⑴ 為什麼說土壤陽離子代換量(CEC)和鹽基飽和度(BSP)不僅是土壤供肥、保肥和穩肥的重要指標
土壤鹽基飽和度(BS)來Base Saturation土壤膠體上的交源換性鹽基離子佔全部交換性陽離子(總量)的百分比。酸基離子:H+、Al3+鹽基離子:K+、Na+、Ca2+、Mg2+等所以BS真正反映土壤有效(速效)養分含量的大小,是改良土壤的重要依據之一,是土壤供肥、保肥和穩肥的重要指標
⑵ 求助測定土壤陽離子交換量CEC的方法
土壤陽離子交換量的測定受多種因素的影響,如交換劑的性質、鹽溶液濃版度和pH、淋洗方權法等,必須嚴格掌握操作技術才能獲得可靠的結果。
聯合國糧農組織規定用於土壤分類的土壤分析中使用經典的中性乙酸銨法或乙酸鈉法。
⑶ 離子交替吸附作用
離子交替吸附作用主要發生在具有固定電荷的固體礦物表面,無論是陽離子還是陰離子,均可發生交替吸附作用,但目前研究得較多的是陽離子交替吸附作用。離子交替吸附作用的一個重要特點就是,伴隨著一定量的一種離子的吸附,必然有等當量的另一種同號離子的解吸(圖2-5-4)。離子交替吸附作用之所以具有這樣的特點,主要是由於吸附劑通常都具有一定的離子交換容量,因此這里首先對離子交換容量予以討論。
圖2-5-3 有機質表面的負電荷
圖2-5-4 陽離子交替吸附作用圖解
2.5.2.1 離子交換容量
離子交換容量包括陽離子交換容量(CEC—Cation Exchange Capacity)和陰離子交換容量(AEC—Anion Exchange Capacity),我們主要討論陽離子交換容量,它被定義為每100 g干吸附劑可吸附陽離子的毫克當量數。例如,在蒙脫石的結晶格架中,鋁八面體中的三價鋁可被二價鎂所置換,根據測定,每摩爾蒙脫石中鎂的含量為0.67 mol,即蒙脫石的分子式為:Si8Al3.33Mg0.67O20(OH)4。已知蒙脫石的分子量是734 g,因此這種蒙脫石的陽離子交換容量為:
水文地球化學
在實際中,通常都是通過實驗來測定吸附劑的陽離子交換容量。尤其是對於野外所採取的土樣或岩樣,由於其中含有多種吸附劑,實驗測定往往是唯一可行的方法。陽離子交換容量的實驗測定在多數情況下都是用pH為7的醋酸銨溶液與一定量固體樣品混合,使其全部吸附格位被所飽和,然後用其他溶液(例如NaCl溶液)把被吸附的全部交換出來,達到交換平衡後,測定溶液中Na+的減少量,據此便可計算樣品的陽離子交換容量。表252列出了一些粘土礦物及土壤的陽離子交換容量,由表可見,與土壤相比,礦物的陽離子交換容量有更大的變化范圍。
鬆散沉積物的陽離子交換容量受到了多種因素的影響,主要有:
(1)沉積物中吸附劑的種類與數量。例如,我國北方土壤中的粘土礦物以蒙脫石和伊利石為主,因此其CEC值較大,一般在20 meq/100 g以上,高者達50 meq/100 g以上;而南方的紅壤,由於其有機膠體含量少,同時所含的粘土礦物多為高嶺石及鐵、鋁的氫氧化物,故CEC較小,一般小於20 meq/100 g。
表2-5-2 一些粘土礦物及土壤的陽離子交換容量
(2)沉積物顆粒的大小。一般來說,沉積物的顆粒越小,其比表面積越大,CEC值越高。例如,根據一河流沉積物的粒徑及其CEC的實測結果,隨著沉積物的粒徑為從4.4μm增至1000μm,其CEC從14~65 meq/100 g變到4~20 meq/100 g,最終減小到0.3~13 meq/100 g。
(3)水溶液的pH值。一般來說,隨著水溶液pH值的增加,土壤表面的可變負電荷量增多,其CEC相應增加;相反,隨著水溶液pH值的減小,土壤表面的可變負電荷量不斷減少,其CEC也隨之減小。
2.5.2.2 陽離子交換反應及平衡
陽離子交換反應的一般形式可寫為:
水文地球化學
式中:Am+、Bn+表示水溶液中的A、B離子;AX、BX表示吸附在固體表面的A、B離子。上述反應的平衡常數可寫為:
水文地球化學
式中:a標記溶液中組分的活度;{}表示表示吸附在固體表面上的離子的活度。對於水溶液中的離子,其活度可使用表2-1-1中的公式進行計算;但對於吸附在固體表面上的離子,其活度的計算至今還沒有滿意的方法。目前主要採用兩種替代的方法來處理這一問題,一種是Vanselow慣例,另一種是Gaines-Thomas慣例。Vanselow慣例是由Vanselow於1932年提出的,他建議使用摩爾分數來代替式(2-5-7)中的{AX}和{BX}。若固體表面僅吸附了A離子和B離子,在一定重量(100 g)的吸附劑表面A、B的含量(mmol)依次為qA和qB,則吸附劑表面A、B的摩爾分數分別為:
水文地球化學
顯然,xA+xB=1。這樣式(2-5-7)可改寫為:
水文地球化學
Gaines-Thomas慣例是由Gaines和Thomas於1953年提出的,他們建議採用當量百分數來代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分別表示吸附劑表面A、B的當量百分數,則有:
水文地球化學
同樣,yA+yB=1,這樣式(2-5-7)變為:
水文地球化學
目前,這兩種慣例都還在被有關的研究者所使用,各有優點,互為補充。事實上,離子交換反應的平衡常數並不是一個常數,它往往隨著水溶液的成分、pH值及固體表面成分的變化而變化,因此許多研究者認為將其稱為交換系數(Exchange Coefficient)或選擇系數(Selectivity Coefficient)更合適一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。
若已知兩種不同離子與同一種離子在某種吸附劑中發生交換反應的交換系數,則可計算出這兩種離子發生交換反應的交換系數。例如,若在某種吸附劑中下述反應:
水文地球化學
交換系數分別為KCa-Na和KK-Na,則在該吸附劑中反應:
水文地球化學
的交換系數為:
水文地球化學
這是因為(以Vanselow慣例為例):
水文地球化學
故有:
水文地球化學
表2-5-3列出了不同離子與Na+發生交換反應的交換系數(Vanselow慣例),據此便可按照上述的方法求得這些離子之間發生交換反應時的交換系數。
需要說明的是,在表2-5-3中,I離子與Na+之間交換反應的反應式為:
水文地球化學
表2-5-3 不同離子與Na+發生交換反應時的交換系數
其交換系數的定義式如下:
水文地球化學
【例】在某地下水系統中,有一段含有大量粘土礦物、因此具有明顯陽離子交換能力的地段,假定:
(1)該地段含水層的陽離子交換容量為100 meq/100 g,含水層中的交換性陽離子只有Ca2+和Mg2+,初始狀態下含水層顆粒中Ca2+、Mg2+的含量相等;
(2)在進入該地段之前,地下水中的Ca2+、Mg2+濃度相等,均為10-3 mol/L;
(3)含水層的孔隙度為n=0.33,固體顆粒的密度為ρ=2.65 g/cm3;
(4)含水層中發生的陽離子交換反應為:
水文地球化學
不考慮活度系數的影響,其平衡常數(Vanselow慣例)為:
水文地球化學
試使用陽離子交換平衡關系計算,當地下水通過該地段並達到新的交換平衡後,水溶液中及含水層顆粒表面Ca2+、Mg2+濃度的變化。
【解】:設達到新的交換平衡後,含水層顆粒中Ca2+的摩爾分數為y、水溶液中Ca2+的濃度為x(mmol/L),則這時含水層顆粒中Mg2+的摩爾分數為1-y、水溶液中Mg2+的濃度為2-x(mmol/L),故有:
水文地球化學
整理得:
水文地球化學
已知含水層的CEC=100 meq/100g,因此對於二價陽離子來說,含水層顆粒可吸附的陽離子總量為50 mmol/100 g=0.5 mmol/g。若用z表示達到交換平衡後1 g含水層顆粒中Ca2+的含量,則有:
水文地球化學
以式(2-5-25)帶入式(2-5-24)得:
水文地球化學
為了計算上述變化,需要對1 L水所對應的含水層中Ca2+的質量守恆關系進行研究。已知含水層的孔隙度為0.33,顯然在這樣的含水層中,1 L水所對應的含水層顆粒的體積為0.67/0.33(L),相應的含水層顆粒的質量為:
水文地球化學
故吸附作用前後1 L水所對應的含水層中Ca2+的質量守恆關系為:
水文地球化學
式中的0.25為吸附作用前1 g含水層顆粒中Ca2+的含量(mmol),由式(2-5-27)可得:
水文地球化學
以式(2-5-26)帶入式(2-5-28)並整理得:
水文地球化學
這是一個關於z的一元二次方程,求解該方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得達到新的交換平衡後含水層顆粒中Ca2+的摩爾分數為0.5001254,水溶液中Ca2+的濃度為0.75 mmol/L,故這時含水層顆粒中Mg2+的摩爾分數為0.4998746、水溶液中Mg2+的濃度為1.25 mmol/L。由此可見,地下水通過該粘性土地段後,盡管Ca2+、Mg2+在含水層顆粒中的含量變化很小,但它們在地下水中的含量變化卻較大,Mg2+從原來的1 mmol/L增加到了1.25 mmol/L,Ca2+則從原來的1 mmol/L減少到了0.75 mmol/L。
2.5.2.3 分配系數及離子的吸附親和力
除了交換系數,還有一個重要的參數需要介紹,這就是分配系數(Separation Factor)(Benefield,1982)。對於反應(2-5-6),它被定義為:
水文地球化學
式中cA和cB分別為水溶液中A、B離子的摩爾濃度。顯然,若不考慮活度系數的影響,對於同價離子間的交換反應,QA-B=KA-B。式(2-5-29)可改寫為:
水文地球化學
由式(2-5-30)可見,QA-B反映了溶液中B與A的含量之比與吸附劑表面B與A的含量之比之間的相對關系。當QA-B=1時,說明達到交換平衡時B與A在水溶液中的比例等於其在吸附劑表面的比例,因此對於該吸附劑,A和B具有相同的吸附親和力;當QA-B>1時,說明達到交換平衡時B與A在水溶液中的比例大於其在吸附劑表面的比例,因此A與B相比具有更大的吸附親和力;當QA-B<1時,說明達到交換平衡時B與A在水溶液中的比例小於其在吸附劑表面的比例,因此B與A相比具有更大的吸附親和力。
事實上,即使對於同一陽離子交換反應,其分配系數也會隨著水溶液性質的變化而變化(Stumm and Morgan,1996)。圖2-5-5給出了Na—Ca交換反應的分配系數隨Na+濃度的變化。沿著圖中的虛線,QNa-Ca=1,這時Na+和Ca2+具有相同的吸附親和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附劑中的比例要遠大於其在水溶液中的比例,因此在這種情況下Ca2+具有更強的吸附親和力。隨著Na+濃度的增大,Ca2+的吸附親和力逐漸減弱,Na+的吸附親和力則逐漸增強,當[Na+]=2 mol/L時,Na+已經變得比Ca2+具有更強的吸附親和力。Na—Ca交換反應分配系數的這種變化對於解釋一些實際現象具有重要的意義,根據這種變化,我們可以推斷淡水含水層中通常含有大量的可交換的Ca2+,而海水含水層中通常含有大量的可交換的Na+。這種變化關系也解釋了為什麼硬水軟化劑能夠選擇性地去除Ca2+,同時通過使用高Na+濃度的鹵水溶液進行沖刷而再生。
圖2-5-5 溶液中Ca2+的含量對吸附作用的影響
根據離子交換反應的分配系數,可以定量地評價離子的吸附親和力。一般來說,離子在土壤中的吸附親和力具有下述的規律:
(1)高價離子比低價離子具有更高的吸附親和力。例如,Al3+>Mg2+>Na+;>。這是因為離子交換反應從本質上說是一個靜電吸引過程,離子價越高,所受到的靜電吸引力就越大,它就越容易被吸附劑所吸附。
(2)同價離子的吸附親和力隨著離子水化半徑的減小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。這是因為離子的水化半徑越小,它越容易接近固體表面,從而也就越易於被固體所吸附。
Deutsch(1997)根據Appelo和Postma(1994)的資料,對二價陽離子的吸附親和力進行了研究,他所得到了吸附親和力順序如下:
水文地球化學
在常見的天然地下水系統中,Ca2+和Mg2+通常為地下水中的主要陽離子,它們在水溶液中相對較高的含量將使其成為含水層顆粒表面的主要吸附離子,盡管一些微量元素可能更緊密地被吸附在含水層顆粒表面上。但在污染地下水系統中,若吸附親和力更強的Pb2+和Ba2+的含量與Ca2+、Mg2+的含量在同一水平上,則含水層顆粒表面的主要吸附離子將變為Pb2+和Ba2+,這將大大地影響Pb2+和Ba2+在地下水中的遷移能力。
綜合來講,陽離子和陰離子的吸附親和力順序分別為(何燧源等,2000):
水文地球化學
可見,陽離子中Li+和Na+最不易被吸附,陰離子中Cl-和最不易被吸附。
離子交換對地下水質產生重要影響的一種常見情況就是海水入侵到淡水含水層中。當在沿海地帶大量抽取含水層中的淡水時,海水將對含水層進行補給。初始狀態下含水層顆粒表面吸附的主要是Ca2+和Mg2+,海水中的主要陽離子為Na+,陰離子為Cl-。這樣入侵的海水將導致含水層中發生下述的陽離子交換反應:
水文地球化學
由於Cl-通常不易被吸附,也不參與其他的水岩作用過程。所以相對於Cl-來說,該過程將使得Na+的遷移能力降低。
地下水系統中另一種常見的情況與上述過程相反,這就是Ca2+置換被吸附的Na+,反應式如下:
水文地球化學
人們在大西洋沿岸的砂岩含水層(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉積盆地中(Thorstenson等,1979;Henderson,1985)均發現了這種天然的軟化過程。該反應發生的前提條件是:含水層中含有碳酸鹽礦物,CO2的分壓較高,含水層顆粒中含有大量的可交換的Na+。
⑷ 請問土壤陽離子交換容量CEC一般是多少
土壤陽離子交換容量CEC一般為10-20cmol/kg
⑸ 測定膨潤土陽離子交換容量CEC有什麼意義
土壤陽離子交換量的測定受多種因素的影響,如交換劑的性質、鹽溶液濃度和pH、淋回洗方法等,必須嚴格答掌握操作技術才能獲得可靠的結果。
聯合國糧農組織規定用於土壤分類的土壤分析中使用經典的中性乙酸銨法或乙酸鈉法。
⑹ 土壤化驗中的陽離子交換量中的CEC代表什麼
CEC就是土壤陽離抄子交換襲量,Cation Exchange Capacity ,在一定pH值(=7)時,每千克土壤中所含有的全部交換性陽離子的厘摩爾數。
CEC的大小,基本上代表了土壤可能保持的養分數量,即保肥性的高低。陽離子交換量的大小,可作為評價土壤保肥能力的指標。陽離子交換量是土壤緩沖性能的主要來源,是改良土壤和合理施肥的重要依據。
⑺ 關於土壤理化性狀。H2O-是什麼比如CEC是陽離子交換量。H2O-在土壤理化性狀中怎麼表達為中文
H2O就是水
⑻ 粘土的陽離子交換容量(CEC)是什麼哪位高人解釋下
分散介質ph=7時,從粘土上所能交換下來的陽離子總量。包括交換性鹽基和交換性氫。以100g粘土交換下來的總陽離子摩爾表示。符號cec。通過測定粘土的陽離子交換容量,可以了解粘土表面所帶的負電荷。
⑼ 測定膨潤土(蒙脫石)陽離子交換容量CEC有什麼意義
膨潤土(蒙脫石)晶層中的陽離子具有可交換性能,在一定的物理—化學條件下,不僅Ca2+、Mg2+、Na+、K+等可相互交換,而且H+、多核金屬陽離子(如羥基鋁十三聚體)、有機陽離子(如二甲基雙十八烷基氯化銨)也可交換晶層間的陽離子。陽離子交換性是膨潤土(蒙脫石)的重要工藝特性,利用這一特性,可進行膨潤土的改型,由鈣基膨潤土改型為鈉基膨潤土、活性白土、鋰基膨潤土、有機膨潤土、柱撐蒙脫石等產品。 陽離子交換容量(Cation Exchange Capacity)是指PH值為7的條件下所吸附的K+、Na+、Ca2+、Mg2+ 等陽離子總量,簡稱為CEC。膨潤土礦陽離子交換容量和交換性陽離子是判斷膨潤土礦質量和劃分膨潤土礦屬型的主要依據, CEC值愈大表示其帶負電量愈大,其水化、膨脹和分散能力愈強;反之,其水化、膨脹和分散能力愈差。如北票市膨潤土陽離子交換容量CEC 為66.7mmol/100g,阜新市的膨潤土陽離子交換容量CEC 為85.55 mmol/100g,內蒙古優質膨潤土陽離子交換容量CEC為115—139 mmol/100g。
研究表明,蒙脫土的片層中間的CEC通常在60-120mmol/100G范圍內,這是一個比較適合與聚合物插層形成納米復合材料的離子交換容量。因為如果無機物的離子交換容量太高,極高的層間庫侖力使得無機物片層間作用力過大,不利於大分子鏈的插入;如果無機物的離子交換容量太低,無機物不能有效地與聚合物相互作用,不足以保證無機物與聚合物基體的相容性,同樣不能得到插層納米復合物材料。適宜的離子交換容量、優良的力學性能使得蒙脫土成為制備PLS納米復合材料的首選礦物。CEC值和膨潤土(蒙脫石)的內表面積與蒙脫石含量呈正相關關系,用陽離子交換容量CEC 為100mmol/100g的膨潤土和 用陽離子交換容量CEC 為61mmol/100g的膨潤土製備插層納米復合物材料,盡管層間距相差不大(d001=1.98和1.91nm),但比表面(421.5和127.2m2。g-1)和吸氨量(318.3和80.7mg。g-1)卻有較大的差別. 與原料土的比表面(76.0和90.5m2。g-1)及吸氨量(49.2和62.1mg。g-1)相比,分別增加5.5和1.4倍及6.5和1.3倍,比表面和吸氨量的增加倍數有一定的對應關系. 這說明層電荷密度主要影響材料的表面性質. 由於層間距(d001)的變化主要取決於交聯劑的大小, 因而不同層電荷密度對於採用同種的交聯劑制備材料的層間距影響不大。
測定CEC的方法很多,如定氮蒸鎦法、醋酸銨法、氯化銨-醋酸鈉法、氯化銨-無水乙醇法、氯化銨-氨水法、氯化鋇-硫酸法等。目前,膨潤土CEC測定是依據國標JC/T 593—1995(膨潤土試驗方法)。具體方法如下:
(1)方法提要
用含指示陽離子NH4+的提取劑處理膨潤土礦試樣,將試樣中可交換性陽離子全部置換進入提取液中,並使試樣飽和吸附指示陽離子轉化成銨基上。將銨基土和提取液分離,測定提取液中的鉀、鈉、鈣及鎂等離子,則為相應的交換性陽離子量。
(2)主要試劑和材料
a. 離心機:測量范圍為0~400r/min;
b. 磁力攪拌器:測量范圍為50~2 400r/min』
c. 鉀、鈉、鈣、鎂混合標准溶液〔c(0.01Na+、0.005Ca2+、0.005Mg2+、0.002K+)〕稱取0.5004g碳酸鈣(基準試劑),0.201 5g氧化鎂(基準試劑),0.5844g氯化鈉(高純試劑)和0.1491g氯化鉀(高純試劑)於250mL燒杯中,加水後以少量稀鹽酸使之溶解(小心防止跳濺)。加熱煮沸趕盡二氧化碳,冷卻。將溶液移入1 000mL容量瓶中,用水稀釋至刻度,搖勻,移於乾燥塑料瓶中保存;
d. 交換液:稱取28.6g氯化銨置於250mL水中,加入600mL無水乙醇,搖勻,用1+1氨水調節pH為8.2,用水稀釋至1L,即為0.5mol/L氯化銨-60%乙醇溶液。
e. EDTA標准溶液〔c(0.01EDTA)〕:取3.72g乙二胺四乙酸二鈉,溶解於1 000mL水中。
標定:吸取10mL0.01mol/L氯化鈣(基準試劑)標准溶液於100mL燒杯中,用水稀釋至40~50mL左右。加入5mL4mol/L氫氧化鈉溶液,使pH≈12~13,加少許酸性鉻藍K-萘酚綠B混合指示劑,用EDTA溶液滴至純藍色為終點。
c1= c2·V3/ V4
式中:
c1——EDTA標准溶液的實際濃度,mol/L;
c2——氯化鈣標准溶液的濃度,mol/L;
V3——氯化鈣標准溶液的體積,mL;
V4——滴定時消耗EDTA標准溶液的體積,mL。
f. 洗滌液:50%乙醇,95%乙醇。
(3)試驗步驟
稱取在115~110℃下烘乾的試樣1.000g,置於100mL離心管中。加入20mL50%乙醇,在磁力攪拌器上攪拌3~5min取下,離心(轉速為300r/min左右),棄去管內清液,再在離心管內加入50mL交換液,在磁力攪拌器上攪拌30min後取下,離心,清液收集到100mL容量瓶中。將殘渣和離心管內壁用95%乙醇洗滌(約20mL),經攪拌離心後,清液合並於上述100mL容量瓶中,用水稀釋至刻度,搖勻,待測。殘渣棄去。
交換性鈣、鎂的測定,取上述母液25mL,置於150mL燒杯中,加水稀釋至約50mL,加1mL1+1三乙醇胺和3~4mL4mol/L氫氧化鈉,再加少許酸性鉻藍K-萘酚綠B混合指示劑,用0.01mol/LEDTA標准溶液滴定至純藍色,記下讀數V5,然手用1+1鹽酸中和pH為7,再加氨水-氯化銨緩沖溶液(pH=10),再用0.01mol/LEDTA標准溶液滴至純藍色記下讀數V6。
交換性鉀、鈉的測定:取25mL母液於100mL燒杯中,加入2~3滴1+1鹽酸,低溫蒸干。加入1mL1+1鹽酸及15~20mL水,微熱溶解可溶性鹽,冷卻後溶液移入100mL容量瓶中,以水稀釋至刻度、搖勻,在火焰光度計上測定鉀、鈉。標准曲線的繪制:分取0、3、6、9、12、15mL鉀、鈉、鈣、鎂混合標准溶液於100mL容量瓶中,加入2mL1+1鹽酸,用水稀釋至刻度、搖勻。在與試樣同一條件下測量鉀、鈉的讀數,並繪制標准曲線(此標准系列分別相當於每100g樣中含有0、170、345、520、690、860mg的交換性鈉和0、60、120、175、240、295mg的交換性鉀。
(4)結果計算
鈣、鎂的含量按下式計算:
交換性鈣g/100g= (40c5V5)/(2.5m3)
交換性鎂g/100g=[ 24c5(V6-V5)]/ (2.5m3)
式中:
c5—EDTA標准溶液的實際摩爾濃度mol/L;
V6、V5—滴定時耗用EDTA標准溶液的毫升數,mL;
m3——試樣質量,g。
鉀、鈉的含量按(10)式計算:
交換性鉀(g/100g)= Kmg /(2.5m3)
交換性鈉(g/100g)= Namg/(2.5m3)
式中:
Kmg,Namg—由標准曲線上查得的鉀鈉的毫克數;
m3——試樣質量,g。