導航:首頁 > 廢水污水 > 含酚廢水為什麼用磷酸酸化

含酚廢水為什麼用磷酸酸化

發布時間:2025-04-13 15:08:37

A. 廢水需氧生物處理法工藝條件

廢水生物處理法的核心是為需氧微生物提供充足的氧氣和必要的營養物質。首先,碳、氮、磷等元素是微生物生長的基礎,以BOD5(五日生化需氧量)為例,理想的處理比例大約為BOD5:N:P=100:5:1(以重量計)。城市污水通常含有這些元素,然而工業廢水中可能缺乏氮和磷等元素,因此在處理時需要補充,以維持微生物的正常活動。


微生物的生存環境也需要控制。適宜的pH值范圍在6.5至9之間,最理想的水溫為10至35攝氏度,其中20至30攝氏度最為有利。然而,過高的重金屬離子濃度會對微生物造成危害,因此需要嚴格控制在允許的范圍內。此外,對酚、氰化物、硫化物等有機或無機毒物,也需要控制其濃度,以避免對微生物造成負面影響。


綜上所述,廢水需氧生物處理法的工藝條件包括提供適宜的營養比例,控制pH值、水溫和有毒物質濃度,以確保微生物的高效降解作用能夠正常進行。


(1)含酚廢水為什麼用磷酸酸化擴展閱讀

利用需氧微生物(主要是需氧細菌)分解廢水中的有機污染物,使廢水無害化的一種廢水生物處理法。廢水的這種處理過程的最終產物是二氧化碳、水、氨、硫酸鹽和磷酸鹽等,處理徹底時,還可產生硝酸鹽,這些都是穩定的無機物。

B. 揮發性酚的測定

4-氨基安替比林-三氯甲烷萃取光度法

方法提要

蒸餾出的揮發酚類在pH10.0±0.2和以鐵氰化鉀為氧化劑的溶液中,與4-氨基安替比林反應形成有色的安替比林染料。此染料的最大吸收波長在510nm處,顏色在30min內穩定,用三氯甲烷萃取,可穩定4h並能提高靈敏度,但最大吸收波長移至460nm。

本方法不能區別不同類型的酚,而在每份試樣中各種酚類化合物的組成是不確定的。因此,不能提供含有混合酚的通用標准參考物,本方法用苯酚作為參比標准。

方法適用於海水及工業排污口水體中低於10mg/L酚含量的測定。酚含量超過此值,可用溴化滴定法。檢出限為1.1μg/L。

儀器和裝置

分光光度計。

蒸餾裝置全玻璃,包括500mL玻璃蒸餾器和蛇形冷凝管。如圖78.3所示。

錐形分液漏斗(250mL)。

微量蒸餾燒瓶(100mL)。

空氣冷凝管(可用玻璃管自行彎制)。

水銀溫度計(250℃)。

棕色容量瓶(100mL)。

試劑瓶(125mL),棕色。

試劑

無酚水普通蒸餾水置於全玻璃蒸餾器中,加NaOH至強鹼性,滴入KMnO4溶液至深紫紅色,放入少許無釉瓷片(浮石或玻璃毛細管亦可),加熱蒸餾。棄去初餾分,收集無酚水於硬質玻璃瓶中,或於每升蒸餾水中加入0.2g經280℃活化4h的活性炭粉末,充分振搖後用0.45μm濾膜過濾

磷酸。

鹽酸。

三氯甲烷或二氯甲烷。

硫酸銅溶液(100g/L)稱取10g硫酸銅(CuSO4·5H2O)溶於水中並稀釋至100mL。

澱粉溶液(10g/L)稱取1.0g可溶性澱粉,盛於200mL燒杯中,加少量水調成糊狀,加入100mL沸水攪拌,冷後加入0.4gZnCl2或0.1g水楊酸防腐。

緩沖溶液(pH=9.8)稱取20g氯化銨(NH4Cl)溶於100mL濃氨水中,此溶液pH為9.8。

4-氨基安替比林溶液(20g/L)稱取2g4-氨基安替比林溶於水中,並稀釋至100mL,貯存於棕色瓶中,置於冰箱內,有效期一周。

鐵氰化鉀溶液(80g/L)稱取8g鐵氰化鉀[K3Fe(CN)6]溶於水中,並稀釋至100mL。貯存於棕色瓶中,置於冰箱內,可穩定一周。顏色變深時,應重新配製。

溴酸鹽-溴化物溶液c(1/6KBrO3)=0.100mol/L稱取2.784g無水溴酸鉀(KBrO3)溶於水中,加10g溴化鉀(KBr)溶解後稀釋至1000mL。

硫代硫酸鈉標准溶液c(Na2S2O3)=0.0250mol/L。

精製苯酚將苯酚置於50~70℃熱水浴中溶化,小心地移入100mL蒸餾瓶中,用包有鋁箔的軟木塞塞緊,其中插有一支250℃水銀溫度計,蒸餾瓶的支管與空氣冷凝管連接,用一乾燥的錐形燒瓶接受器。蒸餾裝置示意圖78.3所示。電爐加熱蒸餾,棄去帶色的初餾出液,收集182~184℃餾分(無色)密封避光保存。

酚標准儲備溶液ρ(C6H5OH)≈1.00mg/mL稱取1.000g精製苯酚溶於水中,並稀釋至1000mL。

圖78.3 苯酚蒸餾裝置示意圖

通常直接稱取精製苯酚即可配標准溶液,若為非精製苯酚可按下法標定:

移取10.00mL待標定的酚標准儲備溶液,注入250mL碘容量瓶中,加入50mL水、10.00mL0.100mol/LKBrO3-KBr溶液及5mLHCl,立即蓋緊瓶塞,搖勻。避光放置5min後用0.0250mol/LNa2S2O3標准滴定液滴定,至呈淡黃色時,加入1mL10g/L澱粉溶液,繼續滴定至藍色剛好消失為止,記下Na2S2O3標准溶液滴定體積V2。同時用水做試劑空白滴定,消耗Na2S2O3標准溶液體積為V1

按下式計算酚標准儲備溶液的濃度:

岩石礦物分析第四分冊資源與環境調查分析技術

式中:ρf標為酚標准儲備溶液的質量濃度,μg/mL;V1為試劑空白消耗硫代硫酸鈉溶液的體積,mL;V2為酚儲備溶液消耗標准硫代硫酸鈉溶液的體積,mL。

酚標准中間溶液ρ(C6H5OH)=10.0μg/mL移取10.0mL(或相當於10.0mg酚的體積)酚標准儲備溶液(1.00mg/mL),用水稀釋至1000mL,搖勻。當天配製。

酚標准溶液ρ(C6H5OH)=1.00μg/mL移取10.0mL酚標准中間溶液(10.0μg/mL),用水稀釋至100mL,搖勻。臨用時配製。

甲基橙指示液(2g/L)。

水樣保存及處理

酚類化合物易被氧化,應在採集後4h內進行分析。否則,按下述措施予以保護:①水樣收集在玻璃瓶中。②用磷酸將水樣品酸化到pH4.0,以防止酚類化合物分解。③向每升水樣中加入2.0g硫酸銅(CuSO4·5H2O)抑制生物對酚的氧化作用。④在4℃的條件下冷藏水樣,並在采樣後24h之內分析樣品。

校準曲線

分別移取0mL、0.50mL、1.00mL、2.00mL、4.00mL、7.00mL、10.00mL、15.00mL酚標准溶液(1.00μg/mL),於一系列預先盛有100mL水的250mL分液漏斗中,最後加水至200mL。系列各點含酚濃度分別為0μg/L、2.50μg/L、5.00μg/L、10.0μg/L、20.0μg/L、35.0μg/L、50.0μg/L、75.0μg/L。

向各分液漏斗內加入1.00mLpH=9.8的緩沖溶液混勻。再各加1.0mL20g/L4-氨基安替比林溶液,混勻,加1.0mL80g/L鐵氰化鉀溶液,混勻,放置10min。加10.0mL三氯甲烷,振搖2min,靜置分層,接取三氯甲烷提取液於比色皿中,在波長460nm處,用三氯甲烷作參比,測量吸光度(Ai)。

以吸光度Ai-A0(標准空白)為縱坐標,酚濃度為橫坐標,繪制校準曲線。

分析步驟

水樣前處理。量取200mL水樣(若酚量高可少取水樣),記下體積V,加無酚水至200mL,置於500mL全玻璃蒸餾器中,用(1+9)H3PO4調節pH至4.0左右(以2g/L甲基橙作指示劑,使水樣由橘色變為橙紅色)。加入5mL100g/LCuSO4溶液,放入少許無釉瓷片(浮石或玻璃毛細管),加熱。蒸出150mL左右時,停止蒸餾,在沸騰停止後,向蒸餾瓶內加入50mL左右水,繼續蒸餾,直到收集餾出液(D)大於或等於200mL為止。若樣品已加入H3PO4和CuSO4酸化保存,則可直接蒸餾(若水樣經稀釋則須補加H3PO4和CuSO4)。

試樣的測定。將餾出液(D),全量轉入250mL分液漏斗中,按校準曲線工作步驟加入1.00mLpH=9.8的緩沖溶液等,測量吸光度Aw

同時量取200mL無酚水,按上述步驟操作,測定分析空白吸光度Ab

由(Aw-Ab)查校準曲線或用線性回歸方程計算水樣中揮發酚的濃度。

若是經稀釋後再蒸餾的水樣,則按下式計算其含酚質量濃度:

岩石礦物分析第四分冊資源與環境調查分析技術

式中:ρf樣為水樣中酚質量濃度,μg/L;ρfD為查標准曲線得酚質量濃度,μg/L;V1為餾出液(D)體積,mL;V為量取水樣體積,mL。

注意事項

1)將水樣蒸餾,餾出液清亮,無色,從而消除渾濁和顏色的干擾。鐵(Ⅲ)能與鐵氰酸根生成棕色產物而干擾測定,蒸餾將排除這一干擾。

2)為了防止芳香胺(苯胺、甲苯胺、乙醯苯胺)的干擾,以pH9.8~10.2最合適,因為此范圍內20mg/L苯胺所產生的顏色僅相當於0.1mg/L酚的顏色。

3)游離氯能氧化4-氨基安替比林,還能與酚起取代反應生成氯酚。

4)NH4OH-NH4Cl體系的緩沖液比較穩定,由於增大了溶液NH3的濃度,可以抑制4-氨基安替比林被氧化為安替比林紅的反應。

5)主試劑在空氣中易變質而使底色加深,此外4-氨基安替比林的純度越高,靈敏度越高。如配製的4-氨基安替比林溶液顏色較深時,可用活性炭處理脫色。

6)過硫酸銨[(NH4)2S2O8]可代替鐵氰化鉀[K3Fe(CN)6]。

7)測定酚的水樣必須用全玻璃蒸餾器蒸餾,如用橡皮塞、膠皮管等聯接蒸餾燒瓶及冷凝管,都能使結果偏高和出現假陽性而產生誤差。

8)各種試劑加入的順序很重要,不能隨意更改。

9)停止蒸餾時,須防電爐余熱引起的爆沸,以免將瓶塞沖起砸碎或沾污冷凝管。

10)比色槽在連續使用過程中,宜用氯仿盪洗,蒸發至干。

11)水樣干擾物質的消除。來自水體的干擾可能有分解酚的細菌、氧化及還原物質和樣品的強鹼性條件。在分析前除去干擾化合物的處理步驟中可能有一部分揮發酚類被除去或損失。因此,對一些高污染海水,為消除干擾和定量回收揮發酚類,需要較嚴格的操作技術。

a.氧化劑。水樣中的氧化劑能將酚類氧化而使結果偏低。采樣後取一滴酸化了的水樣於澱粉-碘化鉀試紙上,若試紙變藍則說明水中有氧化劑。采樣後應立即加入硫酸亞鐵溶液或抗壞血酸溶液以除去所有的氧化性物質。過剩的硫酸亞鐵或抗壞血酸在蒸餾步驟中被除去。

b.油類和焦油。如水樣中含有石油製品等低沸點污染物,可使蒸餾液渾濁,某些酚類化合物還可能溶於這些物質中。采樣後用分液漏斗分離出浮油,在沒有CuSO4存在的條件下,先用粒狀NaOH將pH調節至12~12.5,使酚成為酚鈉,以避免萃取酚類化合物。盡快用四氯化碳(CCl4)從水相中提出雜質(每升廢水用40mL四氯化碳萃取兩次),並將pH調到4.0。用三氯甲烷萃取時,須用無酚水作一試劑空白,或先用1g/LNaOH溶液洗滌三氯甲烷,以除去可能存在的酚。二氯甲烷可代替三氯甲烷,尤其在用NaOH提純三氯甲烷溶液形成乳濁液時。

c.硫的化合物。酸化時釋放出H2S能幹擾酚的測定,用H3PO4將水樣酸化至pH4.0,短時間攪拌曝氣即可除去H2S及SO2的干擾。然後加入足夠的CuSO4溶液(100g/L),使樣品呈淡藍色或不再有CuS沉澱產生。然後將pH調到4.0。銅(Ⅱ)離子抑制了生物降解,酸化保證了銅(Ⅱ)離子的存在並消除樣品為強鹼性時的化學變化。

C. 廢水處理工藝-芬頓詳解

芬頓氧化法可作為廢水生化處理前的預處理工藝,也可作為廢水生化處理後的深度處理工藝。該方法主要適用於含難降解有機物廢水的處理,如造紙工業廢水、煤化工業廢水、石油化工廢水、精細化工廢水、發酵工業廢水、垃圾滲濾液等廢水,以及對工業園區集中廢水處理廠等廢水的處理。

芬頓反應原理

1893年,化學家Fenton發現,過氧化氫(H2O2)與二價鐵離子的混合溶液具有強氧化性,可以將當時很多已知的有機化合物如羧酸、醇、酷類氧化為無機態,氧化效果十分顯著。但此後半個多世紀中,這種氧化性試劑卻因為氧化性極強而沒有太被重視。

進入20世紀70年代,芬頓試劑在環境化學領域中找到了它應有的位置。芬頓試劑具有去除難降解有機污染物的功能,在印染廢水、含油廢水、含酚廢水、焦化廢水、含硝基苯廢水、二苯胺廢水等廢水處理中得到了廣泛應用。當年,芬頓發現該試劑時,並不清楚過氧化氫與二價鐵離子反應到底生成了何種氧化劑,只知道該氧化劑具有很強的氧化能力。二十多年後,有人假設可能反應中產生了羥基自由基,否則氧化性不會有如此強。因此,人們採用了一個領域內較廣泛使用的化學反應方程式來描述芬頓試劑中發生的化學反應:

Fe2+ + H2O2 → Fe3++ OH· +OH

芬頓氧化法是在酸性條件下,其H2O2在Fe2+存在下生成強氧化能力的羥基自由基OH·,並引發更多其他活性氧,以實現對有機物的降解,其氧化過程為鏈式反應。其中以OH產生作為鏈的開始,而其他活性氧和反應中間體構成了鏈的節點,各活性氧被消耗,反應鏈終止。其反應機理較為復雜,這些活性氧僅供有機分子並使其轉化為CO2 和H20等無機物,從而使Fenton 氧化法成為重要的高級氧化技術之一。

芬頓塔結構圖

進水水質要求

01,芬頓氧化法進水應符合以下條件

(1)在酸性條件下易產生有毒有害氣體的污染物(如硫離子、氰根離子等)不應進入芬頓氧化工藝單元;

(2)進水中懸浮物含量宜<200mg/ L;

(3)應控制進水中 Cl-、H2PO3-、HC03-、油類和其他影響芬頓氧化反應的無機離子或污染物濃度,其限制濃度應根據試驗結果確定。

02,芬頓氧化法進水不符合條件時

應根據進水水質採取相應的預處理措施:

(1)芬頓氧化法用於生化處理預處理時,可設置粗、細格柵、沉砂池、沉澱池或混凝沉澱池,去除漂浮物、砂礫和懸浮物等易去除污染物;芬頓氧化法用於廢水深度處理時,宜設置混凝沉澱或過濾工序進行預處理;

(2)進水中溶解性磷酸鹽濃度過高時,宜投加熟石灰,通過混凝沉澱去除部分溶解性磷酸鹽;

(3)進水中含油類時,宜設置隔油池除油;

(4)進水中含硫離子時,應採取化學沉澱或化學氧化法去除;進水中含氰離子時,應採取化學氧化法去除;

(5)進水中含有其他影響芬頓氧化反應的物質時,應根據水質採取相應的去除措施,以消除對芬頓氧化反應的影響。芬頓氧化法用於生化處理的預處理時,若進水水質水量變化較大,芬頓氧化工藝前應設置調節池。芬頓的影響因素

溫度

溫度是芬頓反應的重要影響因素之一。一般化學反應隨著溫度的升高會加快反應速度,芬頓反應也不例外,溫度升高會加快OH·的生成速度,有助於OH·與有機物反應,提高氧化效果和COD的去除率。但對於芬頓試劑這樣復雜的反應體系來說,溫度升高不僅會加速正反應的進行,也加速副反應,同時會加速H2O2的分解,而分解得到的02和H20,不利於OH·的生成。不同種類工業廢水中的芬頓反應,其適合的溫度,也存在一定差異。處理聚丙烯醯胺水溶液時,溫度應控制在30℃至50℃;洗膠廢水處理時溫度為85℃;處理三氯(苯)酚時,當溫度低於60℃時, 有助於反應的進行,當高於60℃時,則不利於反應。

pH值

一般來說,芬頓試劑是在酸性條件下發生反應的,在中性和鹼性的環境中,Fe2+不能催化氧化H202 產生OH·,而且會產生氫氧化鐵沉澱,從而失去催化能力;當溶液中的H+濃度過高,Fe3+不能順利的被還原為Fe2+ ,催化反應受阻。多項研究結果表明芬頓試劑在酸性條件下,特別是pH在3—5 時氧化能力很強,此時有機物降解速率快,能夠在短短幾分鍾內降解,有機物的反應速率常數正比於Fe2+和過氧化氫的初始濃度。因此,在工程上採用芬頓工藝時,建議將廢水調節到2—4,理論上pH值在3—5時為最佳。

有機物

對不同種類的廢水,芬頓試劑的投加量、氧化效果是不同的。因為不同類型的廢水中,其有機物的種類是不同的。對於醇類(甘油)及糖類等碳水化合物,在羥基自由基作用下,分子發生脫氫反應,然後產生C-C鍵的斷鏈;對於大分子的糖類,羥基自由基使糖分子鏈中的糖苷鍵發生斷裂,降解生成小分子物質;對於水溶性的高分子及乙烯化合物,羥基自由基使得C-C鍵斷裂;並且羥基自由基可以使得芳香族化合物開環,形成脂肪類化合物,從而消除降低該種類廢水的生物毒性,改善其可生化性。

針對染料類,羥基自由基可以打開染料中官能團的不飽和鍵,使染料氧化分解,達到脫色和降低COD的目的。用芬頓試劑降解殼聚糖的實驗表明,當介質pH值在3—5時,聚糖、H202及催化劑的摩爾比在240:1—2 或24:1—2時,芬頓反應可以使殼聚糖分子鏈中的糖苷鍵發生斷裂,從而生成小分子的產物。

過氧化氫與催化劑投加量

芬頓工藝在處理廢水時需要判斷葯劑投加量及經濟性。H202的投加量大,廢水COD 的去除率會有所提高,但是當H202投加量增加到一定程度後,COD的去除率會慢慢下降。因為在芬頓反應中,H202投加量增加,OH·的產量就會隨之增加,而COD的去除率會相應降低。但是當H2O2的濃度過高時,雙氧水會發生分解,並不產生羥基自由基。

催化劑的投加量也有與雙氧水投加量相同的情況。一般情況下,增加Fe2+的用量,廢水COD的去除率會增大,當Fe2+增加到一定程度後,COD的去除率開始下降。這是因為當Fe2+濃度較低時,隨著Fe2+濃度升高,H202 產生的OH·會增加;但當Fe2+的濃度過高時,也會導致H2O2發生無效分解,釋放出02。

D. 對含酚廢水進行對總酚測定的方法

實驗二 水中揮發酚的測定

一、實驗目的
1、了解酚污染對水環境的影響。
2、 掌握用萃取比色法和直接光度法測定酚的原理和操作技術。

二、實驗原理
酚是水體中的重要污染物,會影響水生生物的正常生長,使水產品發臭。水中酚含量超過0.3毫克/升時,可引起魚類的迴避。水體中酚的種類較多,部分酚可以揮發,本實驗僅測定可被蒸餾的揮發酚。
在鹼性條件和氧化劑鐵氰化鉀作用下,酚類與4-氨基安替比林反應,生成桔紅色的吲哚酚安替比林染料,在510nm處有最大吸收。若用氯仿萃取此染料,可以增加顏色的穩定性,提高靈敏度,在460nm處有最大吸收。
該方法可測定苯酚及鄰、間位取代的酚,但不能測定對位有取代基的酚。由於樣品中各種酚的相對含量不同,因而不能提供一個含混合酚的通用標准。通常選用苯酚作標准,任何其它酚在反應中產生的顏色都看作苯酚的結果。取代酚一般會降低響應值,因此,用該方法測出的值僅代表水樣中揮發酚的最低濃度。

三、儀器和試劑
1.721型分光光度計及1厘米和3厘米比色皿
2.500毫升全玻璃蒸餾器
3.無酚水
本實驗均用無酚水,制備方法如下:
(1)置水於全玻璃磨口蒸餾器內,加氫氧化鈉溶液至強鹼性,滴加高錳酸鉀溶液至深紫色,加熱蒸餾,餾出液貯於硬質玻璃瓶中。
(2)於每升重蒸餾水中加入 0.2克活性炭,充分振搖,放置過夜,過濾,貯於硬質玻璃瓶中。
4.硫酸銅溶液
稱取100克硫酸銅(CuSO4·5H2O)溶解於1升水中。
5.磷酸溶液
量取10.0毫升85%的磷酸溶液用水稀釋至100毫升。
6.0.02M 溴酸鉀-溴化鉀溶液
稱取3.2克無水溴酸鉀溶於水中,加入10克溴化鉀,溶解後移入1000毫升容量瓶內,稀釋至刻度。
7.0.0250M硫代硫酸鈉標准溶液
稱取6.2克硫代硫酸鈉,溶於1升煮沸後冷卻的水中,加入0.4克氫氧化鈉,貯於棕色瓶內,標定方法如下:
於250毫升碘量瓶中加入100毫升水、1.0克碘化鉀、10毫升0.0250M重鉻酸鉀溶液和5毫升3M硫酸,搖勻,加塞後置於暗處5分鍾,用待標定的硫代硫酸鈉溶液滴定至淺黃色。然後加入1%澱粉溶液1.0毫升,繼續滴定至藍色剛好消失,記錄用量,平行做三份。
硫代硫酸鈉溶液的摩爾M1為:M1=2×M2×V2/V1
8.酚標准貯備液
稱取1.0克苯酚溶於煮沸後冷卻的水中,稀釋至1升。按下法標定:
取10.00毫升酚貯備液於250毫升碘量瓶中,加入100毫升水,10.00亳升0.02M溴酸鉀—溴化鉀溶液,立即加入5亳升濃鹽酸,蓋好瓶塞,搖勻,於暗處靜置10分鍾,加入1克碘化鉀搖勻,5分鍾後,用0.0250M硫代硫酸鈉滴定呈淡黃色,再加1毫升澱粉溶液,繼續滴定呈藍色剛好消失,記錄用量。用水代替酚貯備液,做空白滴定,記錄用量。
酚標准貯備液(毫克/毫升)=(A-B)×M/V×(94/6)
式中:
A為空白滴定值(毫升);
B為滴定體積(毫升);
M為硫代硫酸鈉摩爾濃度;
V為貯備酚溶液體積(10.00毫升);
94為苯酚的摩爾質量(克)。
9.酚標准中間液
將酚標准貯備液稀釋至濃度為0.10毫克/毫升。
10.酚標准使用液
吸取5.00毫升酚標准中間液於500毫升容量瓶中,用煮沸後冷卻的水稀釋至刻度,此溶液含酚量為1.00微克/毫升。用前2小時配製。
11.緩沖溶液
稱取20克氯化氨溶於100毫升濃氨水中,調節pH 為9.8。
12.4—氨基安替比林溶液
稱取2.0克4—氨基安替比林溶於水中,稀釋到100毫升,用時配製。該溶液貯於棕色瓶內,在冰箱中可保存一周。
13.鐵氰化鉀溶液
稱取8.0克鐵氰化鉀溶於100毫升水中,可保存一周。
14.氯仿

四、實驗步驟
1.預蒸餾
量取250亳升待測水樣於蒸餾瓶中,加兩滴甲基橙指示劑,用磷酸溶液水樣調呈橙紅色(此時pH約為4)。加入5.0毫升硫酸銅溶液(如取樣時已加過,則不必再加)及數粒玻璃珠,加熱蒸餾,以250亳升量筒或容量瓶收集餾出液。待蒸餾出約225毫升後,停止加熱。液面靜止後,加入25毫升水,繼續蒸餾到餾出液250毫升為止。
2.萃取比色法
(1)將250毫升餾出液轉入500毫升分液漏斗中,或用移液管取部分餾出液稀釋到250亳升,使溶液的酚含量不大於15微克。
(2)分別取酚的標准使用液0,0.50,1.00,2.00,4.00,6.00,8.00,10.00,15.00毫升,用250毫升煮沸後冷卻的水稀釋,移入 500毫升分液漏斗中。
(3)在分液漏斗內依次加入2毫升緩沖溶液,1.5毫升4-氨基安替比林溶液,混勻,加入1.5毫升鐵氰化鉀溶液,再混勻。靜置10分鍾顯色。
(4)分別加入13.00毫升氯仿,劇烈振搖2分鍾萃取,靜置分層。
(5)擦乾分液漏斗的導管內壁,塞入一小團脫脂棉,將有機相直接放入比色皿中。
(6)在460nm波長處,以氯仿為參比,用3厘米比色皿測定各標准系列的吸光度,繪制標准曲線。同時測定樣品的吸光度,從標准曲線上查出對應的含酚量。
標准系列和樣品的吸光度都應扣除試劑的空白值。
3.直接光度法
水樣含酚濃度在0.1—5毫克/升時,可採用此法。
(1)繪制標准曲線
於50亳升比色管中分別加入0,0.50,1.00,1.50,2.00,2.50毫升酚標准中間液,加入0.5毫升緩沖溶液,1毫升4—氨基安替比林溶液,混勻。加入1毫升鐵氰化鉀溶液,用水稀釋到50毫升,再混勻。放置15分鍾後,於510nm波長處,用1厘米比色皿,以試劑空白為參比,測定吸光度。繪制標准曲線。
(2)水樣測定
取50毫升餾出液(含酚量小於0.25毫克)或分取適量餾出液用水稀釋到50毫升,置於比色管中,按標准系列的步驟操作,測定吸光度。
五、數據處理
酚(毫克/升)=測得的酚含量/水樣的體積
六、注意事項
1.水樣中的酚不穩定,易揮發和氧化,並受微生物作用而損失。因此,水樣採集後應加氫氧化鈉保存劑,並盡快測定。
2.氧化性,還原性物質,金屬離子及芳香胺類化合物對於測定有干擾,預蒸餾可除去大多數干擾物。但對污染嚴重的水樣,蒸餾前要用下述方法消除干擾物:
(1)除氧化劑
加入碘化鉀和酸後如游離出碘,說明有氧化劑存在。這時可用過量的硫酸亞鐵和亞砷酸鈉除去。
(2)除硫化物
用磷酸調節水樣pH=4,攪拌曝氣,除去二氧化硫及硫化氫。
(3)除油類
用濃氫氧化鈉溶液調節水樣pH為12—13,以四氯化碳提取油類,棄去有機相。加熱蒸去水相中殘余的四氯化碳。
3、 一次蒸餾足以凈化樣品。若出現餾出液渾濁,需用磷酸酸化後再蒸餾。
4、 樣品和標准溶液中加入緩沖液和4—氨基安替比林後要混勻才能加入鐵氰化鉀,否則結果偏低。
5、 萃取比色法中,試劑空白以氯仿為參比的吸光度應在0.10以下,否則4—氨基安替比林溶液應重新配製或採用新出廠產品。
6、 當苯酚試劑呈紅色時,則需對苯酚精製。方法如下:
取在水浴上融化後的苯酚,置於適量的蒸餾瓶中,插入250℃溫度計,加熱蒸餾,空氣冷凝,注意保溫,收集182--184℃的餾份。精製的苯酚冷卻後,應為無色,低溫時析出結晶,貯於暗處。

E. 中國核廢水怎麼處理

工業廢水:主要為冷卻劑相關系統(設備、管道和閥門)的疏水和引漏水。根據其放射性水平和鹽含量的不同,可採用預過濾、離子交換、蒸發等方法處理。

設備去污廢水。主要為放射性設備去污產生的去污廢水,其鹽含量較高,一般採用蒸發處理。

地面沖洗廢水、淋浴水和洗衣房水。這類廢水的放射性水平很低,可經過濾後排放,或採用蒸發處理或膜過濾(反滲透納濾超濾等)處理。如廢水含有洗滌劑,蒸發時則需添加消泡劑,或預先分解洗滌劑。

(5)含酚廢水為什麼用磷酸酸化擴展閱讀:

注意事項:

需要注意日本用於儲存核廢水的廢水罐多達一千多個,而到了2022年,這些廢水罐可能就會全部存滿,到時候,日本恐怕只能將這些核廢水全部倒入大海。

要知道核廢水中含有很多放射性物質,還有很多殘留的有害物質,如果日本真的將百萬噸核廢水全部都排入大海,那麼無論是人類還是海洋生物,都會受到嚴重危害,這種災難可是會殃及全人類的。

F. 石油化工廢水裡面都有哪些成份

石油化工廢水含有各種有機物、無機鹽和重金屬等污染物,具體成分取決於生產過程及其產生的廢水種類和來源。
一般情況下,石油化工廢水中主要成分有:
1. 有機物:包括石油、化學品和有機溶劑等,是石油化工廢水的主要組成部分。
2. 氨氮:主要從廢水中排放出來,對水生生物有一定的毒性。
3. 高濃度鹽類:如鹽酸、氫氟酸等,具有強腐蝕性。
4. 重金屬:如鎘、鉻、鉛等,具有高毒性和生物蓄積特性,對環境和人類健康造成潛在威脅。
這些成分的主要來源包括石油化工生產過程中的廢棄物、廢水和生產過程中的漏損、泄漏等。
這些成分的存在會對環境造成污染,對人體健康造成潛在危害。所以,需要對石油化工廢水進行有效的處理和監控,以減少對環境和人類健康的損害。
石油化工廢水處理通常包括以下步驟:
1. 原水處理:利用物理、化學等處冊則雹理方法,去除廢水中的雜質和懸浮物。通常採用的處理方法包括沉澱、過濾、吸附等。
2. 生化處理:通過微生物、植物等生物有效成分,分解廢水中的有機物和一些化學物質,減少化學物質對環境的污染。
3. 活化處理:使用紫外線、臭氧、電解等方法活化廢水,使其經過化學變化州帆後而達到去除有機物、氨氮和氮磷等污染成分的目的。
4. 深度處理:對處理後的廢水進行進一步去除重金屬和鹽類等成分的處理。
以上處理方式可以單獨或組合使用,視廢水的具體污染程度和成分而定。通常,廢水要經過多個步驟的處理和修正,以最大限度地減少對環境的危害和對人體健康的風險。
處理的廢水可以重復利用或排放到環境中,但需符合相關的環保法規和標盯隱准,確保其與環境的協調永續發展。

G. 如何處理含氰工業廢水

我們都知道,工業廢水含有很多有毒有害物質,分為含酚廢水、含汞廢水、含油廢水、重金屬廢水、含氰廢水、造紙工業廢水、食品工業廢水、印染廢水、化學工業廢水、冶金廢水,酸鹼廢水等等。那麼,如何處理含氰工業廢水
含氰廢水主要來自電鍍、煤氣、焦化、冶金、金屬加工、化纖、塑料、農葯、化工等部門。含氰廢水是一種毒性較大的工業廢水,在水中不穩定,較易於分解,無機氰和有機氰化物皆為劇毒性物質,人食入可引起急性中毒。氰化物對人體致死量為0.18,氰化鉀為0.12g,水體中氰化物對魚致死的質量濃度為0.04一0.1mg/L。
含氰廢水治理措施主要有:(1)改革工藝,減少或消除外排含氰廢水,如採用無氰電鍍法可消除電鍍車間工業廢水。(2)含氰量高的廢水,應採用回收利用,含氰量低的廢水應凈化處理方可排放。回收方法有酸化曝氣—鹼液吸收法、蒸汽解吸法等。治理方法有鹼性氯化法、電解氧化法、加壓水解法、生物化學法、生物鐵法、硫酸亞鐵法、空氣吹脫法等。其中鹼性氯化法應用較廣,硫酸亞鐵法處理不徹底亦不穩定,空氣吹脫法既污染大氣,出水又達不到排放標准.較少採用。
更多水污染成因與污水處理方法,以及水污染安全小知識,請大家繼續關注裕祥安全網的內容。

閱讀全文

與含酚廢水為什麼用磷酸酸化相關的資料

熱點內容
環氧樹脂固化後越來越硬 瀏覽:574
電鍍設備生產的廢水 瀏覽:28
沙特空氣凈化器什麼牌子 瀏覽:266
蒸餾主要除掉水中的什麼雜質 瀏覽:781
惠州超純水設備多少錢 瀏覽:793
環氧樹脂發泡材料 瀏覽:757
壓濾機污水處理每小時進多少水 瀏覽:13
凈化器都在什麼價位 瀏覽:118
米家空氣凈化器顯示屏上57是什麼意思 瀏覽:632
廢水凝聚的定義 瀏覽:316
制葯廢水缺氧池的停留時間 瀏覽:899
無電飲水機漏水怎麼修 瀏覽:957
污水管道容許閉合差 瀏覽:774
米家新風濾芯如何復位 瀏覽:101
污水管道距離多少 瀏覽:29
每克葡萄糖超濾如何計算 瀏覽:947
鹼性廢水處理 瀏覽:453
f7過濾器對應的潔凈度等級 瀏覽:721
廢水生化鹼度如何控制 瀏覽:45
凈水器排水口出什麼水 瀏覽:819