導航:首頁 > 廢水污水 > 如何計算某流域污水排放的氮負荷

如何計算某流域污水排放的氮負荷

發布時間:2025-02-07 03:42:29

㈠ 濕地工程在污水處理中的應用

一、工程地點
項目區位於吉林省梨樹縣污水處理廠西側小南河流域,起始點為污水處理廠中水通過圓涵流入小南河處,樁號為0+000,末端為小南河與招蘇台河匯合處,樁號3+700。
二、工程設計
(一)工程總體布置
以污水處理廠出口進入梨樹小南河為工程起點,樁號為0+000,末端為與招蘇台河匯合處,樁號為3+700,面積共316000m2作為人工表流濕地的建設面積,共分級修建20座溢流堰。
(二)工藝選取
人工濕地技術是一種基於自然生態原理,充分利用人工介質中的
微生物、植物根系以及介質所具有的物理、化學特性,將污水凈化的一種復合工藝。根據濕地內污水的流動狀態,人工濕地又劃分為表面流濕地和潛流濕地。表面流人工濕地在生態構造和外觀上都類似於天然濕地,但去污的效果要優於自然濕地。潛流濕地的人工布水系統位於濕地的表面,使水流在濕地表面以下運行,根據水流的方向,又可以把潛流濕地分為水平潛流和垂直潛流濕地兩類。
1、表脊坦面流人工濕地
表面流人工濕地這種類型的人工扮野豎濕地和自然濕地類似,污水從濕地表面流過。在流動的過程中廢水得到凈化。水深一般0.3~0.5米,水流呈推流式前進。污水從入口以一定速度緩慢流過濕地表面,部分污水或蒸發或滲入地下。近水面部分為好氧層,較深部分及底部通常為厭氧層。表面流人工濕地中氧的來源主要靠水體表面擴散、植物根系的傳輸和植物的光合作用,但傳輸能力十分有限。
2、潛流人工濕地
目前在實際應用中,潛流濕地由於在處理效果具有較大優勢,已成為人工濕地主要的應用模式,而在潛流濕地中根據水流方式的不同,又可分為水平潛流型和垂直潛流型兩種濕地模式。早期國際上應用的人工濕地污水處理系統大部分為水平潛流人工濕地,但是隨著垂直潛流系統在污染物的去除和佔地小等方面優勢逐漸得到認識,尤其是對污水中有機物和氮具有更高的凈化效果,垂直潛流人工濕地在國內外都開始迅速的發展。
人工濕地水質深度凈化系統的各類工藝的特點對比如表7-1所示。
綜合考慮本項目處理規模、水質特點、運行穩定、管理簡單、景觀審美、場地特徵、氣候、投資、建設方要求等,綜合各方面的因素,本次設計選擇表流人工濕地工藝。
(三)人工濕地工藝流程
表面流人工濕地的去除機理如下:
1)稀釋作用;2)沉澱和絮凝作用、流速降低、生物分泌物,自然沉澱,絮凝沉澱發生;3)好氧微生物的代謝作用4)厭氧微生物的作用5)生物的作用6)水生維管束植物的作用
為了保證人工濕地水質凈化系統的運行穩定性,由梨樹縣污水處理廠進入人工濕地的水體水質必須保證符合入水標准即執行一級A排放標准。工程將梨樹縣污水處理廠的污水引至小南河人工濕地進行水質凈化,最後流入招蘇台河水域。
(四)人工濕地相關水力參數計算
在人工濕地的設計過程中,確定濕地的水力污染負荷是最重要步
驟之一,同時也關繫到人工濕地未來處理效果的關鍵因素。本次工程設計方法主要利用濕地水文動力學基本原理,由進出水水質和總體水量平衡進行系統的水力負荷與停留時間等水力參數,然後計算出所需土地面積和污染物負荷量,同時結合住房和城鄉建設部《人工濕地污水處理技術導則》RISN-TG006-2009 和環境保護部《人工濕地污水處理工程技術規范》(HJ 2005-2010)相關標准要求選取合適的設計參數。
1、表面水力負荷
指每平米人工濕地在單位時間所能接納的污水量。
式中,qhs—表面水力負荷,m3/(d.m2);Q—日處理量,m3/d;A—濕地面積,m2。本項目中,Q=30000m3/d,A=316000m2,因此qhs=0.095m3/(d.m2)。
根據國家標准《人工濕地污水處理工程技術規范》HJ 2005-2010 要求,表面流人工濕地qhs控制范圍應為<0.1,本次設計面積滿足表面水力負荷要求。
2、表面有機負荷
指每平方米人工濕地在單位時間去除的五日生化需氧量。
式中:qos—表面有機負荷,kg/(m2·d);Q—人工濕地設計水量,m3/d;C0—人工濕地進水BOD5濃度,mg/L;C1—人工濕地出水BOD5濃度,mg/L;A—人工濕地面積,m2。
本項目中,Q=30000m3/d;C0=10mg/L(一級A);C1=10mg/L(地表Ⅴ類水),故表面有機廳大負荷不需計算,滿足要求;
3、水力停留時間
指污水在人工濕地內的平均駐留時間。
式中:t—水力停留時間,d;V—人工濕地基質在自然狀態下的體積,包括基質實體及其開口、閉口孔隙,m3;Q—人工濕地設計水量m3/d;本項目中,據計算可知,V=316000×0.7×1=221200m3,Q=30000 m3,因此t=7.4d,滿足國家標准《人工濕地污水處理工程技術規范》HJ 2005-2010要求(4~8d)。
經過上述計算,本工程無論從表面水力負荷、表面有機負荷及水利停留時間上均滿足達到地表Ⅴ類水標准需要的指標。
三、結論
通過對表流濕地的水處理效果進行分析, 分析結果見下表。
從以上數據可看出,本項目人工濕地建成以後,運轉後,每天將大量減少污染物的排放量,對保護周邊地區的環境和降低水體的污染負荷將起到良好的作用。

更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

㈡ 我國農村生活污水組合處理技術研究進展

農村地區人們的環保意識薄弱,經濟相對欠發達,也缺乏生活污水排水收集管網系統及集中處理設施;或是居住比較分散,造成生活污水集中收集困難,造成90%多的生活污水未經處理直接排入河流和湖泊。當前農村生活污水造成的環境污染嚴重威脅農村水源地的水資源安全,也加劇了淡水資源危機,使耕地灌溉得不到有效保障,最終危害到人畜的生存發展。在國家強調生態文明建設的今天,加強農村生活污水污染控制和治理顯得尤為緊迫和重要。
1農村生活污水特徵及處理
農村生活用水一般以地表水(例如,河流、溝渠、池塘、堰、湖泊和水庫等)、地下水(井、窖)和自來水3者結合使用。我國農村生活污水主要來源於廁所糞便及其沖洗水、洗浴廢水和廚房餐飲用水等,可分為灰水和黑水2類。前者由廚房排水、衛生淋浴水、洗衣水構成;後者水由糞便和尿液及其沖洗水構乎滾成[3]。我國農村生活污水具有分散、日變化系數大(通常為3.0~5.0)、間歇性排放,且氨氮含量高、可生化性強、含重金屬等有毒有害物質較少等特點[4]。
充分胡咐了解農村生活污水的特點,在結合當地經濟水平、自然條件和環境目標的基礎上,發展適合我國國情的農村生活污水處理技術,緩解水資源短缺矛盾,改善農村地區生態環境和提高人們生活質量均具有重要意義。根據污水的收集和處理方式的差異,污水處理模式可分為分散式和集中式2大類。
分散處理通常具有投資小、運行費用低、污泥產生量小、受外界影響小、簡單耐用以及易於實現水的循環利用等特點。此技術適用於規模較小、人口居住分散、污水不易集中收集農村地區生活污水的處理[5]。目前,我國農村地區應用較多的分散處理技術有人工濕地、高效藻類塘技術、蚯蚓生態濾池等多種方法。然而,隨著農村生活污水的組成成分日益越復雜,單一分散處理工藝的出水難以滿足受納水體的環保需求。
同時,不同的生活污水分散處理技術具有各自的優缺點及適用范圍,這也都限制了分散處理技術的應用范圍與效果。基於此,目前較普遍的處理農村污水的辦法是將多種工藝進行組合以達到強化系統的凈化能力的目的。當前,根據農村生活污水組合處理技術的作用機理,大致可將它們分為3大類:生物組合技術、生態組合技術、生物-生態組合技術。
2生物組合技術處理農村生活污水
生物處理技術是指通過微生物在好氧、厭氧條件下去除污染物質的技術。該技術佔地面積小、污泥產量低,具有良好的耐沖擊負荷能力,可處理水量和水質波動性較大的污水。生物處理技術中的厭氧單元(A)使污水中大部分有機物得到降解,降低污水負荷,沉降懸浮物;而好氧單元(O)則進一步去除氮磷等營養物質和有機物。目前廣泛應用於農村生活污水的生物組合技術,主要是由A和O組合而成的不同工藝。
2.1A/O工藝
A/O工藝一般是以厭氧處理為前置單元,後接好氧處理的組合工藝。該工藝具有較高的污染物去除率和較好的系統穩定性。李清雪等在厭氧折流板反應器(ABR)後分別增加了跌水曝氣和曝氣生物濾池處理,發現這2種組合工藝對農村生活污水中COD的去除率比單獨採用ABR處理提高了9.5%和24.9%,可見ABR-曝氣生物濾池組合工藝對COD的去除效果較好[6]。
針對北方地區多晴少雨,太陽光充足的氣候特徵,何剛等將厭氧生物濾池+太陽能曝氣生物濾池聯用,通過太陽能曝氣系統提供氧氣,進一步降低了系統能耗[7]。
曹大偉等研究開發了地埋式一體化生物濾池,能耗設備僅為1台小型提升水泵,主要是由缺氧池+生物濾池組成,採用拔風管通風和濺水盤強化充氧[8]。
該裝置具有良好抗沖擊負荷的能力,對污染物的去除效果也較好,對COD、NH3-N、TN、TP的平均去除率分別為63.1%、92.2%、68.6%和47.5%,具有不佔用土地資源、能耗和運行費用低特點,較適合在土地資源緊張的南方環湖農村地區推廣使用[9]。
2.2A2/O工藝
在A/O前加1個A單元,組成的厭氧-缺氧-好氧(A2/O)工藝,在國內歲做餘外很多生物處理技術中廣泛應用[10-11]。這種組合工藝有著較長水力停留時間、較低有機負荷,使得缺氧-好氧單元可以維持較低污泥含量,極大地減少剩餘污泥的排放量,為組合工藝實現污泥減量化。
高大文等採用升流式厭氧污泥固定床(UAFB)-缺氧-好氧膜生物反應(MRB)組合工藝處理生活污水,不僅對COD、NH3-N去除率達到93.3%、90.6%,同時能夠長期維持反應器內較低的污泥含量,減少剩餘污泥處理量和緩解膜污染[12]。
周俊等將缺氧槽置於厭氧槽的前端,並增加了微電解鐵屑床和復合生物材料,研發出了改進型的合並凈化槽。該凈化槽採用的是缺氧-厭氧-好氧(A2/O)處理工藝,該工藝一方面有效解決了污水中有機物含量較少,碳源不足,反硝化脫氮效果不佳的問題,另一方面通過傳統活性污泥工藝、生物硝化、反硝化工藝和生物除磷工藝的結合,可以較好的同步脫氮除磷。實驗結果表明,在HRT為8h,系統迴流體積比為75.0%時,3月份對COD、TN和TP平均去除率分別為93.0%、80.0%和94.0%;而8月份則分別為94.0%、76.0%和91.0%[13]。
白曉龍等也對小型凈化槽進行了改進,採用折流式厭氧反應器-厭氧生物濾池-生物接觸氧化工藝,生活污水採用上流式進水有效的減少了設備堵塞和維修時間[14]。
2.3其他組合工藝
除了常見的A/O、A2/O工藝外,在實際污水處理中還採用一些其他組合工藝。
詹旭等採用5級跌水充氧生物接觸氧化法處理農村污水,原水經水泵提升,通過5級跌水充氧,既滿足了所需溶解氧又免除了曝氣設備,減少了投資成本和運行電耗,使管理工作趨於簡單,該工藝對解決經濟相對落後農村地區的水環境污染問題,具有較明顯的效益[15]。
沈東升等研發了1種地埋式無動力厭氧達標處理設備(,UUAR),該裝置採用厭氧污泥床接觸池+厭氧生物濾池工藝,流程簡單、能耗低。與好氧生物處理相比,UUAR技術設備的基建投資可能略高於好氧處理,但無日常運行費用,且未出現剩餘厭氧污泥的積累問題,適合土地緊張、經濟落後、自然氣候惡劣的偏遠農村地區生活污水的分散處理[16]。
徐功娣等在生物凈化槽前進行了好氧預掛膜,形成了O-A-O組合工藝,該復合型生物凈化槽對NH3-N和TN的去除量較高,有效地降低了高含尿液農村生活污水的負荷,對COD和磷的去除率為59.6%和33.4%[17]。
針對華北農村地區生活污水碳氮較低,吳迪等採用自流式厭氧-3級好氧-缺氧生物膜工藝,利用投加的生物球提高厭氧段的硝化能力;同時,在3級好氧缺氧生物膜段,通過跌水充氧實現硝化和反硝化除磷在同一反應器內進行,從而有效的解決了碳源供給能力的問題。該工藝對農村生活污水中COD、NH3-N、TN和TP去除率為73.7%、90.7%、59.6%和
69.7%[18]。其後,對3級好氧-缺氧生物膜技術進行改進,新工藝增設了迴流泵(迴流體積比2:1),且提高了厭氧段懸浮填料裝填率,改進後出水TN的去除能力有較大提高,達到63.9%[19]。
3生態組合技術處理農村生活污水
生態處理技術是利用土壤-植物(動物)-微生物復合生態系統,通過物理、化學、生物作用對污水中的資源加以利用,對污水中的污染物進行降解和凈化的工藝[20]。相對於生物處理技術,生態處理技術一般建設管理費用低、節能耗,具有一定的景觀效果,更加註重生態服務價值。在我國廣大農村地區,目前應用實施的生態組合處理技術包括同種生態技術的組合和不同生態技術之間的組合。
3.1同種生態處理技術的組合
吳振斌等設計的復合垂直流人工濕地,將下行流池和上行流池串聯,底部連通,使污水進入濕地系統中硝化和反硝化作用更加充分,該系統對污水中TN去除效果較好,去除率為43.6%[21]。
針對滇池地區低含量農村污水,劉超翔等採用表面流和潛流式2種人工復合生態床處理工藝,在高水力負荷(30cm/d)條件下,潛流式床體對COD、TN、NH3-N和TP的去除率分別為70.6%、60.6%、80.9%和66.0%,表面流床體則分別為63.1%、61.2%、90.2%和60.2%[22]。相較於單獨的人工濕地處理技術,人工濕地的組合技術,提高了濕地的含氧量和有機物,從而改善了硝化作用,提高了濕地對污染物的去除能力,脫氮效果尤其明顯。
葉芬霞等人設計的塔式復合人工濕地(TICW)的進水分為2段,一部分污水通過下部進水形成潛流式人工濕地,而另一部分污水則從塔頂流下形成表面流人工濕地,可為濕地後段的脫氮作用提供充足碳源[23]。
張洪玲等採用多級土壤滲濾系統處理太湖流域農村生活污水,COD、NH3-N、TN、TP和SS的平均去除率分別為70.0%、83.0%、59.0%、76.0%和94.0%[24]。鄭彥強等將2套地下滲濾系統並行,填充介質選用土壤、陶粒、爐渣和兩種自然有機質,也對農村生活污水的處理取得較好的效果[25]。
吉祝美等通過浮床技術在穩定塘水面種植生態植物建立了生態塘,該系統對高含量生活污水中COD、NH3-N、TN和TP均具有較高的去除率,可分別達到55.0%、70.0%、80.0%和75.0%以上[26]。李軍狀等設計的塔式蚯蚓生態濾池處理系統,每一層塔為一個處理單元,梯度塔層、串聯疊層布置。該系統對COD、氨氮、TN和TP處理效果好,且基建及運行費用低,總運行成本為0.671元/m3。該技術在經濟不發達農村地區具有良好的應用前景。
3.2不同生態處理技術的組合
王學華等以生態塘為預處理,人工濕地作為後續處理,對太湖三山島農村生活污水中NH3-N、TN、TP去除率高達95.0%~99.0%、95.0%~98.0%、92.0%~98.0%,且減少進水中SS含量,有效地緩解濕地系統的堵塞。生活污水經過塔式蚯蚓生態濾池的作用,出水負荷和污染物濃度降低,後進入水平潛流式人工濕地,進一步降低了有機物和營養物質的含量,使得出水水質基本達標。這種塔式蚯蚓生態濾池+人工濕地的組合工藝,自動化程度高且管理運行方便,比較適合在經濟發達、人口密集的農村地區推廣使用。
時建偉等在高效藻類塘的水面上以生物浮床的形式種植植物的組合系統,一方面顯著提高了系統運行的穩定性和出水的水質,並且節約了土地,另一方面生物浮床上移栽植物根系通過化感作用有效抑制藻類的生長,同時植物本身也具有一定的景觀效果和美化環境的作用[30]。高勝兵等採用植物與土壤滲濾系統聯用處理農村生活污水,去除效果較好。該復合體系對生活污水中BOD5、COD、TN、NH3-N、TP的平均去除率分別為73.5%、76.0%、85.0%、89.0%、85.0%[31]。
4生物+生態組合技術處理農村生活污水
生物+生態組合技術是生物和生態處理工藝的結合,前段生物處理主要去除有機物和部分營養物質,後續生態處理進一步脫氮除磷,充分發揮各自的優勢,提高出水水質和系統運行的穩定性[32]。相較於生物組合技術和生態組合技術,生物+生態組合技術需綜合考慮農村地區的經濟條件,南北方地域氣候差異,以及用地條件、運行管理、污泥產量和實際工程案例等因素。由於人工濕地是應用最普遍的一種後續生態處理技術,我國農村常見的生物+生態組合技術主要包括生物+人工濕地組合技術和其他生物+生態組合。
4.1生物+人工濕地
生物+人工濕地組合系統中的生物單元可以有效完成對有機物的降解和硝化作用;同時,人工濕地系統能進一步去除氮、磷等污染物。將2者結合應用能夠提高污水中的各類污染物的去除率。唐晶等採用接觸氧化-人工濕地組合工藝處理農村生活污水,對COD、NH3-N、TN和TP的去除率分別為68.2%、68.2%、69.5%、86.3%,且效果穩定。其中跌水充氧接觸氧化池對COD的去除貢獻較大,而人工濕地對TN、TP的去除貢獻較大[33]。
在太湖流域農村地區,白永剛等採用滴濾池-人工濕地組合工藝處理生活污水,結果表明滴濾池對COD、NH3-N、TN和TP去除率分別為74.5%、79.2%、33.8%、47.5%,人工濕地的則分別為25.0%、20.8%、66.2%、52.5%[34]。
任珊珊等選擇化糞池-人工潛流型濕地工藝和蔣嵐嵐等採用MBR-人工濕地組合技術在太湖周邊農村地區也得到了應用,取得較好的去除效果[35-36]。
針對雲南地區氣候溫和,冬季氣溫較高,全年適宜植物生長的特點,李文卿採用改良A2/O一人工潛流濕地組合處理系統,同時在人工濕地加入了高吸附磷的基質。該系統對污水中COD、BOD5、TN、NH3-N、SS的平均去除率分別達到80.5%、84.3%、91.8%、93.2%、86.4%,TP去除率始終保持在75.7%以上。
江西省吉安市新干縣河頭村採用太陽能驅動生物濾塔-人工濕地組合工藝處理生活污水,該系統通過太陽能提供動力,射流噴射器充氧,處理效果好,且運行費用低,操作簡單,可以實現無人看守,適宜在經濟落後,偏遠農村地區推廣應用[38]。
余浩等採用「水解池-滴濾-人工濕地」3種工藝組合處理農村生活污水,同時將珍珠岩礦渣、陶粒和石膏等分層放置滴濾池中,水力負荷可達4.0~8.0m3/(m2˙d),該組合工藝對COD、TN和TP的去除率均超過90.0%[39]。鍾秋爽等選擇厭氧-接觸氧化渠-垂直潛流型人工濕地組合工藝處理農村生活污水,其中接觸氧化渠的作用是為後續人工濕地充氧;而厭氧池、接觸氧化渠和人工濕地對COD、NH3-N和TP均有較高的去除率,但厭氧池去除率較穩定,最高可達72.0%、49.5%和66.4%[40]。
4.2其他生物+生態
吳召富等設計的淹沒式生物膜-穩定塘組合技術取消了二沉池和污泥迴流,該系統對COD、NH3-N、TN和TP的平均去除率分別為84.3%、97.0%、80.2%和77.3%,且生物膜系統出水污泥含量基本為0,後續經穩定塘處理後的出水水質良好,滿足回用標准[41]。張增勝等對崇明島的農村生活污水採用生物凈化槽-強化生態浮床(BPT-EEFR)組合處理工藝,結果表明該組合技術不僅對COD、NH3-N、TN、TP及SS的去除效果較好,同時佔地面積小、造價費用低、便於維護管理。
由生物浮床、生物接觸氧化以及河道生態系統構成的生態組合系統,也對農村生活污水中NH3-N、TN、TP、COD具有良好的去除效果。但該組合系統對污染物的去除率受季節影響,與秋季相比,夏季對污染物去除率較高,且污染物的去除率隨HRT的增加而提高,而4d後變化則趨於穩定[43]。
5結論與展望
我國幅員遼闊,在農村選擇生活污水處理技術時應該因地制宜,綜合考慮當地的地形地貌、水文和氣候條件以及經濟發展水平,以及各種污水處理技術的特點和適用范圍。實際應用中通過科學設計、優化組合,達到技術上的互補,發展具有較高水力負荷和小規模設備化特徵,易於操作管理的多種處理單元的復合創新技術。農村污水處理方興未艾,任重道遠,將科學、社會因素有機結合,可大大提高農村水環境治理成效,因此,除技術研發外,應加強以下方面工作:
(1)發揮院落式單元處理作用。建議每家每戶建設化糞池,對廁所污水、洗浴污水和餐飲污水進行初步處理。
(2)加強污水處理工藝或設施的運管技術研究,進一步開發適合於農村的易操作、少維護、低成本的運行模式、工藝。
(3)農村污水處理後可進行資源回用。由於農村生活污水主要為N、P等營養元素,經處理後可就近用於農業灌溉。
(4)提高農民生態環保意識。積極開展推廣使用生物菌肥、有機肥宣傳教育活動,引導農民減少化學肥料使用。
(5)逐步建立相應的法律法規。根據我國農村實際,參考相關環保標准,制定適合於我國的相關技術標准和規程,同時,制定相關政策法規,完善獎懲政策,將農村水污染的治理納入法制化的軌道。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

㈢ 水污染調查報告範文5篇

【 #報告# 導語】水是生命的源泉,沒有水,我們的生活將無法繼續下去。水資源的污染及短缺是當今社會面臨的一個重大問題。以下是 整理的水污染調查報告範文,歡迎閱讀!

1.水污染調查報告範文


隨著近年來農村經濟的快速發展,城市中的一些新思想、新觀念的湧入,開闊了廣為農民的視野,為農村經濟發展注入了活力。人們在發展經濟的同時也給農村的環境造成了破壞,水源污染顯得尤為嚴重。某地農村污染負荷比重占總污染負荷的30%~40%,農村環境保護明顯滯後於經濟社會發展,農村污染負荷占整個污染負荷比重已達30%~40%,部分地區甚至達到70%。以沱江流域為例,農業氨氮排放量大於工業污染排放量,農業排放COD比重也大於城市。常見的飲用水水質項目對人體健康的影響:鉛:對腎臟、神經系統造成危害,對兒童具高毒性,致癌性已被證實鎘:對腎臟有急性之傷害砷:對皮膚、神經系統等造成危害,致癌性已被證實汞:對人體的傷害極大,傷害主要器官為腎臟、中樞神經系統硒:高濃度會危害肌肉及神經系統亞硝 酸鹽:造成心血管方面疾病,嬰兒的影響最為明顯(藍嬰漏裂症),具致癌性總三鹵甲烷:以氯仿對健康的影響,致癌性方面最常發生的是膀光癌三氯乙烯(有機物):吸入過多會降低中樞神經、心臟功能,長期暴露對肝臟有害四氯化碳(有機物):對人體健康有廣泛顫搜寬影響,具致癌性,對肝臟、腎臟功影響極大。

造成水體污染的主要原因有四點:

1、畜禽養殖污染嚴重

畜禽養殖污染面廣且量大,污染嚴重農村畜禽養殖多為無序分散狀況,且數量較多,大量畜禽糞尿未經處理就直接排放,造成當地環境(特別是地下水)污染,現已成為農村一大新的污染源。集約化養殖場其污染危害更加嚴重,畜禽糞便對地表水造成有機污染和富營養化污染,對地下水造成污染,甚至對大氣造成惡臭污染,其中所含病原體也對人群健康造成了極大威脅。四川作為全國畜牧業大省,畜禽養殖數量居全國之首,但規模化養殖年出欄僅占總出欄數的5.1%。全省畜禽養殖年茄亮產生COD390萬噸、氨氮79萬噸,分別是工業排放量的13倍和38倍,是生活污染排放量的8倍和17倍。因此,畜禽養殖污染成為四川農村面源污染的首要污染源。

2、農用化學物質及其廢棄物污染繼續加大

化肥、農葯施用強度高,流失量大化肥、農葯和農膜的使用,使耕地和地下水受到了大面積污染。農葯殘留,重金屬超標,已制約農產品質量的提高。我國化肥和農葯的施用量已居世界之首。化肥施用量為4637萬t/a,按播種面積計算,化肥施用量達40t/km2,遠遠超過發達國家設置的25t/km2的安全上限。且在化肥施用中還存在肥料之間結構不合理現象。化肥利用率低,流失率高,通過農田徑流造成了對水體的有機污染和富營養化污染,造成地下水污染和空氣污染。甚至導致農田土壤污染。目前,東部已有許多地區面源污染占污染負荷比例超過工業污染。四川省每年化肥施用量達220萬噸,平均每公頃490公斤,遠遠超過發達國家為防大學生暑期實習報告&調查報告專題實習證明金融專業法律專業土木工程專業機電專業止化肥對水體污染而設置的每公頃225公斤的標准,也遠遠高於全國化肥平均使用量每公頃330公斤。

3、小城鎮生活垃圾和污水污染加劇

農村生活污水污染嚴重,生活垃圾處置系統亟待完善由於缺乏基本的排水和拉圾清運處理系統,生活污水大多不經任何處理,直接排放或沉積在村邊溝渠和村莊地面,最終對飲用水源造成污染。我國污灌面積由1978年的4000km2增至2003年的30000km2,約佔全國總灌溉面積的10%。全國因固體廢棄物堆存被佔用或毀損的農田為1300km2。小城鎮和農村聚居點每年產生的約為112億t的農村生活垃圾幾乎全部露天堆放;產生的超過2500萬t/a的農村生活污水幾乎全部直排,使農村聚居點周圍的環境質量嚴重惡化。四川全省現有6786萬農業人口,大多數村鎮建在河溪旁,沒有建立完整的排放系統;全年產生農村生活垃圾1697萬噸,相當部分未經處置,一些地方呈現垃圾「圍村、塞河、堵門」之勢;全年產生農村生活污水10多億噸,大多直排河湖。造成污染嚴重。

4、鄉鎮工業污染突出

農村中一些小型的化工、電鍍、造紙等污染嚴重企業的上馬,是造成農村水源污染的主要原因。由於受利益的驅動,一部分人把一些在市區被明令禁止上馬的項目轉移到了鄉村,這些污染嚴重的項目要麼根本沒有污水處理設施,要麼有也是形同虛設,根本沒有進行運行,小型工礦和鄉鎮企業為主的經濟區域會越來越多。相當一部分屬於效益較差、能耗較大、環境污染嚴重的企業。並且企業技術含量低,尤以造紙、紡織、煤炭、非金屬礦製品、化工及食品加工業為主。其中,造紙業的廢水排放量占總排放量的44.9%。其次,鄉鎮企業領導和職工的環境意識淡薄,整體環境管理水平落後,工業布局不合理。使其環境呈現出臟、亂、差的局面,流經鄉鎮企業區域的河流水質往往較差。並且,由於鄉鎮企業設備陳舊、技術落後,多採用土法生產,直接污染嚴重。往往是一家小造紙廠、小印染廠污染一條河,一個小冶煉廠、小采選廠毀掉一座山。這使得鄉村中一些原本魚蝦游動、清澈見底的小河變成為現在臭氣熏天、垃圾遍地的臭水溝,嚴重的地下水也受到污染。

農村水環境是我國水環境的重要組成部分,面對如此嚴峻的農村水污染形式,我們應努力尋找解決方案和出路。

1、發展生態農業。

對農業生產和農作物種植,應加快研製出高產、高抵抗力作物,減少化肥和農葯的施用量,提高農葯和化肥的利用率,鼓勵施用天然肥料和實施秸桿還田技術。努力控制農業非點源污染,要求政府將投資重點放在生態工程的研究和利用上。從根源上制止農業污染,使農業生產體現出經濟和環境雙重效益,並達到整體效益的化。改以往的粗放型的農業生產方式為依靠科技提高農業生產率的精密型的生態農業生產。強化對規模化畜禽養殖場的綜合治理,推廣畜禽養殖業糞便綜合處理,鼓勵建設養殖業和種植業緊密結合的生態工程。

2、加強規劃、合理安排企業布局。

對於蓬勃發展起來的鄉鎮企業,政府和有關部門要統一規劃、合理布局、綜合治理,並將這些措施與鄉鎮企業產業結構的調整以及區域布局結合起來。對鄉鎮企業帶來的污染物集中處理,也就是要因地制宜地建設城鎮污水處理設施和污水處理廠。在這些活動中,政府的引導和督促將起到關鍵性的作用,因為企業不會主動為環保去考慮布局,更不會主動投入太多的環保資金,這就要求政府在合理規劃鄉鎮企業布局和城鎮建設布局的同時,加大對環保的投入。發達國家的環境保護經驗表明,要控制水環境惡化的趨勢,環保投入要達到GDP的105%,要使環境改善則須達到GDP的2.5%。而我國目前鄉鎮企業的環保投入僅達到GDP的0.1%,與水環境的保持與改善要求的投入標准差距太大。在合理規劃鄉鎮企業的同時,政府還要注重小城鎮建設規劃。應制定有利於水環境污染防治的經濟技術政策及能源政策。鼓勵發展對水環境無污染、少污染的行業和產品,提倡水資源的循環利用,推動工業清潔生產和生態農業的進程。有機的把發展鄉鎮企業和小城鎮建設結合起來。

3、加快水污染處理設施建設,提倡農村社區污水的處理和資源化。

首先,加快廢水排放和污水處理系統的建設,以政府投資為主,籌集民間資金為輔,加快廢水處理設施的上馬和廢水處理廠的建設。盡量做到水的循環利用,提倡節約、高效用水。其次,按「污者付費原則」,通過合理的價格體系,徵收生活污水處理費,多渠道加大環保投入。

綜上所述,針對水環境污染問題在我國廣大農村日益嚴重惡化的現象,我們必須對症下葯,盡快採取各種有效措施來遏止這種不利局面的惡化。農村問題自古以來就是我國政府管理工作的重中之重,農民問題更是關系國計民生的頭等大事,而農村水環境問題則是與農村的經濟生活聯系最為緊密的,特別是在當今農村經濟飛速發展的今天,農村水環境污染的問題更不能被忽視,我們應該吸取以往城市發展中水污染對人們的經濟生活帶來的嚴重影響的教訓,充分重視農村等欠發達地區的水環境問題,努力實現農村地區的經濟和環境保護的持續、健康、和諧的發展!

2.水污染調查報告範文


一、調查原因

隨著科學的發展、時代的進步、人口的迅猛增長,人類賴以生存和發展的環境受到污染,生態環境受到破壞,生態系統也會隨之遭到破壞,環境問題已從地域性走向全球性,人類必須愛護地球,共同關心和解決全球性的環境問題。因為我們「只有一個地球。」

水是生命的源泉,沒有水,我們的生活將無法繼續下去。水資源的污染及短缺是當今社會面臨的一個重大問題。雖然我市不是一個用水緊張的城市,但水污染卻存在,並與每個市民都息息相關。為此,我通過詢問形式對我市水污染進行調查。

二、調查過程

第一步:實地調查,首先,我隨老爸來到長安航管站,向我爸的老同學劉海華了解長安鎮河道情況,然後,乘坐快艇,游覽了崇長港及長山河和泰山港,一路上,劉海華叔叔向我介紹幾十年前,這些河道,是長安鎮附近的主要航道,水清透徹,而現在垃圾遍布河道,一股臭味撲鼻而來。水污染主要原因:人為因素:泥河上流工廠的廢水排放,城市布下水道安置此處,污水經管道排入河中,泥河附近大量農田,農民使用的化肥、農葯等化學物質流入其中,致使藻類瘋長,魚類大量死亡,居民的環保意識差,經常將生活垃圾倒入河中。

第二步:調查分析,經過實地調查,我認為水污染給居民帶來的危害。地下水污染,用水困難,河水污染嚴重滋生大量蚊蟲,河水散發刺激性氣味,對人們的健康產生不利影響。

三、調查結論

為了改善河道環境,應盡快開展河水、河岸等全方面的治理工作。首先,對污染源進行處理,杜絕工廠、養豬場把污水、糞渣直接排放到河流中,應集中處理,避免其對環境的不利影響。然後,對河邊、河道中的建築材料(已廢棄的)進行清除,並對水道進行整改,進一步將河內的垃圾、淤泥清除,可動員沿岸居民及利用大型機器清除。後在河邊種樹,植草皮,建立綠化帶,避免沙土流失。

為了對河道環境的保障,應對附近的工廠、養豬場等加大管理力度,對污染河流的行為進行嚴肅的處理,並且對沿岸居民及全體市民進行環保教育,增強環保意識,河流的環境,主要還是在於大家的思想意識,故人們應自覺保護河道,保護環境。這樣,一條全新河流才會永遠呈現在人們面前。

總之,要明確,環境受破壞,受影響的還是人們自己,我們應當充分了解環境與人類之間的相互關系,充分認識到人們改變環境的利與弊。影響水資源的因素還遠遠不止這些。雖然我們的調查研究也許還不夠成熟,但希望能把環境問題,水污染問題在人們的腦海中的地位提高,這樣才會使出現的問題一天天好轉。

3.水污染調查報告範文


中國是一個乾旱、缺水嚴重的國家,是水資源最貧乏的國家之一,淡水資源總量僅有28000億立方米,人口佔全世界的20%,但水資源只佔全球的6%,人均只有2200立方米。紹興是中國水資源最豐厚的地區之一,但近年來的污染竟使得中國防大學6個省市嚴重缺水,以下是我就紹興水資源污染情況作的調查報告。

一、河道污染情況調查

城北污染企業在晚上偷偷往河裡排放污水,導致河水變臭變臟,不良餐飲業到河裡丟棄塑料袋,一次性筷子,一次性餐盒等,附近居民在河裡洗衣服,把肥皂水以及衣服上的臟東西洗到河裡,導致河內磷過剩,河面上的水生植物瘋狂生長,把整個河面蓋住,使大量魚類死亡,這樣的事例比比皆是,大部分河道里的水已經變得渾濁不堪,我們將面臨缺水的危機。

二、河面觀測

經過各位同學在家附近河道表面觀測後,毛俞樂同學發現河面上有不少油脂和死魚,漂在河面上十分礙眼,諸博航同學則看到一片又一片的水葫蘆,劉語菲同學看到河水色澤渾濁,這已是一個不容爭辯的事實!曾經聽到過一個笑話,一輛運送河水的貨車開在山野里沒油了,周圍也沒有加油站,司機看了一眼漂滿油脂的河水,果斷地舀了一些灌進油箱,不一會兒,貨車又在山野里開了起來,這足以說明現在的水質有多糟糕!

三、家庭用水急劇上升

經過調查,我們得知朱璐夢家一個月用水8噸,她外婆家一個月用水9噸,她阿姨家竟用水15噸!除非是浪費水,月用水量絕對不可能達到這么多!張函巧家月用水量則在7噸~9噸之間徘徊,她奶奶家的用水量則在6噸~9噸之間遊走。而我們家一個月用水量達9噸,我外婆家卻只有3噸!這一系列的數據告訴我們——現在人們的用水量都大於以前人們的用水量,毋庸置疑我們的後代的用水量將會打破常規!

四、結論

通過各種調查,我們發現現在的水資源越來越少,水質變差,就連中國曾經的淡水湖——鄱陽湖裡的水也已經乾旱!如果我們再不節約水資源,地球上最後一滴水就將是我們的眼淚!

4.水污染調查報告範文


一、調查目地:了解小區旁小河的水污染情況。

二、調查對象:上面打魚的人,據那個叔叔說:「最近幾年污染很大,河裡的小魚和小蝦也逐漸死光了。

上面還有一些綠色的水葫蘆和一條條水藻,還有一些居民老是把剩菜剩飯倒到河裡。」

三、調查內容:水有多少臟。

四、調查方式:做實驗。

[1]我舀了一些水回家,用餐巾紙在干凈的水裡浸了一下是無色的,在剛才帶回的水裡浸了一下是灰色的,還散發著臭味。

[2]在干凈的水裡放了一條小魚和在剛才帶回來的水中放一條小魚。明顯是在干凈的水中,小魚生活的好,如果在臟水中,過不了幾天它就會死了。

五、調查時間:2015年**月**日。

六、調查結果:造成水污染的是一些不文明的居民和印染廠偷偷排放的污水。

七、調查體會:我們要保護水資源的干凈,不要往河裡亂扔垃圾。如果看見有人往河裡扔垃圾,要及時阻止他們。保護水資源,不是一天兩天的事,要從小事做起!

5.水污染調查報告範文


原來我們家小區門口有一條清清的小河,每天成群結隊的魚兒在那裡嬉戲跳舞,清清的河水,歡快的魚兒,我們陶醉其中。

但是,最近我卻發現小河沒有那麼清澈了,還有很多小魚都死了,河裡有好多垃圾,我有些懷疑,因此,對小河的污染進行了調查。

調查

我觀察了周圍的環境,植物生長得很茂密,我排除了自然災害的可能性,可水中的死魚非常多,垃圾也不少。這樣,就只能是人為造成的。

分析

1小河附近有一道公路,那裡每天都有很多車輛通過。

2附近還有很多商販在賣小吃。

3還有許多飯館,小吃店和果汁店。

4我們看到了兩個污水排放管道。

結論

1有很多人往小河裡扔垃圾,吐痰,小魚吃後,導致食物中毒而死亡。

2由於有污水排放到河裡,有的魚是直接喝了污水被毒死。

這些信息告訴我,小河污染都是人為造成的,看著清澈見底的小河變成了臭水溝,難道我們沒有責任嗎?

建議

河道是我們大家的,讓我們拉起手來,不要為了個人方便而污染小河,我們應該自覺做到保護我們的小河,讓我們的環境變得更加每好與和諧。

㈣ 曝氣生物濾池處理工業綜合廢水提標改造技術研究

針對曝氣生物濾池工藝不具備脫氮除磷功能,特別是在處理工業綜合廢水時出水不能穩定達標排放的問題,提出了「化學除磷+氣浮除油+水孫局解酸化+前置反硝化曝氣生物濾池」的全流程處理工藝,並通過中試研究對處理流程以及各個處理單元運行參數進行了優化,在水解酸化2.0h,投加混凝劑硫化鐵量為40.0mg/L,氣浮溶氣壓力3.5kg/cm2,AO池125%迴流比,水力停留時間為20.0min的條件下,其出水達到國家一級A排放標準的要求。並對升級改造的建設和運行費用進行了核算,為同類污水處理廠的升級改造工程提供理論依據和數據支持。
1前言
遼河流域的渾河中部城市群是遼寧乃至東北老工業區振興的核心區域,隨著工業化並模進程的高速發展,流域內工業園區正在蓬勃興起,隨之產生了大量工業綜合廢水。該類廢水經園區內處理後,仍含有大量極難降解的有機污染物,水質可生化性極差,給所匯入的城鎮污水處理廠帶來較大的處理難度並造成干擾,直接導致出水不達標的問題[1~3]。與此同時,流域水環境質量改善的需求對污水處理廠出水提出了更加嚴格的要求,根據遼寧省環保局與遼寧省質量技術監督局聯合頒布的《遼寧省污水綜合排放標准》的要求,市級以上污水處理廠出水COD(chemicaloxygendemand)、NH3-N(氨氮)和TN(總氮)的濃度要達到國家一級A排放標准,故污水廠目前亟需結合現有處理工藝進行升級改造研究,實現工業綜合廢水的達標排放[4~8]。
曝氣生物濾池工藝由於其佔地面積小、處理效果好等特點,在遼河流域內的污水處理廠尚佔有一定的比例,出水基本達到二級排放標准,但隨著難降解工業綜合廢水的匯入,導致濾池板結堵塞、生物膜脫落等現象的產生。針對工業綜合廢水存在的問題和曝氣生物濾池的特點,進行了水解酸化和氣浮除油的預處理研究,以及化學除磷和前置反硝化深度脫氮研究,使其出水達到一級A排放標准,為該類污水廠的升級改造提供理論依據和數據支持[9~13]。
2試驗裝置與試驗方法
2.1試驗水質
該研究選取沈陽市鐵西區某污水處理廠,該污水廠日處理水量40萬t,其中60%以上的進水為工業綜合廢水。如表1所示,從污水處理廠的進水水質指標來看,其有機污染物和固體懸浮物(SS)濃度都比較高,經過水廠現有的兩級曝氣生物濾池工藝處理,出水基本上能夠達到國家二級排放標准,但對比一級A標准,一方面需要進一步去除水中的COD、SS和NH3-N;另一方面還需要增加脫氮除磷的功能。
2.2試驗裝置
針對工業綜合廢水的特性以及污水處理廠現有工藝特點,設計了深度處理的全流程工藝,中試裝置主要包括混凝池、氣浮池、水解沉澱池和前置反硝化曝氣生物濾池4個處理單元。
如圖1所示,其中絮凝池柱高1.6m,直徑0.6m,原水和混凝劑溶液均從距底部1.2m處注入,內設JJ-1大功率電動攪拌器,使原水和混凝劑充分混合,以去除原水中的SS和TP;溶葯池採用相同設計參數,同樣使用攪拌器使固體混凝劑充分溶解為液狀,並由蠕動泵注入絮凝池;氣浮池接觸室高2.2m,直徑0.12m,分離室高2.4m,直徑0.32m,加入混凝劑的原水使用DP-130高壓隔膜泵、與空氣充分混合的迴流液使用尼克尼20FPD04Z氣液混合泵從接觸室底部共同注入,經分離室將其中的泡沫殘渣去除,並從頂部平台排出;水解沉澱池柱高4.5m,直徑0.5m,盛裝厭氧污泥,污水從底部注入,經污泥層去除部分SS和COD;前置反硝化曝氣生物濾池使用柱高4.3m,直徑0.5m的有機玻璃濾柱填裝火山岩濾料,濾柱中的火山岩濾料粒徑分別為6~8mm、4~6mm和3~5mm,其中承托層高0.3m,濾料高4.0m,水面超高1.0m,設計三級生物濾柱分別為反硝化DN池、氧化硝化CN池和硝化N池,即分別進行反硝化、氧化和硝化反應,對污水中的TN、COD和NH3-N進行生化去除,CN池和N池使用空壓機進行曝氣,三級濾柱均採用向上流方式,使用高壓隔膜泵從底部注水。中試裝置日處理水量2t。
2.3水質分析方法
TN的測試採用過硫酸鉀氧化法,NH3-N的測試採用納氏試劑比色法,硝酸鹽氮的測試採用麝香草酚分光光度法,亞硝酸鹽氮的測試採用N(-1-奈基)-乙二胺分光光度法,COD的測試採用重鉻酸鉀法,DO(溶解氧)的測試使用溶解氧快速測定儀[14]。
3試驗結則蔽讓果與分析
3.1運行參數優化
3.1.1水解酸化預處理
水解酸化單元的作用是在進一步去除水中COD和SS濃度的同時,提高水質的可生化性[15~17],其主要控制參數為HRT(水力停留時間)。現通過對進出水COD、SS濃度以及BOD/COD的檢測與分析優化HRT。
如圖2所示,當HRT在2.0h以下時,COD的去除率不足30.0%,由於時間較短,這部分去除的主要是水中懸浮狀COD。而隨著HRT的逐漸提高,水中難降解有機污染物在水解和發酵細菌的作用下,轉化為單糖、氨基酸、脂肪酸等小分子、易降解的有機物[18~20],COD的去除率也不斷升高,達到50%以上。隨著出水COD濃度的不斷下降,出水BOD的濃度也隨之下降,但由於工業廢水中的難降解有機物濃度所在比例較高,出水COD濃度下降的速率要高於出水BOD濃度下降的速率,出水BOD/COD的比值也隨之升高。如圖3所示,進水BOD/COD的值基本在0.3~0.4,當HRT大於2.0h時,出水BOD/COD的值升至0.4以上。而當HRT大於4.0h時,水中的難降解有機物已完成水解,出水COD的去除率變化不大,BOD/COD的值也開始回落。所以,當HRT介於2.0~4.0h時,出水BOD/COD的值保持在0.4以上,屬於較易進行生化處理的范圍,有助於後續生物濾池的進一步處理。考慮到在流量不變的條件下,構築物的體積會隨著HRT的升高而增大,故確定水解酸化的HRT為2.0h。
此外,水解池對原水中的SS也有較強的去除能力。由於工業綜合廢水中含有較多的粘渣和懸浮物,雖然通過混凝氣浮工藝可以去除50.0%,但出水的SS濃度仍在60.0mg/L,如果這些SS直接進入濾池,將會增加濾池的反沖洗次數。經過水解池厭氧污泥層對水中顆粒物質和膠體物質的截留和吸附作用,出水的SS得到進一步的去除,其濃度基本保持在40.0mg/L以下,去除率在44.0%以上。由於水解池對SS的去除主要是通過截留和吸附作用,故過長的HRT對SS的去除並無明顯的效果,所以對於佔地面積有限的污水處理廠,水解池在升級改造過程中完全可以取代初沉池,起到初級去除原水中的SS和COD的作用。
3.1.2強化化學除磷
試驗選用Al(2SO4)3、聚合氯化鋁(PAC)、FeCl3和聚合硫酸鐵(PFS)四種常用的混凝劑,通過對原水以及出水中TP濃度的考察,確定使用PFS為強化化學除磷試驗的混凝劑,並對其投葯量和攪拌時間兩個參數進行優化[21~24]。
如圖4所示,隨著混凝劑PFS投加量的增加,水中TP的濃度不斷減少。當投葯量達到30.0mg/L時,水中TP的濃度已低於0.5mg/L,去除率達到75.0%以上。根據鐵鹽除磷的化學方程式可知,每去除1mg的P,需要1.8mg的Fe。原水中TP的濃度在1mg/L至4mg/L,若使出水TP濃度小於0.5mg/L,最多需要12.0mg/L的硫酸鐵,以至少40.0%有效成分計算,需要30.0mg/L。考慮水解等因素,最終選定投葯量為40.0mg/L,此時的出水TP濃度為0.3mg/L。可以保證出水水質符合一級A排放標準的要求。
確定PFS的投葯量後,對攪拌時間進行了優化。在投葯量40.0mg/L條件下,改變攪拌時間,測定出水TP濃度。攪拌時間及進出水TP濃度和去除率如圖5所示,隨著攪拌時間的增長,水中TP的濃度不斷減少。時間從5.0min增加到15.0min,水中TP的去除率提高了5.1%,而從15.0min增加到30.0min,去除率僅提高了2.0%,故過長的攪拌時間對TP的去除並無顯著的效果,反而會增加額外的能源消耗和構築物的建築體積。由於出水TP濃度均小於國家一級A標准要求的0.5mg/L,故從運行成本上考慮,確定最佳攪拌時間為15min。
3.1.3高效氣浮除油
原水與混凝劑PFS混合後進入氣浮池,目的是將水中造成濾池堵塞的油污以及混凝產生的泡沫殘渣去除。氣浮池採用加壓溶氣氣浮方式,主要有溶氣壓力和迴流比兩個控制參數,通過對進出水含油量的檢測分析,優化氣浮單元的運行參數[25,26]。溶氣壓力對油類去除的影響如圖6所示,出水含油量隨溶氣壓力的變化趨勢可分為三個階段。
當壓力小於2kg/cm2時,氣浮形成的氣泡粒徑還較大,對水中絮狀顆粒的去除能力有限。在壓力增加到3.5kg/cm2的過程中,隨著氣泡粒徑的減小,氣浮的去除能力也有了顯著的提高。但此後即便形成氣泡的粒徑不斷減小,出水含油量卻不再降低,這說明並非氣泡粒徑越小氣浮效果越好,而是當氣泡粒徑和水中雜質粒徑越接近時效果越好。一般的,氣浮工藝的微氣泡平均粒徑在40.0μm左右,從試驗中可以看出,當溶氣壓力為3.5kg/cm2時就可以取得較好的去除效果,此時出水含油量為2.73mg/L,去除率為84.6%,而過高的溶氣壓力只會增加動力的輸出和電能的消耗。
迴流比對含油量的去除影響如圖7所示,氣浮的去除效果受迴流比的影響較大。當迴流比低於30%時,由於形成的氣泡較少,對水中油類的去除能力較差。當迴流比增大到30.0%~50.0%時,氣浮的去除效果達到最佳。而當迴流比增大到50.0%以上時,去除率卻出現下降,經分析認為這是由於水中空氣比例過高,微氣泡聚合成粒徑較大的氣泡,導致氣浮效果變差。故確定氣浮除油的迴流比為50.0%,此時出水含油量為3.12mg/L,去除率為82.9%。
3.1.4A/O深度脫氮
脫氮單元採用前置反硝化曝氣生物濾池。其控制參數主要有迴流比、HRT和曝氣量,通過對出水COD、TN、NH3-N和DO的檢測,對各個參數進行優化。
迴流比是前置反硝化脫氮工藝中最為重要的控制參數,它直接影響水中TN的去除效果。根據中試設計中的BOD負荷和硝化負荷計算以及COD負荷校核,在單池HRT為45.0min,氣水比為5∶1的條件下,出水可穩定實現一級A達標排放,首先在50%~250%的范圍內對參數迴流比進行考察。如圖8所示,當迴流比從50%增加到150%時,出水TN的濃度在不斷下降,TN的去除率也不斷提高。這是由於在迴流比較低時,水中作為電子受體的硝酸鹽不足,影響了反硝化的速率,而隨著迴流比的升高,有足夠的硝酸鹽作為電子受體,並利用水中的有機物作為電子供體,在無需外加碳源的條件下,完成反硝化和深度脫氮的目的。但迴流比從150%繼續升高時,出水TN的濃度卻不再繼續降低,增加到200%時TN的去除率已呈下降趨勢。一方面,隨著硝酸鹽濃度的不斷升高,造成水中的碳源不足進而影響反硝化的進行;另一方面,隨著迴流比的增加,進入DN池的溶解氧也在增加,而溶解氧可作為電子受體,競爭性的阻礙硝酸鹽的還原,同時還將抑制硝酸鹽還原酶的形成。由於迴流比和HRT越高所需反應池構築物容積越大,從水廠實際升級改造工程考慮,對100%、125%、150%和175%四個迴流比以及各個迴流比下出水TN隨HRT的變化進行進一步研究。
增加,出水TN的濃度也隨之降低,微生物對基質的去除率也越高。但一般的,當HRT增加到20.0min以上時,出水TN濃度的下降趨勢以及去除率的增加都變得平緩,而且所需的構築物體積也在不斷增加。為了確保出水TN濃度達到一級A排放標准要求15.0mg/L以下時,選擇迴流比為125%,HRT為20.0min的參數條件,此時出水TN濃度為12.74mg/L,去除率為67.0%。
溶解氧是維持好氧微生物生長代謝的重要因素,對於曝氣生物濾池來說,水中溶解氧的供給,即空壓機的曝氣量也是主要的能源消耗所在,過低的曝氣量將降低微生物的新陳代謝能力;而過高的曝氣量一方面會造成經濟的浪費,一方面又會導致微生物的活性過度增強,在營養供給不足的情況下,導致生物膜發生自身的氧化分解。試驗通過對CN池進水COD濃度以及去除率的監測,對曝氣量進行參數優化。如圖10所示,隨著曝氣量的增加,出水COD的濃度隨之不斷下降,去除率也在不斷提高。但在曝氣量增加到0.8m3/h時,兩項指標的變化都不大,這說明過多的曝氣量和溶解氧對於COD的去除已無太大作用,只會增加動力費用。故確定CN池的曝氣量為0.8m3/h,此時出水DO濃度在2.5mg/L左右,氣水比為4∶1。CN池的出水已有較高的DO濃度,如圖11所示,在進入N池後,在較低曝氣量的條件下,對水中的NH3-N便有較高的去除率。同出水COD濃度的變化率相似,出水NH3-N濃度也隨著曝氣量提高而不斷降低,為了達到一級A排放標准,確定N池的曝氣量為0.6m3/h,此時出水DO濃度在3.0mg/L左右,氣水比為3∶1。
3.2技術經濟分析
該污水處理廠目前擁有日處理水量4×105t的兩級曝氣生物濾池一套,單池HRT為45.0min,兩級濾池氣水比分別為3∶1和4∶1。根據中試研究結果,如採用前置反硝化曝氣生物濾池工藝,需要增加125%的迴流液,但由於HRT減少至20.0min,根據計算同樣可以利用現有兩級濾池分別作為CN池和N池,並有少量的富餘,只需增加一套前置DN池,以及迴流管道,同時還需對水泵和曝氣風機設備進行更換,如圖12所示。如採用後置反硝化曝氣生物濾池工藝,可將現有兩級濾池分別作為CN池和N池,另外還需修建一套DN池,以及甲醇投加和儲備間,同時要對曝氣風機設備進行更換,如圖13所示,虛線部分為新建構築物。
根據中華人民共和國住房和城鄉建設部頒布的《全國市政工程投資估算指標》以及遼寧省建築、安裝、市政工程預算定額、費用定額和近年來的同類工程預、決算資料分別對兩種工藝流程升級改造的建設成本和運行費用進行估算,如表2所示。
經過經濟費用估算,前置反硝化工藝較後置反硝化工藝,在投資總費用方面,由於構築物建設和設備購置原因要高出1330.12萬元;而在年運行費用方面,由於無需外加碳源則要低1915.01萬元。即在升級改造完成後第2年,兩工藝的建設和運行總費用將會基本持平,此後前置反硝化工藝較之後置反硝化工藝每年將節省大量的運行成本,故從長遠考慮,推薦採用前置反硝化作為水廠的深度脫氮工藝。
通過工業綜合廢水深度處理全流程工藝的中試研究,結合該污水處理廠現有工藝情況,制定了升級改造的工藝路線,如圖14所示。
4結語
1)由於工業綜合廢水具有高油高粘渣、可生化性差又極難降解的問題,在對其進行處理時需要增加必要的預處理工藝。通過中試研究表明,高效氣浮除油工藝可以有效去除廢水中的油污、粘渣等雜質;水解酸化工藝一方面能夠有效提高水質的可生化性,同時還能有效去除水中的SS,具有良好的預處理效果。在氣浮溶氣壓力3.5kg/cm2、迴流比50%、水解酸化HRT2.0h條件下,能夠去除原水中40%的有機污染物,並將原水的BOD/COD提高至0.4以上。
2)通過對比試驗研究和技術經濟分析,前置反硝化深度脫氮工藝對於以曝氣生物濾池為主體的污水廠升級改造具有更廣泛的應用前景,在節省大量運行成本的前提下,充分利用原水中的碳源,實現污水的深度脫氮。在迴流比為125%,HRT為20.0min的條件下,出水TN和NH3-N濃度均穩定達到一級A排放標准。
3)通過中試研究,研發了針對工業綜合廢水的「化學除磷+氣浮除油+水解酸化+前置反硝化曝氣生物濾池」的深度處理全流程工藝。長期運行數據表明,該工藝對於難降解、波動幅度大的工業廢水,具有較好的抗沖擊能力和處理效果,出水能夠穩定達到國家一級A排放標准。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

㈤ 請教污泥負荷與容積負荷

SBR反應池池容計算系指傳統的序批式活性污泥反應池,而不包括其他SBR改進型的諸多反應池(如ICEAS、CASS、MSBR等)池容的計算。
現針對存在的問題提出一套以總污泥量為主要參數的綜合設計方法,供設計者參考。

1 現行設計方法

1.1 負荷法
該法與連續式曝氣池容的設計相仿。已知SBR反應池的容積負荷或污泥負荷、進水量及進水中BOD5濃度,即可由下式迅速求得SBR池容:
容積負荷法 V=nQ0C0/Nv (1)
Vmin=〔SVI·MLSS/106]·V
污泥負荷法 Vmin=nQ0C0·SVI/Ns (2)
V=Vmin+Q0
1.2 曝氣時間內負荷法
鑒於SBR法屬間歇曝氣,一個周期內有效曝氣時間為ta,則一日內總曝氣時間為nta,以此建立如下計算式:
容積負荷法 V=nQ0C0tc/Nv·ta (3)
污泥負荷法 V=24QC0/nta·MLSS·NS (4)
1.3 動力學設計法
由於SBR的運行操作方式不同,其有效容積的計算也不盡相同。根據動力學原理演算(過程略),SBR反應池容計算公式可分為下列三種情況:
限制曝氣 V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (5)
非限制曝氣 V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)] (6)
半限制曝氣 V=nQ(C0-Ce)tf/[LSS·Ns(ta+tf-t0)] (7)
但在實際應用中發現上述方法存有以下問題:
① 對負荷參數的選用依據不足,提供選用參數的范圍過大〔例如文獻推薦Nv=0.1~1.3kgBOD5/(m3·d)等〕,而未考慮水溫、進水水質、污泥齡、活性污泥量以及SBR池幾何尺寸等要素對負荷及池容的影響;
② 負荷法將連續式曝氣池容計算方法移用於具有二沉池功能的SBR池容計算,存有理論上的差異,使所得結果偏小;
③ 在計算公式中均出現了SVI、MLSS、Nv、Ns等敏感的變化參數,難於全部同時根據經驗假定,忽略了底物的明顯影響,並將導致各參數間不一致甚至矛盾的現象;
④ 曝氣時間內負荷法與動力學設計法中試圖引入有效曝氣時間ta對SBR池容所產生的影響,但因其由動力學原理演算而得,假定的邊界條件不完全適應於實際各個階段的反應過程,將有機碳的去除僅限制在好氧階段的曝氣作用,而忽略了其他非曝氣階段對有機碳去除的影響,使得在同一負荷條件下所得SBR池容驚人地偏大。
上述問題的存在不僅不利於SBR法對污水的有效處理,而且進行多方案比較時也不可能全面反映SBR法的工程量,會得出投資偏高或偏低的結果。
針對以上問題,提出了一套以總污泥量為主要參數的SBR池容綜合設計方法。

2 總污泥量綜合設計法

該法是以提供SBR反應池一定的活性污泥量為前提,並滿足適合的SVI條件,保證在沉降階段歷時和排水階段歷時內的沉降距離和沉澱面積,據此推算出最低水深下的最小污泥沉降所需的體積,然後根據最大周期進水量求算貯水容積,兩者之和即為所求SBR池容。並由此驗算曝氣時間內的活性污泥濃度及最低水深下的污泥濃度,以判別計算結果的合理性。其計算公式為:
� TS=naQ0(C0-Cr)tT·S (8)
� Vmin=AHmin≥TS·SVI·10-3 (9)
� Hmin=�Hmax-ΔH� (10)
� V=Vmin+ΔV� (11)
式中�TS——單個SBR池內干污泥總量,kg
tT·S——總污泥齡,d
A——SBR池幾何平面積,m2
� Hmax、Hmin——分別為曝氣時最高水位和沉澱終了時最低水位,m
ΔH——最高水位與最低水位差,m
� Cr——出水BOD5濃度與出水懸浮物濃度中溶解性BOD5濃度之差。其值為:
� Cr=Ce-Z·Cse·1.42(1-ek1t) (12)
式中�Cse——出水中懸浮物濃度,kg/m3
� k1——耗氧速率,d-1
� t——BOD實驗時間,d
� Z——活性污泥中異養菌所佔比例,其值為:
� Z=B-(B2-8.33Ns·1.072(15-T))0.5� (13)
� B=0.555+4.167(1+TS0/BOD5)Ns·1.072(15-T)� (14)
Ns=1/a·tT·S� (15)
式中�a——產泥系數,即單位BOD5所產生的剩餘污泥量,kgMLSS/kgBOD5,其值為:
� a=0.6(TS0/BOD5+1)-0.6×0.072×1.072(T-15)1/〔tT·S+0.08×1.072(T-15)� (16)
式中TS、BOD5——分別為進水中懸浮固體濃度及BOD 5濃度,kg/m3
�T——污水水溫,℃
由式(9)計算之Vmin系為同時滿足活性污泥沉降幾何面積以及既定沉澱歷時條件下的沉降距離,此值將大於現行方法中所推算的Vmin。
必須指出的是,實際的污泥沉降距離應考慮排水歷時內的沉降作用,該作用距離稱之為保護高度Hb。同時,SBR池內混合液從完全動態混合變為靜止沉澱的初始5~10min內污泥 仍處於紊動狀態,之後才逐漸變為壓縮沉降直至排水歷時結束。它們之間的關系可由下式表示:
� vs(ts+td-10/60)=ΔH+Hb (17)
� vs=650/MLSSmax·SVI� (18)
由式(18)代入式(17)並作相應變換改寫為:
〔650·A·Hmax/TS·SVI〕(ts+td-10/60)=ΔV/A+Hb (19)
式中 �vs——污泥沉降速度,m/h
� MLSSmax——當水深為Hmax時的MLSS,kg/m3�
ts、td——分別為污泥沉澱歷時和排水歷時,h
式(19)中SVI、Hb、ts、td均可據經驗假定,Ts、ΔV均為已知,Hmax可依據鼓風機風壓或曝氣機有效水深設置,A為可求,同時求得ΔH,使其在許可的排水變幅范圍內保證允許的保護高度。因而,由式(10)、(11)可分別求得Hmin、Vmin和反應池容。

3 工程算例 �

3.1 設計基本條件
某城鎮平均污水處理量為10000m3/d,進、出水質見表1。

表1 設計進、出水質 項目 CODCr(mg/L) BOD5(mg/L) SS(mg/L) NH3-N(mg/L) NO3-N(mg/L) TP(mg/L) 水溫(℃) pH 進水 380 200 200 40 0 4 15 出水 60 20 20 5 5 0.5 6~9
3.2 SBR池容計算
按前述設計方法及推薦採用的參數,以及提出的總污泥量綜合計演算法和相應的參數推求公式,依表1的要求進行SBR池容計算。為便於結果比較,該工程設SBR池2座,交替分批進水,周期長6h,Hmax=4.2m,變化系數k2=1.2,計算結果見表2。

表2 單個SBR池參數及結果比較 設計參數一法二法三法四法新法 Nv〔kgBOD5/(m3·d)〕 0.50 0.24 Nv〔kgBOD5/(kgMLSS·d〕 0.255 (0.074) (0.074) 0.074 SVI(mL/g) 90 150 (120) (120) 120 MLSSmax(mg/L) 3000 (3235) (3235) 3235 a〔kgMLSS/(kgBOD5·d)〕 0.906 tT·S(d) 15 TS(kg) (12571) (12571) 12571 Z(%) 0.302 ta(h) (3.0) (3.0) ts+td(h) 1.0+1.0 A(m2) 476 438 1984 1798 925 ΔH(m) 3.07 2.85 2.57 2.57 1.62 Vmin(m3) 540 588 3234 2931 2386 V(m3) 2000 1838 8333 7550 3886 ΔV(m3) 1460 1250 5099 4619 1500 HRT(h) 9.6 8.8 40.0 36.2 18.7 註:①一法至四法依次指:容積負荷法、總污泥負荷法、曝氣時間內負荷法、動力學設計法,新法系指總污泥量綜合設計法;
②前四種方法中參數 A、ΔH值系由V及Hmax反推而得,列出目的是為便於比較;
③一法和二法中Ns、Nv、SVI值系直接引用相應參考文獻中採用的數據,其他方法中凡帶( )者為文中假定或移用新法推算值。

4 設計方法評價

根據表2結果進行合理性分析,對SBR池容設計的各種方法作綜合評價如下:
① 曝氣時間內負荷法和動力學設計法所得池容明顯偏大,停留時間過長,ΔH已超出允許范圍,實際的MLSSmax僅為1508 mg/L和1655mg/L,要達到假定的活性污泥濃度必須使總污泥齡達30d左右,這樣則污泥負荷過小,不利於除磷脫氮。故該兩法若用於目前的設計,尚有待改進和完善,但其設想及動力學的理論原理和對SBR池容設計的進步將具有一定的研究價值。
② 容積負荷法和總污泥負荷法實質上系屬同一種方法,當採用相應參考文獻中的設計參數時所得池容偏小、停留時間過短、ΔH也已超出允許范圍;當負荷參數採用總污泥量綜合設計法的公式推算值時,則所得SBR池容趨於合理、偏差縮小,但仍然存有ΔH、Hmax等參數與沉降速度、沉澱面積及保護高度之間的關系相脫節的缺陷,最終將影響處理效果。
因此該兩法宜謹慎採用,特別是對公式中的負荷參數應以通過計算代替假設,但對式(15)應進行修正,以與該兩法的計算公式相適應。
③ 總污泥量綜合設計法中所考慮的因素及出發點均與SBR反應池的功能特性密切結合,避免了前幾種方法中所存在的問題及缺陷。通過包括硝化、反硝化和厭氧三個反應階段所需反應歷時及階段污泥齡的校核計算(方法略)得三個階段的反應歷時分別為2.1、1.4、0.5h;所需污泥齡分別為5、8及10d。而本算例假定總污泥齡為15d,其SBR池容完全能滿足進行除磷脫氮的需要,且維持了合理的負荷及活性污泥濃度。
④ 從有關參數得知:總污泥量綜合設計法SBR池容合理;ΔH在允許范圍內;MLSSmax=3235mg/L,在3000~4000mg/L之間;Ns=0.074kgBOD5/(kgMLSS·d),在0.06~0.10kgBOD5/(kgMLSS·d)范圍內;Nn=0.013kgNH3-N/(kgMLSS·d),符合除磷脫氮負荷要求;MLSSmin=5269mg/L近似於6000mg/L;ΔV/V=38.6%≤40%,符合最佳充水比。
該法在所有設計參數中除SVI、ts、td按經驗假定外,均依據進水水質由公式推算而得,不會產生與其他現行方法的矛盾。同時在推求池容過程中確定了SBR池的幾何尺寸,這是其他方法所不及的。

電 話:(0571)88821434 88072824×6910
收稿日期:2002-03-22

㈥ 水源質量的主要哪些考慮參數

水環境質量指數的6項指標有:地下水水質超Ⅳ類比例、主要地表水體劣Ⅴ類斷面比例、近岸海域水質超Ⅳ類比例、主要湖泊富營養化比例、單位水資源量污水負荷、區域水環境容量超載率。

水環境質量指數的計算和具體考核水源地、主要流域和湖庫的水環境質量有關,計算方式如下:水環境質量指數=飲用水源地水環境質量指數×0.40+主要流域、湖庫、水環境質量指數×0.60。

(6)如何計算某流域污水排放的氮負荷擴展閱讀:

水體富營養化是一種有機污染類型,由於過多的氮、磷等營養物質進入天然水體而惡化水質。施入農田的化肥,一般情況下約有一半氮肥未被利用,流入地下水或池塘湖泊,大量生活污水也常使水體過肥。

過多的營養物質促使水域中的浮游植物,如藍藻、硅藻以及水草的大量繁殖,有時整個水面被藻類覆蓋而形成「水華」,藻類死亡後沉積於水底,微生物分解消耗大量溶解氧,導致魚類因缺氧而大批死亡。

㈦ 污水COD過低如何處理

COD是判斷水重要的污染指標之一,COD低說明該水受污染的程度小,污水廠國標的排放為60mg/l,太湖流域為40mg/L.。

㈧ 污水費是按什麼標准收取的

污水排污費按排污者排放污染物的種類、數量以污染當量計征,每一污染當量徵收標准為0.7元。對每一排放口徵收污水排污費的污染物種類數,以污染當量數從多到少的順序,最多不超過3項。其中,超過國家或地方規定的污染物排放標準的,按照排放污染物的種類、數量和本辦法規定的收費標准計征污水排污費的收費額加一倍徵收超標准排污費。對於冷卻水、礦井水等排放污染物的污染當量數計算,應扣除進水的本底值。污水處理費的徵收標准,按照覆蓋污水處理設施正常運營和污泥處理處置成本並合理盈利的原則制定,由縣級以上地方價格、財政和排水主管部門提出意見,報同級人民政府批准後執行。污水處理費的徵收標准暫時未達到覆蓋污水處理設施正常運營和污泥處理處置成本並合理盈利水平的,應當逐步調整到位。污水處理的目的就是對污水中的污染物以某種方法分離出來,或者將其分解轉化為無害穩定物質,從而使污水得到凈化。一般要達到防止毒物和病菌的傳染;避免有異嗅和惡感的可見物,以滿足不同用途的要求。污物處理基本方法是用物理、化學或生物方法,或幾種方法配合使用以去除污水中的有害質,按照水質狀況及處理後出水的去向確定其處理程度,污水處理一般可分為一級、二級和三級處理。 一、污水處理基本方法:
1、一級處理採用物理處理方法,即用格柵、篩網、沉沙池、沉澱池、隔油池等構築物,去除污水中的固體懸浮物、浮油,初步調整pH值,減輕污水的腐化程度。污水經一級處理後,一般達不到排放標准(BOD去除率僅25-40%)。故通常為預處理階段,以減輕後續處理工序的負荷和提高處理效果。污水處理基本方法:
2、二級處理是採用生物處理方法及某些化學方法來去除污水中的可降解有機物和部分膠體污染物。經過二級處理後,污水中BOD的去除率可達80-90%,即BOD合量可低於30mg/L。經過二級處理後的水,一般可達到農灌標准和污水排放標准,故二級處理是污水處理的主體。但經過二級處理的水中還存留一定量的懸浮物、生物不能分解的溶解性有機物、溶解性無機物和氮磷等藻類增值營養物,並含有病毒和細菌。因而不能滿足要求較高的排放標准,如處理後排入流量較小、稀釋能力較差的河流就可能引起污染,也不能直接用作自來水、工業用水和地下水的補給水源。
3、三級處理是進一步去除二級處理未能去除的污染物,如磷、氮及生物難以降解的有機污染物、無機污染物、病原體等。污水的三級處理是在二級處理的基礎上,進一步採用化學法(化學氧化、化學沉澱等)、物理化學法(吸附、離子交換、膜分離技術等)以除去某些特定污染物的一種「深度處理」方法。顯然,污水的三級處理耗資巨大,但能充分利用水資源。污水處理相當復雜,處理方法的選擇,必須根據污水的水質和數量,排放到的接納水體或水的用途來考慮。同時還要考慮污水處理過程中產生的污泥、殘渣的處理利用和可能產生的二次污染問題,以及絮凝劑的回收利用等。
二、常用的污水處理基本方法可以分為以下幾種:
1、物理法:污水處理方法的選擇取決於污水中污染物的性質、組成、狀態及對水質的要求。一般污水的處理方法大致可分為物理法、化學法及生物法三大類。利用物理作用處理、分離和回收污水中的污染物。例如用沉澱法除去水中相對密度大於1的懸浮顆粒的同時回收這些顆粒物;浮選法(或氣浮法)可除去乳狀油滴或相對密度近於1的懸浮物;過濾法可除去水中的懸浮顆粒;蒸發法用於濃縮污水中不揮發性的可溶性物質等。污水處理基本方法:
2、化學法:利用化學反應或物理化學作用回收可溶性污物或膠體物質,例如,中和法用於中和酸性或鹼性污水;萃取法利用可溶性污物在兩相中溶解度不同的「分配」,回收酚類、重金屬等;氧化還原法用來除去污水中還原性或氧化性污染物,殺滅天然水體中的病原菌等。污水處理基本方法:
3、生物法:利用微生物的生化作用處理污水中的有機物。例如,生物過濾法和活性污泥法用來處理生活污水或有機生產污水,使有機物轉化降解成無機鹽而得到凈化。 法律依據:《中華人民共和國環境保護法》第二十八條 地方各級人民政府應當根據環境保護目標和治理任務,採取有效措施,改善環境質量。未達到國家環境質量標準的重點區域、流域的有關地方人民政府,應當制定限期達標規劃,並採取措施按期達標。

閱讀全文

與如何計算某流域污水排放的氮負荷相關的資料

熱點內容
活性炭陽離子交換容量 瀏覽:450
純凈水配送費用多少 瀏覽:53
安吉爾凈水器換ro膜圖 瀏覽:683
怎樣處理污水中的鏍 瀏覽:17
含酚廢水為什麼發黑 瀏覽:932
粗鹽過濾的圖片 瀏覽:311
污水管道檢驗記錄 瀏覽:440
用第三方刷過機怎樣刷回原廠 瀏覽:635
陶瓷膜和ro膜 瀏覽:258
工業污水坑塘整治方案 瀏覽:898
氨氮污水處理氣提 瀏覽:436
前置過濾器濾芯太緊擰不下怎麼辦 瀏覽:764
黑龍江省內回肇東用隔離嗎 瀏覽:605
pvc樹脂粉sg3型價格 瀏覽:764
組態王水處理實常式序 瀏覽:283
污水管道工程現場驗收注意什麼 瀏覽:751
aao污水處理工藝總氮 瀏覽:611
蒸餾時一開始中熱一段時間 瀏覽:980
迷你凈化器怎麼開 瀏覽:43
麵包車空調濾芯怎麼換 瀏覽:860