組成的。功能膜決定了膜的孔徑,而支撐膜提供機械強度以抵抗靜壓力。超濾濃縮的優點是:操作條件溫和,無相變化,對生物活性物質沒有破壞。
超濾系統主要由料液貯罐、泵、超濾器、透過液收集罐組成,料液經泵打入超濾器,水及低分子量物質排出超濾器外,被濃縮的料液在料液貯罐、泵、及超濾器中循環。當料液濃縮至一定的倍數後即可作為進一步處理的濃縮料液。
超濾應用於蛋白質類物質的濃縮和脫鹽過程中時應注意以下問題:第一,在超濾循環過程中,由於泵和葉輪與料液的摩擦放熱作用,料液的溫度會逐漸升高,會造成蛋白質分子的損失。因此,料液貯罐應加冷卻系統,並安裝自動測溫及控制系統。第二,某些酶的輔助因子散失為問題:一些酶含有輔助因子,其分子量小,超濾時易從透過液中排除掉,因而在超濾前或超濾後要添加一定濃度的的輔助因子。
還可將超濾與親和層析相結合以提高分離純度。其工作原理是:當溶液中欲被分離的蛋白質不受阻礙地通過超濾膜的孔隙時,如果在膜的一側結合著親和配基,該蛋白質就會與配基結合因而結聚在膜的這一側。不與配基結合的其他物質就將穿過孔而被帶走。再用適宜的洗脫劑將該蛋白質洗脫下來,洗脫液用於進一步的分離純化。
4.泡沫分離
原理:將氣體通入含多種組分的溶液中,由於這些組分的表面活性由差異,因此在溶液的表面,某些組分將形成泡沫,泡沫的穩定性取決於操作條件及溶液的生物學特性。泡沫中含有更多的表面活性成分,故泡沫的組分種類及其含量與溶液中的不相同。這樣,溶液中的組分舅得以分離。
蛋白質較易吸附與氣液界面,這有利於其結構的穩定。泡沫分離過程是:蛋白質從主體溶液中擴散到氣液界面,該過程可能是可逆的也可能是不可逆的;分子發生重排,一般認為在空氣-水界面會形成兩種類型的膜,一種是稀膜,另一種是濃膜,可能會發生由多個分子聚集在一起的現象。在氣液界面形成的蛋白質膜可以是單層的也可以是多層的。膜的類型取決於主體溶液及氣液界面上蛋白質的特性、結構和濃度。
泡沫分離的目的,一方面提高酶蛋白的富集率(泡沫中蛋白質的濃度/最初溶液中蛋白質濃度),另一方面提高酶蛋白的提取率(泡沫中蛋白質的提取率/最初的蛋白質質量),或使多組分混合物中某一組分的分配系數最大。
二、抽提
沉澱
1. 鹽析
常用的鹽析劑是硫酸銨,其溶解度大、價格便宜。硫酸銨沉澱蛋白質的能力很強,其飽和溶液能使大多數的蛋白質沉澱下來。對酶沒有破壞作用。
pH的控制:應從酶的溶解度與穩定性兩個方面考慮,在酶等電點時其溶解度最小易沉澱,但有些酶再等電點時穩定性較差,因此要選擇最佳pH值.一般要求在酶最穩定的pH值的前提下再考慮最適宜酶沉澱的pH值。在操作中一旦確定最佳pH值後,在添加硫酸銨之前甲酸或鹼調節好酶液的pH值,要盡量避免溶液pH值的波動以免破壞酶的穩定性。在添加硫酸銨時要注意攪拌,並注意硫酸銨的加入速度,一般是由少到多,緩慢加入,硫酸銨盡可能磨成細粉。
溫度的控制:有些酶在較高溫度下穩定性能較好,可在常溫下進行鹽析操作,而對於大多數酶,盡可能在低溫下操作。
酶液的凈置:加完硫酸銨後,酶液要靜置一段時間,使酶蛋白完全沉澱下來,酶靜置後,就不要再加以攪拌。
2.有機溶劑沉澱
有機溶劑選擇:可用於酶蛋白沉澱的有機溶劑包括醇類物質等,如甲醇、乙醇、異丙醇。乙醇的親水性能較好,可防止蛋白質的變性,酶蛋白在其中的溶解度也較低。
有機溶劑沉澱操作:有機溶劑一般都使蛋白質變性,當溫度較高時變性蛋白質分子就會變成永久失活。因此用有機溶劑處理時最好在0℃以下進行。用有機溶劑沉澱得到的酶蛋白不要放置過久,要盡快加水溶解。
3.聚合物絮凝劑沉澱
聚合物絮凝劑,如葡聚糖和聚乙二醇,與酶分子爭奪水分子,具有脫水作用使酶沉澱。聚乙二醇作為一種沉澱劑的優點是在水溶液中,其濃度可達到50%,濃度為6%-12%的蛋白質大都可以沉澱下來。這種試劑不需要低溫操作,而且對蛋白質的穩定還有一定的保護作用。聚乙二醇不會被吸附,故在離子交換吸附前不必去除。
4.用金屬離子和絡合物沉澱
酶和其他蛋白質都會形成金屬鹽,其溶解度較低。用金屬離子沉澱的缺點是酶與金屬離子相互作用後,可逆變化較差,尤其是用巰基衍生物,它結合的]金屬離子會催化酶變性而失活。
5.用特殊試劑沉澱法
用鏈黴素可選擇性去除核酸,從而使胞內酶沉澱出來。鏈黴素鹽(濃度為0.5-1.0mg/mg蛋白質)對於選擇性沉澱核酸的效果比錳離子還要好,酶不易失活。
6.親和沉澱
將親和反應的高度選擇性、低處理量特性與沉澱操作的大處理量、地選擇性有機結合形成了親和沉澱技術。將配基與可溶性載體偶聯後形成載體-配基復合物,該復合物與生物分子結合後在一定條件下可以沉澱出來。
配基-載體復合物可以選擇性地與蛋白質結合,溶液中的pH值、離子強度及蛋白質濃度等條件對親和結合的影響力並不大,只有競爭性的配基會降低產物與原配基的親和結合力,甚至使親和結合發生逆轉。
引導產生沉澱的方法有:離子交聯;加入帶相反電荷的聚合物;加入帶相反電荷的疏水基團;改變pH值,誘導產生疏水沉澱;溫度誘導產生沉澱。
親和結合:將親和配基加入到含有目的物蛋白質的溶液中,調節好有關沉澱的條件,使之有利於親和結合。
洗滌:為經過處理的粗製液中發生親和沉澱可能會發生非特異性結合,尤其是使用帶電的聚合物,離子交換的效應將使其他蛋白質共同沉澱,因此在分離目的物之前要洗滌沉澱物。其做法是:加入適當的清洗劑重新溶解沉澱,再沉澱;或在專一性洗脫之前,徹底清洗沉澱。在上述過程中要始終保持目的蛋白質與配基處於親和結合狀態。
配基-載體復合物與目的蛋白質的分離:分離結束之後,要確保回收目的蛋白質和配基-載體復合物,目的蛋白質要達到一定的純度,回收率要高。
⑵ 目前用於環境水處理領域的光催化劑主要種類有哪些
目前用於環境水處理領域的光催化劑主要種類有哪些
深度處理常見的方法有以下幾種。
1.1 活性炭吸附法與離子交換
活性炭是一種多孔性物質,而且易於自動控制,對水量、水質、水溫變化適應性強,因此活性炭吸附法是一種具有廣闊應用前景的污水深度處理技術。活性炭對分子量在派改500~3 000的有機物有十分明顯的去除效果,去除率一般為70%~86.7%[1],可經濟有效地去除嗅、色度、重金屬、消毒副產物、氯化有機物、農葯、放射性有機物等。
常用的活性炭主要有粉末活性炭(PAC)、顆粒活性炭(GAC)和生物活性碳(BAC)三大類。近年來,國外對PAC的研究較多,已經深入到對各種具體污染物的吸附能力的研究。淄博市引黃供水有限公司根據水肢肆污染的程度,在水處理系統中,投加粉末活性炭去除水中的COD,過濾後水的色度能降底1~2度;臭味降低到0度[2]。GAC在國外水處理中應用較多,處理效果也較穩定,美國環保署(USEPA)飲用水標準的64項有機物指標中,有51項將GAC列為最有效技術[3]。
GAC處理工藝的缺點是基建和執行費用較高,且容易產生亞硝酸鹽等致癌物,突發性污染適應性差。如何進一步降低基建投資和執行費用,降低活性炭再生成本將成為今後的研究重點。BAC可以發揮生化和物化處理的協同作用,從而延長活性炭的工作周期,大大提高處理效率,改善出水水質。不足之處在於活性炭微孔極易被阻塞、進水水質的pH 適用范圍窄、抗沖擊負荷差等。目前,歐洲應用BAC技術的水廠已發展到70個以上,應用最廣泛的是對水進行深度處理[4]。撫順石化分公司石油三廠採用BAC技術,既節省了新鮮水的補充量,減少污水排放量,減輕水體污染,降低生產成塵飢判本,還體現了經濟效益和社會效益的統一[5]。今後的研究重點是降低投資成本和增加各種預處理措施與BAC聯用,提高處理效果。
1.2 膜分離法
膜分離技術是以高分子分離膜為代表的一種新型的流體分離單元操作技術[6,7]。它的最大特點是分離過程中不伴隨有相的變化,僅靠一定的壓力作為驅動力就能獲得很高的分離效果,是一種非常節省能源的分離技術。
微濾可以除去細菌、病毒和寄生生物等,還可以降低水中的磷酸鹽含量。天津開發區污水處理廠採用微濾膜對SBR二級出水進行深度處理, 滿足了景觀、沖洗路面和沖廁等市政雜用和生活雜用的需求[8]。
超濾用於去除大分子,對二級出水的COD和BOD去除率大於50%。北京市高碑店污水處理廠採用超濾法對二級出水進行深度處理,產水水質達到生活雜用水標准,回用污水用於洗車,每年可節約用水4 700 m3[9]。
反滲透用於降低礦化度和去除總溶解固體,對二級出水的脫鹽率達到90%以上,COD和BOD的去除率在85%左右,細菌去除率90%以上[10]。緬甸某電廠採用反滲透膜和電除鹽聯用技術,用於鍋爐補給水。經反滲透處理的水,能去除絕大部分的無機鹽、有機物和微生物[11]。
納濾介於反滲透和超濾之間,其操作壓力通常為0.5~1.0 MPa,納濾膜的一個顯著特點是具有離子選擇性,它對二價離子的去除率高達95%以上,一價離子的去除率較低,為40%~80%[12]。潘巧明等人採用膜生物反應器-納濾膜整合技術處理糖蜜制酒精廢水取得了較好結果,出水COD小於100 mg/L,廢水回用率大於80%[13]。
我國的膜技術在深度處理領域的應用與世界先進水平尚有較大差距。今後的研究重點是開發、製造高強度、長壽命、抗污染、高通量的膜材料,著重解決膜污染、濃差極化及清洗等關鍵問題。
1.3 高階氧化法
工業生產中排放的高濃度有機污染物和有毒有害污染物,種類多、危害大,有些污染物難以生物降解且對生化反應有抑制和毒害作用。而高階氧化法在反應中產生活性極強的自由基(如•OH等),使難降解有機污染物轉變成易降解小分子物質,甚至直接生成CO2和H2O,達到無害化目的。
1.3.1 溼式氧化法
溼式氧化法(WAO)是在高溫(150~350 ℃)、高壓(0.5~20 MPa)下利用O2或空氣作為氧化劑,氧化水中的有機物或無機物,達到去除污染物的目的,其最終產物是CO2和H2O[14]。福建煉油化工有限公司於2002年引進了WAO工藝,徹底解決了鹼渣的後續治理和惡臭污染問題,而且執行成本低,氧化效率高[15]。
1.3.2 溼式催化氧化法
溼式催化氧化法(CWAO)是在傳統的溼式氧化處理工藝中加入適宜的催化劑使氧化反應能在更溫和的條件下和更短的時間內完成,也因此可減輕裝置腐蝕、降低執行費用[16,17]。目前,建於昆明市的一套連續流動型CWAO工業實驗裝置,已經體現出了較好的經濟性[18]。
溼式催化氧化法的催化劑一般分為金屬鹽、氧化物和復合氧化物3類。目前,考慮經濟性,應用最多的催化劑是過渡金屬氧化物如Cu、Fe、Ni、Co、Mn等及其鹽類。採用固體催化劑還可避免催化劑的流失、二次污染的產生及資金的浪費。
1.3.3 超臨界水氧化法
超臨界水氧化法把溫度和壓力升高到水的臨界點以上,該狀態的水就稱為超臨界水。在此狀態下水的密度、介電常數、粘度、擴散系數、電導率和溶劑化學效能都不同於普通水。較高的反應溫度(400~600 ℃)和壓力也使反應速率加快,可以在幾秒鍾內對有機物達到很高的破壞效率。
美國德克薩斯州哈靈頓首次大規模應用超臨界水氧化法處理污泥,日處理量達9.8 t。系統執行證明其COD的去除率達到99.9%以上,污泥中的有機成分全部轉化為CO2、H2O以及其他無害物質,且執行成本較低[19]。
1.3.4 光化學催化氧化法
目前研究較多的光化學催化氧化法主要分為Fenton試劑法、類Fenton試劑法和以TiO2為主體的氧化法。
Fenton試劑法由Fenton在20世紀發現,如今作為廢水處理領域中有意義的研究方法重新被重視起來。Fenton試劑依靠H2O2和Fe2+鹽生成•OH,對於廢水處理來說,這種反應物是一個非常有吸引力的氧化體系,因為鐵是很豐富且無毒的元素,而且H2O2也很容易操作,對環境也是安全的[20]。Fenton試劑能夠破壞廢水中諸如苯酚和除草劑等有毒化合物。目前國內對於Fenton試劑用於印染廢水處理方面的研究很多,結果證明Fenton 試劑對於印染廢水的脫色效果非常好。另外,國內外的研究還證明,用Fenton試劑可有效地處理含油、醇、苯系物、硝基苯及酚等物質的廢水。
類Fenton試劑法具有裝置簡單、反應條件溫和、操作方便等優點,在處理有毒有害難生物降解有機廢水中極具應用潛力。該法實際應用的主要問題是處理費用高,只適用於低濃度、少量廢水的處理。將其作為難降解有機廢水的預處理或深度處理方法,再與其他處理方法(如生物法、混凝法等)聯用,則可以更好地降低廢水處理成本、提高處理效率,並拓寬該技術的應用范圍。
光催化法是利用光照某些具有能帶結構的半導體光催化劑如TiO2、ZnO、CdS、WO3等誘發強氧化自由基•OH,使許多難以實現的化學反應能在常規條件下進行。銳鈦礦中形成的TiO2具有穩定性高、效能優良和成本低等特徵。在全世界范圍內開展的最新研究是獲得改良的(摻入其他成分)TiO2,改良後的TiO2具有更寬的吸收譜線和更高的量子產生率。
1.3.5 電化學氧化法
電化學氧化又稱電化學燃燒,是環境電化學的一個分支。其基本原理是在電極表面的電催化作用下或在由電場作用而產生的自由基作用下使有機物氧化。除可將有機物徹底氧化為CO2和H2O外,電化學氧化還可作為生物處理的預處理工藝,將非生物相容性的物質經電化學轉化後變為生物相容性物質。這種方法具有能量利用率高,低溫下也可進行;裝置相對較為簡單,操作費用低,易於自動控制;無二次污染等特點。
1.3.6 超聲輻射降解法
超聲輻射降解法主要源於液體在超聲波輻射下產生空化氣泡,它能吸收聲能並在極短時間內崩潰釋放能量,在其周圍極小的空間范圍內產生1 900~5 200 K的高溫和超過50 MPa的高壓。進入空化氣泡的水分子可發生分解反應產生高氧化活性的•OH,誘發有機物降解;此外,在空化氣泡表層的水分子則可以形成超臨界水,有利於化學反應速度的提高。
超聲波對含鹵化物的脫鹵、氧化效果顯著,氯代苯酚、氯苯、CH2Cl2、CHCl3、CCl4等含氯有機物最終的降解產物為HCl、H2O、CO、CO2等。超聲降解對硝基化合物的脫硝基也很有效。新增O3、H2O2、Fenton試劑等氧化劑將進一步增強超聲降解效果。超聲與其他氧化法的組合是目前的研究熱點,如US/O3、US/H2O2、US/Fenton、US/光化學法。目前,超聲輻射降解水體污染物的研究仍處於試驗探索階段。
1.3.7 輻射法
輻射法是利用高能射線(γ、χ射線)和電子束等對化合物的破壞作用所開發的污水輻射凈化法。一般認為輻射技術處理有機廢水的反應機理是由於水在高能輻射的作用下產生•OH、H2O2、•HO2等高活性粒子,再由這些高活性粒子誘發反應,使有害物質降解。
輻射法對有機物的處理效率高、操作簡便。該技術存在的主要難題是用於產生高能粒子的裝置昂貴、技術要求高,而且該法的能耗大、能量利用率較低;此外為避免輻射對人體的危害,還需要特殊的保護措施。更多資料可登入易凈水網檢視。因此該法要投入執行,還需進行大量的研究探索工作。
1.4 臭氧法
臭氧具有極強的氧化性,對許多有機物或官能團發生反應,有效地改善水質。臭氧能氧化分解水中各種雜質所造成的色、嗅,其脫色效果比活性炭好;還能降低出水濁度,起到良好的絮凝作用,提高過濾濾速或者延長過濾周期。目前,由於國內的臭氧發生技術和工藝比較落後,所以執行費用過高,推廣有難度。
通俗意義上講觸媒就是催化劑的意思,光觸媒顧名思義就是光催化劑。催化劑是加速化學反應的化學物質,其本身並不參與反應。光催化劑就是在光子的激發下能夠起到催化作用的化學物質的統稱。
1光催化劑的種類:
二氧化鈦(TiO2);氧化鋅(ZnO);氧化錫(SnO2);二氧化鋯(ZrO2);硫化鎘(CdS)等多種氧化物硫化物半導體,其中二氧化鈦(Titanium Dioxide)因其氧化能力強,化學性質穩定無毒,成為世界上最當紅的奈米光觸媒材料。
2光催化劑的發展:在早期,也曾經較多使用硫化鎘(CdS)和氧化鋅(ZnO)作為光觸媒材料,但是由於這兩者的化學性質不穩定,會在光催化的同時發生光溶解,溶出有害的金屬離子具有一定的生物毒性,故發達國家目前已經很少將它們用作為民用光催化材料,部分工業光催化領域還在使用。
3光催化劑二氧化鈦:它是一種半導體,分別具有銳鈦礦(Anatase),金紅石(Rutile)及板鈦礦(Brookite)三種晶體結構,其中只有銳鈦礦結構和金紅石結構具有光催化特性。
吸附法、厭氧生物處理、組合生物處理等。
化學法:投加氨氮降解劑
通俗意義上講觸媒就是催化劑的意思,光觸媒顧名思義就是光催化劑。催化劑是加速化學反應的化學物質,其本身並不參與反應。光催化劑就是在光子的激發下能夠起到催化作用的化學物質的統稱。
光催化技術是在20世紀70年代誕生的基礎奈米技術,在中國大陸我們會用光觸媒這個通俗詞來稱呼光催化劑。典型的天然光催化劑就是我們常見的葉綠素,在植物的光合作用中促進空氣中的二氧化碳和水合成為氧氣和碳水化合物。總的來說奈米光觸媒技術是一種奈米仿生技術,用於環境凈化,自清潔材料,先進新能源,癌症醫療,高效率抗菌等多個前沿領域。
世界上能作為光觸媒的材料眾多,包括二氧化鈦(TiO2),氧化鋅(ZnO),氧化錫(SnO2),二氧化鋯(ZrO2),硫化鎘(CdS)等多種氧化物硫化物半導體,其中二氧化鈦(Titanium Dioxide)因其氧化能力強,化學性質穩定無毒,成為世界上最當紅的奈米光觸媒材料。在早期,也曾經較多使用硫化鎘(CdS)和氧化鋅(ZnO)作為光觸媒材料,但是由於這兩者的化學性質不穩定,會在光催化的同時發生光溶解,溶出有害的金屬離子具有一定的生物毒性,故發達國家目前已經很少將它們用作為民用光催化材料,部分工業光催化領域還在使用。
二氧化鈦是一種半導體,分別具有銳鈦礦(Anatase),金紅石(Rutile)及板鈦礦(Brookite)三種晶體結構,其中只有銳鈦礦結構和金紅石結構具有光催化特性。
二氧化鈦是氧化物半導體的一種,是世界上產量非常大的一種基礎化工原料,普通的二氧化鈦一般稱為體相半導體以與奈米二氧化鈦相區分。具有Anatase或者Rutile結構的二氧化鈦在具有一定能量的光子激發下[光子激發原理參考光觸媒反應原理]能使分子軌道中的電子離開價帶(Valence band)躍遷至導帶(conction band)。從而在材料價帶形成光生空穴[Hole+],在導帶形成光生電子[e-],在體相二氧化鈦中由於二氧化鈦顆粒很大,光生電子在到達導帶開始向顆粒表面活動的過程中很容易與光生空穴復合,從而從巨集觀上我們無法觀察到光子激發的效果。但是奈米的二氧化鈦顆粒由於尺寸很小,所以電子比較容易擴散到晶體表面,導致原本不帶電的晶體表面的2個不同部分出現了極性相反的2個微區-光生電子和光生空穴。由於光生電子和光生空穴都有很強的能量,遠遠高出一般有機污染物的分子鏈的強度,所以可以輕易將有機污染物分解成最原始的狀態。同時光生空穴還能與空氣中的水分子形成反應,產生氫氧自由基亦可分解有機污染物並且殺滅細菌病毒。這種在一個區域內2個微區截然相反的性質並且共同達到效果的過程是奈米技術典型的應用,一般稱之為二元論。該反應微區稱之為二元協同介面。
從上面介紹我們可以看到,二氧化鈦的光催化反應過程,很大程度依靠第一步的光子激發,所以有足夠激發二氧化鈦的光子,才能提供足夠的能量,我們也可以知道,光催化反應並不是憑空產生的它也是需要消耗能量的,符合能量守恆原則,它消耗的是光子,也就是光能。如果是太陽光照射光觸媒就利用太陽能,燈光就是利用光能。聯合國將光觸媒開發列為21世紀太陽能利用計劃的重要組成部分。
什麼樣的光子能激發二氧化鈦呢?從理論結構上來說,銳鈦二氧化鈦的導帶與價帶之間的間隙[我們稱之為能隙]是3.2eV 而金紅石二氧化鈦為3.0eV,所以金紅石需要光能大於3.0eV的光子而銳鈦需要大於3.2eV的光子。光子的能量E與波長λ(Lambda)與之具有反比關系E = h C / λ,所以可以知道波長小於380nm的光可以激發銳鈦型二氧化鈦。雖然銳鈦礦需要略多的能量來激發,但是同樣的銳鈦礦的二氧化鈦光觸媒具有更強的氧化能力,所以被更為廣泛的使用。有研究表明接近7nm粒徑時,銳鈦礦要比金紅石更為穩定,這也是很多奈米光觸媒採用銳鈦型的原因。
優點:1、合適的能帶電位
2、高化學穩定性
3、無毒無害
4、較高的光電轉換效率
5、低成本
6、高活性
缺點:無可見光吸收
在選擇和設計金屬催化劑時,常考慮金屬組分與反應物分子間應有合適的能量適應性和空間適應性,以利於反應分子的活化。然後考慮選擇合適的助催化劑和催化劑載體以及所需的制備工藝,並嚴格控制制備條件,以滿足所需的化學組成和物理結構,包括金屬晶粒大小和分布等。
光催化劑的起源:光催化技術是在20世紀70年代誕生的基礎奈米技術,在中國大陸我們會用光觸媒這個通俗詞來稱呼光催化劑。典型的天然光催化劑就是我們常見的葉綠素,在植物的光合作用中促進空氣中的二氧化碳和水合成為氧氣和碳水化合物。總的來說奈米光觸媒技術是一種奈米仿生技術,用於環境凈化,自清潔材料,先進新能源,癌症醫療,高效率抗菌等多個前沿領域。
補充:
世界上能作為光觸媒的材料眾多,包括二氧化鈦(TiO2),氧化鋅(ZnO),氧化錫(SnO2),二氧化鋯(ZrO2),硫化鎘(CdS)等多種氧化物硫化物半導體,其中二氧化鈦(Titanium Dioxide)因其氧化能力強,化學性質穩定無毒,成為世界上最當紅的奈米光觸媒材料。
客觀上講應該是沒有的,要不然怎麼用來處理環境污染物呢,當然,現在一些粉體的話,飛散起來的話對小范圍的環境是有點,但不是本質上的污染,使用的時候注意就好了。
⑶ 從酶的結構與功能角度闡述催化機理
酶的催化機理和一般化學催化劑基本相同,也是先和反應物(酶的底物)結合成絡合物,通過降低反應的能來提高化學反應的速度,在恆定溫度下,化學反應體系中每個反應物分子所含的能量雖然差別較大,但其平均值較低,這是反應的初態.S(底物)→P(產物)這個反應之所以能夠進行,是因為有相當部分的S分子已被激活成為活化(過渡態)分子,活化分子越多,反應速度越快.在特定溫度時,化學反應的活化能是使1摩爾物質的全部分子成為活化分子所需的能量(千卡).酶(E)的作用是:與S暫時結合形成一個新化合物ES,ES的活化狀態(過渡態)比無催化劑的該化學反應中反應物活化分子含有的能量低得多.ES再反應產生P,同時釋放E.E可與另外的S分子結合,再重復這個循環.降低整個反應所需的活化能,使在單位時間內有更多的分子進行反應,反應速度得以加快.如沒有催化劑存在時,過氧化氫分解為水和氧的反應(2H2O2→2H2O+O2)需要的活化能為每摩爾18千卡(1千卡=4.187焦耳),用過氧化氫酶催化此反應時,只需要活化能每摩爾2千卡,反應速度約增加10^11倍.
按照酶的化學組成可將酶分為單純酶和結合酶兩大類.單純酶分子中只有氨基酸殘基組成的肽鏈,結合酶分子中則除了多肽鏈組成的蛋白質,還有非蛋白成分,如金屬離子、鐵卟啉或含B族維生素的小分子有機物.結合酶的蛋白質部分稱為酶蛋白(apoenzyme),非蛋白質部分統稱為輔助因子 (cofactor),兩者一起組成全酶(holoenzyme);只有全酶才有催化活性,如果兩者分開則酶活力消失.非蛋白質部分如鐵卟啉或含B族維生素的化合物若與酶蛋白以共價鍵相連的稱為輔基(prosthetic group),用透析或超濾等方法不能使它們與酶蛋白分開;反之兩者以非共價鍵相連的稱為輔酶(coenzyme),可用上述方法把兩者分開.表4-1為以金屬離子作結合酶輔助因子的一些例子.表4-2列出含B族維生素的幾種輔酶(基)及其參與的反應.結合酶中的金屬離子有多方面功能,它們可能是酶活性中心的組成成分;有的可能在穩定酶分子的構象上起作用;有的可能作為橋梁使酶與底物相連接.輔酶與輔基在催化反應中作為氫游賀(H+和e)或某些化學基團的載體,起傳遞氫或化學基團的作用.體內酶的種類很多,但酶的輔助因子種類並不多,從表4—1中已見到幾種酶均用某種相同的金屬離子作為輔助因子的例子,同樣的情況亦見於輔酶與輔基,如3-磷酸甘油醛脫氫酶和乳酸脫氫酶均以NAD+作為輔酶.酶催化搏遲反應的特異性決定於酶蛋白部分,而輔酶與輔基的作用是參與具體的反應過程中氫(H+和e)及一些特殊化學基團的運載.
酶的分子結構的基礎是其氨基酸的序列,它決定著酶的空間結構和活性中心的形成以及酶催化的專一性.如哺乳動物中的磷酸甘油醛脫氫酶的氨基酸殘基序列幾乎完全相同,說明相同的一級結構是酶催化同一反應的基礎.又如消化道的糜蛋白酶,胰蛋白酶和彈性蛋白酶都能水解食物蛋白質的肽鍵,但三者水解的肽鍵有各自的特異性,糜蛋白酶水解含芳香族氨基酸殘基提供羧基的肽鍵,胰蛋白酶水解賴氨酸等鹼性氨基酸殘基提供羧基的肽鍵,而彈性蛋白酶水解側鏈較小且不帶電荷氨基酸殘基提供羧基的肽鍵.這三種酶的氨基酸序列分析顯示40%左右的氨基酸序列相同,都以絲氨酸殘基作為酶的活性中心基團,三種酶在絲氨酸殘基周圍都有G1y-Asp-Ser-Gly-Pro序列,X線衍射研究提示這三種酶有相似的空間結構,這是它們都能水解肽鍵的基礎.而它們水解肽鍵時的特異性則來自酶的底物結合部位上氨基酸組成上有微小的差別所致.圖說明這三個酶的底物結合部位均有一個袋形結構,糜蛋白酶該處能容納芳香基或非極性基;胰蛋白酶袋子底部稍有不同其中一個氨基酸殘基為天冬氨酸取代,使該處負電荷增強,故該處對帶正電荷的賴氨酸或精酸殘基結合有利;彈性蛋白酶口袋二側為纈氨酸和蘇氨酸殘基所取代,因此該處只能結合較小側鏈和不帶電荷的基團.說明酶的催化特異神銀派性與酶分子結構的緊密關系.
⑷ 常見的膜分離材料
不對稱膜的表面活性層上的微孔很小(約2nm),大孔支撐層為海綿狀結構;復合膜由超薄膜和多孔支撐層等組成。超薄膜很薄,只有0.4mm,有利於降低流動阻力,提高透水速率;中空纖維反滲透膜的直徑極小,壁厚與直徑之比比較大,因而不需支持就能承受較高的外壓。 反滲透膜的材料主要有醋酸纖維素、聚醯胺、聚苯並咪唑、磺化聚苯醚等。醋酸纖維素膜透水量大,脫鹽率高,價格便宜,應用普遍。芳香聚醯胺膜具有優越的機械強度,化學性能穩定,耐壓實,能在pH值4-10的范圍內使用。聚苯並咪唑反滲透膜則能耐高溫,吸水性好,適用於在較高溫度下的作業。反滲透裝置已成功地應用於海水脫鹽,並達到飲用級的質量。海水淡化的原理是利用只允許溶劑透過,不允許溶質透過的半透膜,將海水與淡水分隔開的。用RO(Reverse Osmosis )進行海水淡化時,因其含鹽量較高,除特殊高脫鹽率膜以外,一般均須採用二級RO淡化。但是海水脫鹽成本較高,目前主要用於特別缺水的中東產油國。 (2)超濾膜 超濾膜是指具有從1-20nm細孔的多孔質膜,它幾乎可以完全將含於溶液中的病毒、高分子膠體等微粒子截留分離。超濾膜的分離性能就是用它所截留物質的分子量大小來定義的。超濾膜分離技術主要用於分離溶液中的大分子、膠體微粒。通過膜的篩分作用將溶液中大於膜孔的大分子溶質截留,是溶質分子與小分子溶劑分離的膜過程 。 (3)微濾膜 微濾膜是指孔徑范圍為0.01-10µm的多孔質分離膜,它可以把細菌、膠體以及氣溶膠等微小粒子從流體中比較徹底地分離除去。流體中含有粒子的濃度不同,微濾膜的使用方式也不同。當濃度較低時,常常使用一次性濾膜;當濃度較高時,需要選擇可以反復使用的膜。 (4)氣體分離膜 氣體分離中常用的高分子膜,是非對稱的或復合膜,其膜表層為緻密高分子層,即非多孔高分子膜。這種膜材料需要具有優良的滲透性。 (5)催化膜 在膜反應器中,利用膜的載體功能將催化劑固定在膜的表面或膜內來制備催化膜。有些膜材料本身就具有催化活性。在反應涉及加氫、脫氫、氧化以及與氧的生成有關的體系時,則常採用金屬膜、固體電解質膜,這些膜具有選擇性透過氫和氧的能力。 隔膜催化技術有效性的主要特徵是生產率和選擇率。生產率是由通過隔膜以及隔膜表面上反應物和生成物的分離率來決定的。
⑸ 能否使用超濾去除過氧化氫
能使用超濾去除過氧化氫,催化過氧化氫分解成氧和水的酶,存在於細胞的過專氧化物體內屬.過氧化氫酶在食品工業中被用於除去用於製造乳酪的牛奶中的過氧化氫.過氧化氫酶也被用於食品包裝,防止食物被氧化.
過氧化氫化學式為H2O2,純過氧化氫是淡藍色的黏稠液體,可任意比例與水混合,是一種強氧化劑,水溶液俗稱雙氧水,為無色透明液體。其水溶液適用於醫用傷口消毒及環境消毒和食品消毒。在一般情況下會分解成水和氧氣,但分解速度極其慢,加快其反應速度的辦法是加入催化劑——二氧化錳等或用短波射線照射。
⑹ 目前用於環境水處理領域的光催化劑主要種類有哪些
目前用於環境水處理領域的光催化劑主要種類有哪些
深度處理常見的方法有以下幾種。
1.1 活性炭吸附法與離子交換
活性炭是一種多孔性物質,而且易於自動控制,對水量、水質、水溫變化適應性強,因此活性炭吸附法是一種具有廣闊應用前景的污水深度處理技術。活性炭對分子量在500~3 000的有機物有十分明顯的去除效果,去除率一般為70%~86.7%[1],可經濟有效地去除嗅、色度、重金屬、消毒副產物、氯化有機物、農葯、放射性有機物等。
常用的活性炭主要有粉末活性炭(PAC)、顆粒活性炭(GAC)和生物活性碳(BAC)三大類。近年來,國外對PAC的研究較多,已經深入到對各種具體污染物的吸附能力的研究。淄博市引黃供水有限公司根據水污染的程度,在水處理系統中,投加粉末活性炭去除水中的COD,過濾後水的色度能降底1~2度;臭味降低到0度[2]。GAC在國外水處理中應用較多,處理效果也較穩定,美國環保署(USEPA)飲用水標準的64項有機物指標中,有51項將GAC列為最有效技術[3]。
GAC處理工藝的缺點是基建和運行費用較高,且容易產生亞硝酸鹽等致癌物,突發性污染適應性差。如何進一步降低基建投資和運行費用,降低活性炭再生成本將成為今後的研究重點。BAC可以發揮生化和物化處理的協同作用,從而延長活性炭的工作周期,大大提高處理效率,改善出水水質。不足之處在於活性炭微孔極易被阻塞、進水水質的pH 適用范圍窄、抗沖擊負荷差等。目前,歐洲應用BAC技術的水廠已發展到70個以上,應用最廣泛的是對水進行深度處理[4]。撫順石化分公司石油三廠採用BAC技術,既節省了新鮮水的補充量,減少污水排放量,減輕水體污染,降低生產成本,還體現了經濟效益和社會效益的統一[5]。今後的研究重點是降低投資成本和增加各種預處理措施與BAC聯用,提高處理效果。
1.2 膜分離法
膜分離技術是以高分子分離膜為代表的一種新型的流體分離單元操作技術[6,7]。它的最大特點是分離過程中不伴隨有相的變化,僅靠一定的壓力作為驅動力就能獲得很高的分離效果,是一種非常節省能源的分離技術。
微濾可以除去細菌、病毒和寄生生物等,還可以降低水中的磷酸鹽含量。天津開發區污水處理廠採用微濾膜對SBR二級出水進行深度處理, 滿足了景觀、沖洗路面和沖廁等市政雜用和生活雜用的需求[8]。
超濾用於去除大分子,對二級出水的COD和BOD去除率大於50%。北京市高碑店污水處理廠採用超濾法對二級出水進行深度處理,產水水質達到生活雜用水標准,回用污水用於洗車,每年可節約用水4 700 m3[9]。
反滲透用於降低礦化度和去除總溶解固體,對二級出水的脫鹽率達到90%以上,COD和BOD的去除率在85%左右,細菌去除率90%以上[10]。緬甸某電廠採用反滲透膜和電除鹽聯用技術,用於鍋爐補給水。經反滲透處理的水,能去除絕大部分的無機鹽、有機物和微生物[11]。
納濾介於反滲透和超濾之間,其操作壓力通常為0.5~1.0 MPa,納濾膜的一個顯著特點是具有離子選擇性,它對二價離子的去除率高達95%以上,一價離子的去除率較低,為40%~80%[12]。潘巧明等人採用膜生物反應器-納濾膜集成技術處理糖蜜制酒精廢水取得了較好結果,出水COD小於100 mg/L,廢水回用率大於80%[13]。
我國的膜技術在深度處理領域的應用與世界先進水平尚有較大差距。今後的研究重點是開發、製造高強度、長壽命、抗污染、高通量的膜材料,著重解決膜污染、濃差極化及清洗等關鍵問題。
1.3 高級氧化法
工業生產中排放的高濃度有機污染物和有毒有害污染物,種類多、危害大,有些污染物難以生物降解且對生化反應有抑制和毒害作用。而高級氧化法在反應中產生活性極強的自由基(如•OH等),使難降解有機污染物轉變成易降解小分子物質,甚至直接生成CO2和H2O,達到無害化目的。
1.3.1 濕式氧化法
濕式氧化法(WAO)是在高溫(150~350 ℃)、高壓(0.5~20 MPa)下利用O2或空氣作為氧化劑,氧化水中的有機物或無機物,達到去除污染物的目的,其最終產物是CO2和H2O[14]。福建煉油化工有限公司於2002年引進了WAO工藝,徹底解決了鹼渣的後續治理和惡臭污染問題,而且運行成本低,氧化效率高[15]。
1.3.2 濕式催化氧化法
濕式催化氧化法(CWAO)是在傳統的濕式氧化處理工藝中加入適宜的催化劑使氧化反應能在更溫和的條件下和更短的時間內完成,也因此可減輕設備腐蝕、降低運行費用[16,17]。目前,建於昆明市的一套連續流動型CWAO工業實驗裝置,已經體現出了較好的經濟性[18]。
濕式催化氧化法的催化劑一般分為金屬鹽、氧化物和復合氧化物3類。目前,考慮經濟性,應用最多的催化劑是過渡金屬氧化物如Cu、Fe、Ni、Co、Mn等及其鹽類。採用固體催化劑還可避免催化劑的流失、二次污染的產生及資金的浪費。
1.3.3 超臨界水氧化法
超臨界水氧化法把溫度和壓力升高到水的臨界點以上,該狀態的水就稱為超臨界水。在此狀態下水的密度、介電常數、粘度、擴散系數、電導率和溶劑化學性能都不同於普通水。較高的反應溫度(400~600 ℃)和壓力也使反應速率加快,可以在幾秒鍾內對有機物達到很高的破壞效率。
美國德克薩斯州哈靈頓首次大規模應用超臨界水氧化法處理污泥,日處理量達9.8 t。系統運行證明其COD的去除率達到99.9%以上,污泥中的有機成分全部轉化為CO2、H2O以及其他無害物質,且運行成本較低[19]。
1.3.4 光化學催化氧化法
目前研究較多的光化學催化氧化法主要分為Fenton試劑法、類Fenton試劑法和以TiO2為主體的氧化法。
Fenton試劑法由Fenton在20世紀發現,如今作為廢水處理領域中有意義的研究方法重新被重視起來。Fenton試劑依靠H2O2和Fe2+鹽生成•OH,對於廢水處理來說,這種反應物是一個非常有吸引力的氧化體系,因為鐵是很豐富且無毒的元素,而且H2O2也很容易操作,對環境也是安全的[20]。Fenton試劑能夠破壞廢水中諸如苯酚和除草劑等有毒化合物。目前國內對於Fenton試劑用於印染廢水處理方面的研究很多,結果證明Fenton 試劑對於印染廢水的脫色效果非常好。另外,國內外的研究還證明,用Fenton試劑可有效地處理含油、醇、苯系物、硝基苯及酚等物質的廢水。
類Fenton試劑法具有設備簡單、反應條件溫和、操作方便等優點,在處理有毒有害難生物降解有機廢水中極具應用潛力。該法實際應用的主要問題是處理費用高,只適用於低濃度、少量廢水的處理。將其作為難降解有機廢水的預處理或深度處理方法,再與其他處理方法(如生物法、混凝法等)聯用,則可以更好地降低廢水處理成本、提高處理效率,並拓寬該技術的應用范圍。
光催化法是利用光照某些具有能帶結構的半導體光催化劑如TiO2、ZnO、CdS、WO3等誘發強氧化自由基•OH,使許多難以實現的化學反應能在常規條件下進行。銳鈦礦中形成的TiO2具有穩定性高、性能優良和成本低等特徵。在全世界范圍內開展的最新研究是獲得改良的(摻入其他成分)TiO2,改良後的TiO2具有更寬的吸收譜線和更高的量子產生率。
1.3.5 電化學氧化法
電化學氧化又稱電化學燃燒,是環境電化學的一個分支。其基本原理是在電極表面的電催化作用下或在由電場作用而產生的自由基作用下使有機物氧化。除可將有機物徹底氧化為CO2和H2O外,電化學氧化還可作為生物處理的預處理工藝,將非生物相容性的物質經電化學轉化後變為生物相容性物質。這種方法具有能量利用率高,低溫下也可進行;設備相對較為簡單,操作費用低,易於自動控制;無二次污染等特點。
1.3.6 超聲輻射降解法
超聲輻射降解法主要源於液體在超聲波輻射下產生空化氣泡,它能吸收聲能並在極短時間內崩潰釋放能量,在其周圍極小的空間范圍內產生1 900~5 200 K的高溫和超過50 MPa的高壓。進入空化氣泡的水分子可發生分解反應產生高氧化活性的•OH,誘發有機物降解;此外,在空化氣泡表層的水分子則可以形成超臨界水,有利於化學反應速度的提高。
超聲波對含鹵化物的脫鹵、氧化效果顯著,氯代苯酚、氯苯、CH2Cl2、CHCl3、CCl4等含氯有機物最終的降解產物為HCl、H2O、CO、CO2等。超聲降解對硝基化合物的脫硝基也很有效。添加O3、H2O2、Fenton試劑等氧化劑將進一步增強超聲降解效果。超聲與其他氧化法的組合是目前的研究熱點,如US/O3、US/H2O2、US/Fenton、US/光化學法。目前,超聲輻射降解水體污染物的研究仍處於試驗探索階段。
1.3.7 輻射法
輻射法是利用高能射線(γ、χ射線)和電子束等對化合物的破壞作用所開發的污水輻射凈化法。一般認為輻射技術處理有機廢水的反應機理是由於水在高能輻射的作用下產生•OH、H2O2、•HO2等高活性粒子,再由這些高活性粒子誘發反應,使有害物質降解。
輻射法對有機物的處理效率高、操作簡便。該技術存在的主要難題是用於產生高能粒子的裝置昂貴、技術要求高,而且該法的能耗大、能量利用率較低;此外為避免輻射對人體的危害,還需要特殊的保護措施。更多資料可登錄易凈水網查看。因此該法要投入運行,還需進行大量的研究探索工作。
1.4 臭氧法
臭氧具有極強的氧化性,對許多有機物或官能團發生反應,有效地改善水質。臭氧能氧化分解水中各種雜質所造成的色、嗅,其脫色效果比活性炭好;還能降低出水濁度,起到良好的絮凝作用,提高過濾濾速或者延長過濾周期。目前,由於國內的臭氧發生技術和工藝比較落後,所以運行費用過高,推廣有難度。
⑺ 其實超濾膜過濾出來的水,和燒開的自來水有什麼區別..
一、水的微量元素含量不同
超濾膜過濾出來的水在過濾的過程中雖然去掉了膠體、懸專浮物等大屬分子有機物,但是也去除了一些微量元素,自來水只進行了粗過濾和殺菌,所以超濾膜過濾出來的水中的鋅等微量元素遠遠低於自來水。
二、水的處理過程不同
超濾膜過濾是一種篩分的過程,以超濾膜為過濾介質,在一定的壓力下,超濾膜表面密布的許多細小的微孔只允許水及小分子物質通過,而體積大於膜孔徑的物質則被留下成為濃縮液,從而實現了對水的凈化。
燒開的自來水是一種滅菌除垢的過程,自來水經過粗過濾和滅菌去掉了懸浮物雜質和細菌等有害物質,隨後自來水經煮沸後除垢並進一步滅菌。
(7)超濾催化莫擴展閱讀
超濾膜的材質很多,包括:聚偏氟乙烯、聚丙烯、聚乙烯、聚丙烯腈、聚氯乙烯等。當超濾用於水處理時,其材質的化學穩定性和親水性是兩個最重要的性質。
化學穩定性決定了材料在酸鹼、氧化劑、微生物等的作用下的壽命,它還直接關繫到清洗可以採取的方法,親水性則決定了膜材料對水中有機污染物的吸附程度,主要影響膜的通量。
⑻ 凈水器的各級濾芯各需要多久更換一次
一般是3-6個月更換一次。大部分凈水器是採用阻篩過濾原理漸進式結構方式,由多級濾芯專首尾串接屬而成,濾芯精密度由低到高依次排列,以實現多級濾芯分攤截留污物,從而減少濾芯堵塞和人工排污、拆洗的次數以及延長更換濾芯的周期。
還有一種新的設計思路是應用分質流通原理自潔式結構方式,它的設計思想不再是提供盡可能多的空間用於藏污納垢,而是採取分質原理,分離出一小部分潔凈水,同時又盡可能讓原水照常流通流動起來使污質隨水流及時被帶走,達到流水不腐。
第一代凈水器主要通過活性炭、陶瓷等簡單過濾,容易滋生細菌,污染水源,達不到潔凈水源的效果;第二代凈水器使用了各種人工高分子膜過濾,對去除水中有害物效果顯著,但它致命的缺陷是過濾掉了對身體有利的微量元素。
第三代凈水器採用的是納米微晶濾芯技術,很好的解決了第二代凈水器的缺陷,過濾掉了水中有害物質及重金屬等。所以大家選擇凈水器時,一定要問清採用的過濾技術以及濾料,看是否滿足自己的使用需求。
⑼ 管式超濾膜在水處理中的應用作用
管式超濾膜,具有高抗污染性、高運行通量、膜芯與組件外殼的可更換性特點,廣泛應用於物料澄清過濾、垃圾滲濾液MBR工藝、油水分離、廢水處理、應急飲水等領域。
⑽ 為什麼現在管道超濾安裝不多
管道超濾是一種用於水處理的過濾技術,可以有效去除水中的細菌、病毒、懸浮顆粒等有害物質。如果您指的是這種技術桐局,那麼為什麼現在管道超濾安裝不多可能有以下幾個原因:
1. 成本考慮:管道超濾設備的購置成本和安裝成本相對較高,可能導致一些企業或家庭在預算有限的情況下放棄使用這種過濾技術。
2. 維護成本:管道超濾設備需要定期進行維護,以確保其性能。這可能需要專業人員進行操作,從而增加了維護成本。
3. 市場認知度:管道超濾技術相對較新,市場認知度還不夠高,許多人可能不了解這種過濾技術的優點和重要性。
4. 現有過濾技術:雖然管道超濾技術在某些方面具有優枝基勢,但目前市場上仍有其他過濾技術可供選擇,例如反滲透(RO)過局搭讓濾、活性炭過濾等。這些技術可能在某些特定場景下更適用,從而導致管道超濾設備的需求相對較低。
5. 地理位置:管道超濾設備可能對水質和溫度等環境條件有一定要求。在某些地區,由於地理條件限制,可能無法實現有效的管道超濾安裝。
請注意,這些原因可能不是唯一的解釋,還需要結合具體的市場環境和行業特點進行分析。