導航:首頁 > 廢水污水 > 目前焦化廢水處理成本是多少

目前焦化廢水處理成本是多少

發布時間:2025-04-02 20:37:32

A. 污水處理費多少錢一噸

水處理費來用根據水源質來決定的,即污水中的菌落群數來決定葯劑的使用濃度,濃度的不同也就造成費用的不同。

消毒方案選擇的不同,費用也是不同的,費用由低到高依次為:化學法、物理法、紫外線消毒。

以成品二氧化氯消毒劑的成本核算來看,根據污水的菌落群數的高低,一般在0.4-1元之間,如果菌落群數特別高的話,2-3元也是正常的。

以某品牌成品二氧化氯舉例:

將二氧化氯消毒粉Ⅱ型A劑1000克包裝剪開後,全部倒入盛有46公斤水的塑料容器或瓷器內(嚴禁將水倒入粉劑),再加入配套活化劑(B劑)攪拌溶解後,加蓋靜置60-90分鍾待完全活化後,即得到46公斤濃度為10000mg/L的二氧化氯母液,參考下表使用:

B. 焦化污水處理目前最好的工藝是什麼

焦化污水處理目前最好的工藝是:A1-A2-O生物膜工藝。
具體工藝流程是:
(1)從各車間出來的生產廢水及生活污水統一進入調節池,調節池的主要作用是均衡廢水的水質和水量,保證後續生化處理設施運行的穩定性。由於廢水的含磷量極少,故在調節池中加入磷營養鹽,提供微生物所需的營養。
(2)調節池出來的廢水由兩台泵分別提升至新老兩套A1-A2-O生化系統,在生化處理系統中,廢水的降解過程如下: a. 焦化廢水首先進入厭氧酸化段。在該段,廢水中的苯酚、二甲酚以及喹啉、異喹啉、吲哚、吡啶等雜環化合物得到了較大的轉化或去除,厭氧酸化段的設置對於復雜有機物的轉化與去除是十分有利的。因此,廢水經過厭氧酸化段後水質得到了很好的改善,廢水的可生化性較原水有所提高,為後續反硝化段提供了較為有效的碳源。
b. 在缺氧段進行的主要是反硝化反應,從酸化段出來的廢水進入缺氧段,同時好氧段處理後的出水也部分迴流至缺氧段,為缺氧段提供硝態氮。另外,由於焦化廢水中所含反硝化碳源不足,需在缺氧池中加入甲醇作為補充碳源。
經過缺氧段的處理,硝態氮被轉化為氮氣,達到脫氮的目的。同時,廢水中的大部分有機物得到了去除,使廢水以較低的COD進入好氧段,這對於好氧段進行的硝化反應是十分有利的。
c. 廢水經過缺氧段的處理後進入好氧段。在好氧段,由於廢水中所含氨氮較高而COD較低。因此,在這里進行的主要是硝化反應,在好氧段需投加純鹼溶液提供硝化反應所需的鹼度。廢水經過好氧段的處理後,氨氮基本可全部轉化為硝酸鹽氮(硝酸鹽氮通過迴流至缺氧段,在缺氧段最終轉化為氮氣後得到有效脫氮),同時,有機物得到進一步的降解,使最終出水COD達標。
(3)廢水經生化系統處理出來後,經過混凝沉澱池進行泥水分離,在混凝部分投加聚鐵,以增加沉澱部分污泥的沉澱性能,並且進一步降低出水COD。 二沉池出水接入「北排」管網。
(4)從二沉池排出的剩餘污泥定時排至污泥濃縮池進行濃縮穩定處理,濃縮池上清液迴流至調節池再次進行處理,濃縮池污泥排入污泥貯池中,定時由污泥脫水機進行脫水處理。脫水前需加入PAM與污泥進行絮凝反應,提高污泥脫水效率。 污泥脫水後外運處置。

C. 焦化廢水生化處理細菌種群類別及活性如何進行測定和分析

焦化廢水屬於工業廢水,因此細菌種群會表現出與常規城市污水活性污泥內不一樣的種群特性。
一般的容種群分析方法如下:
1)使用通用引物(27f-1492r)進行全菌克隆,測序後在基因BANK上比對,做系統發育樹,可以得到比較完整的種群結構。通過比較OTU的比例,可以得到優勢種群的信息。這個方法比較成熟,成本大致在1-2萬間。
2)通過自己的全菌克隆結果,結合文獻查閱,基本上可以得到焦化廢水中的主要微生物種屬信息,你可以再通過查閱文獻獲得針對該屬微生物的引物進行FISH、PCR-DGGE或realtime-PCR,這幾個方法側重點不同,可以獲得你關心的種群動態及數量變化;1和2的方法均基於16S;
3)如果文獻中提到微生物有功能基因(你中獎了!),可以利用功能基因進行定量PCR,再結合1-2的結果,你可以寫一篇非常漂亮的論文了!

僅供參考,希望有幫助!

D. 焦化廢水深度處理研究現狀

焦化廢水主要是焦化廠在煤氣化、液化、煉焦過程中所產生的廢水,此種廢水中含有大量的有毒、難降解的有機物是一種較難處理的有機廢水。目前主要採用以下方法對焦化廢水進行處理:首先利用常規方法對廢水進行預處理、然後利用生化方法對預處理廢水進行二次處理。
但是,經過上述過程處理後的焦化廢水外排水中的氰化物、COD及氨氮含量仍然無法達標。針對焦化廢水組成復雜、難於處理、經傳統方法處理後無法達標排放這種狀況,綜合了近幾年來國內外有關焦化廢水處理方面的大量的研究成果,系統地介紹了焦化廢水深度處理過程中所應用的物化方法、氧化方法、膜處理三大類方法的優缺點,列舉了當前幾種焦化廢水回用實例及不足,並指出了焦化廢水處理技術今後的發展方向。
焦化廢水主要是指在煤煉焦、煤氣凈化、化工產品回收和化工產品精製過程中產生的廢水。由於受原煤性質、產品回收、生產工藝等多種因素的影響,導致廢水成分異常復雜。焦化廢水中所含有機物主要以酚類化合物為主,其含量達到有機物總量的一半以上,剩餘有機化合物主要為含硫、氧、氮的雜環有機化合物以及多環芳香族有機化合物等。
焦化廢水以其排放量大、成分復雜、處理困難等特點使焦化廢水極難再循環利用或者達標排放。因此,降低焦化廢水中的污染物濃度,提高廢水的循環利用率是亟待解決的問題。
隨著人們環保意識的加強和國家對環保問題的重視,中國環境保護部於2012年6月頒布了《煉焦化學工業污染物排放標准》(GB16171-2012),該標准除對廢水中主要污染物給出了更為嚴格的排放標准,而且在原標准基礎上增加了苯、苯並芘、多環芳烴以及總氮等化合物的排放指標,該標准同時也對單位產品的排水量做了更為嚴格的要求,開發研究新型、高效能、低成本的廢水處理技術以及對現有技術進行優化改進提高廢水處理效果使其能夠達標排放是目前亟待解決的問題。
多年以來,雖然前人已做了大量關於焦化廢水處理的基礎研究工作,但是由於焦化廢水排放量大,水中污染物種類多且有些污染物難於生物降解而使得焦化廢水處理至今為止仍未有突破性的研究進展。因此研究並開發一種高效能、低成本、處理效果好的廢水處理技術以及對現有技術進行優化改進是今後焦化廢水處理研究的重點。
本文對廢水深度處理過程中所應用的物化方法、氧化方法、膜處理三大類方法進行了分析對比,並列舉了當前幾種焦化廢水回用實例及不足,同時指出了今後焦化廢水處理技術的發展方向。
1 焦化廢水深度處理技術
1.1 物理化學法
1.1.1 混凝沉澱法
混凝沉澱法是利用電中和原理對焦化廢水進行處理,具體處理過程如下:將混凝劑在一定條件下定量投入到焦化廢水中,廢水中的帶電物質與混凝劑發生電中和形成大顆粒膠團,而後經過進一步的沉澱使焦化廢水得以凈化處理。
盧建杭、王紅斌等開發出了針對上海寶鋼集團下屬焦化廠焦化廢水專用的混凝劑——M180,用於處理上海寶鋼焦化廠 A/O 生化池出水,通過實驗發現在 pH 值為 6.0~6.5、混凝劑投加量為 300mg/L時,專用混凝劑對焦化廢水的 COD、色度、CN等指標有良好的處理效果,並且在實驗過程中還發現進水水質的波動對專用混凝劑處理效能的影響很小。
周靜和李素芹研製出了一種新型的復合絮凝劑——PFASSB,並將其與 PFS、PAC 和 PFAC 進行對比研究,考察了 PFS、PAC、PFAC 以及新型新型絮凝劑 PFASSB 對焦化廢水 COD、濁度等的處理效果。
通過實驗結果發現,在相同的條件下新型復合絮凝劑對焦化廢水的處理效果明顯優於 PAC、PFS和 PFAC,並且新型絮凝劑的用量明顯比其他絮凝劑的用量低;當廢水 PH 為 8,新型絮凝劑投加量在 10 mg/L 時,經過絮凝處理後的出水 SS<70 mg/L,CODcr<150 mg/L。
鄭義、張琢等研究對比了硫酸鋁、聚合硫酸鐵和聚丙烯醯胺對焦化廠生化池出水的處理效果,並將其組合搭配,考察了它們聯合處理焦化廢水的能力。通過實驗發現,將聚合硫酸鐵與聚丙烯醯胺組合處理焦化廢水,處理效果明顯優於各混凝劑單獨使用時的處理效果;當 pH 為 5,投加量為聚合硫酸鐵 40 mg/L、聚丙烯醯胺 6 mg/L 時,組合混凝劑對焦化廢水處理效果最佳,此時處理後廢水出水色度為 70 倍,COD 為 68 mg/L,去除率分別達到了73.08%、62.22%。
通過以上分析發現,混凝沉澱法對焦化廢水色度,COD 等指標的去除效果較好,處理後的焦化廢水可實現達標排放。但是,使用混凝沉澱法對焦化廢水進行深度處理的過程中會產生大量的固體沉渣,而且這種固體沉澱物較難處理會對環境造成新的污染,並且採用混凝沉澱的方法處理焦化廢水需要對沉澱池入水以及出水調節 pH 值,而且混凝劑需要人工投加操作較為復雜,經過處理後的廢水只能外排無法實現達標回用。
1.1.2 吸附法
吸附法處理焦化廢水主要是利用吸附劑為比表面積較大的多孔類物質,對大分子有機物、油類物質、以及部分固體懸浮物等污染物具有良好的吸附性能,吸附劑在對焦化廢水吸附處理後經過沉澱得以分離。
周靜、李素芹等採用粉煤灰作為吸附劑,對焦化廢水生化出水中的氨氮進行深度處理,通過實驗對葯劑投加量、pH 值、吸附時間三個主要影響因素進行了考察。實驗結果表明:當廢水 pH 為 5,粉煤灰投加量為 150 g/L、生石灰投加量為 2.5 g/L,吸附時間為 1 h 時,焦化廢水中的氨氮含量由 77.67 mg/L降到了 25 mg/L 以下,氨氮去除率達到 70%以上。
王紅梅、鄭振暉利用改性膨潤土對焦化廢水生化出水進行深度處理。通過實驗結果發現:當焦化廢水 pH 在8.0~10.0,改性膨潤土投加量為 1 200~1 500 mg/L 時,焦化廢水脫色率達到 65%以上,氰化物、CODcr的去除率也分別達到了31%和26.5%。
孫寶東、馬雁林對南京鋼鐵聯合有限公司的兩座焦化廢水處理站進行技術改進,通過在原處理站基礎上增加活性炭過濾裝置,並對原有的操作方法進行改進。通過活性炭過濾裝置改進後,南京鋼鐵聯合有限公司焦化廢水處理站出水由原來的國家二級標准提升到了國家一級排放標准,並且通過改進操作方法使廢水處理站的運行成本得以降低,活性炭的使用壽命得以延長。
李茂、韓永忠等採用樹脂吸附和 Fenton 氧化的組合工藝處理高濃度的焦化廢水。通過實驗發現:當吸附樹脂與 Fenton 試劑在最佳的工作條件下時,焦化廢水中酚類有機化合物去除率幾乎可達100%,COD 的去除率達到 74.82%,並且經過樹脂吸附和Fenton氧化的組合工藝處理過的高濃度焦化廢水可生化性也有很大的提高。
張昌鳴等利用粉煤灰作為吸附劑對山西焦化集團有限公司下屬焦化廠的焦化廢水生化出水進行深度處理。當粉煤灰用量為 17.47 g/L 時,焦化廢水處理效果較好,除氨氮含量偏高外廢水中 COD、色度、油、硫化物、氰化物、揮發酚等污染物含量均達到國家排放標准。吸附後的粉煤灰可以燒磚或築路進行再利用。採用粉煤灰吸附處理焦化廢水,體現了以廢治廢的環保理念。
以活性炭作為吸附劑對焦化廢水進行深度處理,廢水處理效果較好,處理後的廢水可達標排放,但是由於活性炭價格較高再生困難使得廢水處理成本較高,目前絕大多數企業以棄之不用。而以粉煤灰作為吸附劑對焦化廢水進行深度處理,處理效果較好,吸附後的粉煤灰仍可進行燒磚築路等再利用對其品質不會產生影響,並且利用粉煤灰作為吸附劑處理焦化廢實現了廢物再利用符合當前國家綠色化工循環利用的政策。
1.1.3 化學沉澱法
採用化學沉澱的方法不僅使廢水中氨氮含量達到了國家的排放標准,同時也間接的提高了廢水的可生化性。但是,目前化學沉澱的方法處理焦化廢水的研究較少,技術還不成熟無法實現工業化
應用。
1.2 氧化法
1.2.1 Fenton 氧化法
Fenton 試劑通過將焦化廢水中難降解大分子有機物氧化分解成小分子有機物,降低了焦化廢水的COD 值和色度,同時在一定程度上提高了焦化廢水的可生化性,使焦化廢水得到較好的處理。
1.2.2 臭氧氧化法
臭氧分子中的氧原子具有強烈的親電子或親質子性以及極強的氧化活性,臭氧可將焦化廢水中的大分子有機物等物質氧化分解。臭氧氧化技術具有氧化能力強、反應速度快、處理效率高、不受溫度影響、不產生污泥等特點。
2 結 論
近年來,隨著國家對環保問題的的日益重視以及國民環保意識的不斷提高,廢水的排放標准也變得更為嚴格。各國學者經過不斷的探索研究出了一些新的焦化廢水處理技術,如:電化學氧化技術、光催化氧化技術、膜技術等。
這些技術對焦化廢水中的污染物處理的較為徹底且不會產生二次污染,但是這些技術投資成本和運行成本較高並且很多仍處於理論研究和實驗室研究階段,較難實現大規模工業化應用。因此在深人研究焦化廢水先進處理技術的同時,我們也應該充分發掘現有技術的優點,對現有技術進行優化改良提高其處理效能。
通過以上分析可以發現粉煤灰吸附效果較好且符合國家以廢治廢的環保節能政策,並且膜技術也已在部分工廠中應用並取得了較好的效果,採用粉煤灰吸附預先對焦化廢水進行預處理除去廢水中大部分有機物減輕膜過濾的負擔提高其使用壽命降低處理成本,將粉煤灰吸附技術與膜技術協同作用處理焦化廢水應是今後焦化廢水處理回用的研究重點。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

E. 處理一噸工業污水大概需要多少錢計算公式

工業污水處理費用,沒有固定的計算公式,沒有這么簡單。工業污水處理會根據污水性質和各種成分來確定處理工藝,各種消耗的評價計算也是根據上述參數進行計算。另外,這些消耗計算還要根據當地能源價格、材料價格、人力價格等條件來確定。

閱讀全文

與目前焦化廢水處理成本是多少相關的資料

熱點內容
上海社區診所污水處理設備多少錢 瀏覽:204
園區污水處理廠建設的作用 瀏覽:949
一體化養殖污水處理設備銷售 瀏覽:320
處理污水多少錢一立方 瀏覽:516
十二凈水器怎麼樣 瀏覽:163
純水機鈣鎂離子怎麼樣 瀏覽:114
反滲透膜為什麼要卷 瀏覽:347
人工濕地污水處理那些污染物 瀏覽:360
去離子風發生器 瀏覽:751
飲水機菌落數怎麼算 瀏覽:331
生產廢水指 瀏覽:125
去離子機價格淘寶 瀏覽:756
汽車復合空調濾芯多少錢 瀏覽:148
ro膜濾芯最短 瀏覽:55
家裡有魚缸廢水費電嗎 瀏覽:284
恬凈凈水器鎖定是什麼意思 瀏覽:787
水垢是碳化物嗎 瀏覽:299
化工廢水處理回用紀實 瀏覽:747
edi純水和ro超純水有什麼區別 瀏覽:63
離子凈水器是什麼 瀏覽:365