Ⅰ 印染廢水總氮超標怎麼處理
印染廢水總氮超標如何處理
一、印染廢水介紹以及總氮的來源
印染廢水屬於有機性廢水,其所有的污染物和顏色大多數是天然的有機物質以及人工合成的有機物質組成,印染廢水具有以下特徵:(1)色度大,(2)水質水溫以及pH變化大,(3)有機物含量比較高,而且含有比較強的毒性,(4)氨氮濃度高,主要是前面印花工藝中使用了尿素作為印花助劑,以及部分使用含氮染料,增加了印染廢水的處理難度。
其中總氮主要來源於尿素和含氮的有機染料,染料結構中含有硝基和胺基的基團化物質,我國環保部於2012年10月份制定了《紡織染整工業水污染物排放標准》,於2013年1月1日起正式執行,對於總氮的排放標準是,總氮直接排放20(35)mg/L,總氮間接排放是30(50)mg/L。
圖一 印染廢水污染物的來源
二、印染廢水現有的總氮去除辦法和瓶頸
現有大多數印染廢水是通過傳統的硝化反硝化方式去除總氮,是利用異養微生物氧化作用將有機氮類物質轉化為氨氮,氨氮再被自養硝化菌氧化為硝態氮,再通過反硝化細菌將硝態氮還原為氣態氮氣,從而達到脫氮的目的。
從反應方程式可以看出。反硝化細菌是利用有機物中的C作為電子供體,通過分解有機碳提供能量,再以硝酸根作為電子受體,將離子型氮源轉化為氣體的氮氣,由此實現有機物的分解以及氮的去除。
通過以上分析可以看出,在印染廢水總氮的轉化過程中,首先通過氨化將有機氮轉化為氨氮,再通過硝化作用變為硝態氮,最後通過反硝化作用變為氮氣。然而在實際的處理過程中,廢水的總氮往往超標,而氨氮卻是達標的,這是什麼原因導致的呢?
引起這一問題主要是卡在了反硝化脫氮環節,微生物通過厭氧反硝化的方式脫除硝態氮。但是由於實際現場的厭氧池中,微生物密度低,印染廢水的毒性大,以及停留時間過短,導致脫氮負荷急劇降低,從而導致厭氧效率低下,總氮最終都轉化為硝態氮,但是硝態氮難以轉化為氮氣。因此總氮超標。
三、高效反硝化脫氮設備去除印染廢水總氮
從第二段描述可知,需要通過提高厭氧微生物反硝化的效率,才能夠降低總氮,傳統方式通過增加厭氧池的體積來改善,佔地面積過大,而且效果極度不穩定,因此在總氮的提標上不可行。
根據硝態氮的特點,研發推出一款高效脫氮設備,這款設備能夠提升反硝化細菌的密度,增加反硝化細菌降解硝態氮的能力,反應僅需要半小時,就能夠徹底脫氮。其原理圖如下所示:
其中,在脫氮環節有以下核心技術:
第一,專業定製的填料;以天然火山石經過表面處理為填料,填料的比表面積很大,使得單位面積上富集大量的反硝化細菌膜,提升反硝化細菌的密度。
第二,增加氮氣釋放技術;在內部結構增加氮氣釋放模塊,脫氮效率高導致氮氣大量在水體中積累,通過氮氣釋放技術將廢水的氮氣快速脫除,從而有利於微生物繼續將硝態氮轉化為氮氣。
第三,精心培養的反硝化細菌;反硝化細菌經過篩選並經過各種條件的刺激,使得反硝化細菌能夠適應印染廢水高毒性,波動大的特點。
通過以上核心技術的加成,印染廢水只需要在設備中停留15-30分鍾,即可徹底脫氮,並且針對總氮濃度在500以下的廢水,均能夠去除。大大節省了設備的佔地面積。
該技術具有以下特點:
脫氮效率高——正常運行脫氮負荷2kg N/m³·d,出水總氮穩定達標
佔地面積小——10t/h的處理量,降低20mg/L總氮,佔地面積僅3㎡
易操作維護——全自動控制,無需更換填料,反沖洗水量少、頻率低
污泥產量少——反沖洗排出的少量微生物迴流至生化池繼續分解
運行成本低——去除20 mg/L的總氮,噸水成本約0.7元
四、總結
本文主要講述了印染廢水總氮的組成,其中大多數印染廢水氨氮都是達標的,但是硝態氮超標,然而傳統的生化技術對於硝態氮的去除能力有限,導致廢水中仍然殘留100-200mg/L的硝態氮。高效脫氮設備,增加反硝化的能力,佔地面積小,僅需要停留半個小時就可以徹底脫氮,目前在國內屬於行業領先。
Ⅱ 曝氣生物濾池處理工業綜合廢水提標改造技術研究
針對曝氣生物濾池工藝不具備脫氮除磷功能,特別是在處理工業綜合廢水時出水不能穩定達標排放的問題,提出了「化學除磷+氣浮除油+水孫局解酸化+前置反硝化曝氣生物濾池」的全流程處理工藝,並通過中試研究對處理流程以及各個處理單元運行參數進行了優化,在水解酸化2.0h,投加混凝劑硫化鐵量為40.0mg/L,氣浮溶氣壓力3.5kg/cm2,AO池125%迴流比,水力停留時間為20.0min的條件下,其出水達到國家一級A排放標準的要求。並對升級改造的建設和運行費用進行了核算,為同類污水處理廠的升級改造工程提供理論依據和數據支持。
1前言
遼河流域的渾河中部城市群是遼寧乃至東北老工業區振興的核心區域,隨著工業化並模進程的高速發展,流域內工業園區正在蓬勃興起,隨之產生了大量工業綜合廢水。該類廢水經園區內處理後,仍含有大量極難降解的有機污染物,水質可生化性極差,給所匯入的城鎮污水處理廠帶來較大的處理難度並造成干擾,直接導致出水不達標的問題[1~3]。與此同時,流域水環境質量改善的需求對污水處理廠出水提出了更加嚴格的要求,根據遼寧省環保局與遼寧省質量技術監督局聯合頒布的《遼寧省污水綜合排放標准》的要求,市級以上污水處理廠出水COD(chemicaloxygendemand)、NH3-N(氨氮)和TN(總氮)的濃度要達到國家一級A排放標准,故污水廠目前亟需結合現有處理工藝進行升級改造研究,實現工業綜合廢水的達標排放[4~8]。
曝氣生物濾池工藝由於其佔地面積小、處理效果好等特點,在遼河流域內的污水處理廠尚佔有一定的比例,出水基本達到二級排放標准,但隨著難降解工業綜合廢水的匯入,導致濾池板結堵塞、生物膜脫落等現象的產生。針對工業綜合廢水存在的問題和曝氣生物濾池的特點,進行了水解酸化和氣浮除油的預處理研究,以及化學除磷和前置反硝化深度脫氮研究,使其出水達到一級A排放標准,為該類污水廠的升級改造提供理論依據和數據支持[9~13]。
2試驗裝置與試驗方法
2.1試驗水質
該研究選取沈陽市鐵西區某污水處理廠,該污水廠日處理水量40萬t,其中60%以上的進水為工業綜合廢水。如表1所示,從污水處理廠的進水水質指標來看,其有機污染物和固體懸浮物(SS)濃度都比較高,經過水廠現有的兩級曝氣生物濾池工藝處理,出水基本上能夠達到國家二級排放標准,但對比一級A標准,一方面需要進一步去除水中的COD、SS和NH3-N;另一方面還需要增加脫氮除磷的功能。
2.2試驗裝置
針對工業綜合廢水的特性以及污水處理廠現有工藝特點,設計了深度處理的全流程工藝,中試裝置主要包括混凝池、氣浮池、水解沉澱池和前置反硝化曝氣生物濾池4個處理單元。
如圖1所示,其中絮凝池柱高1.6m,直徑0.6m,原水和混凝劑溶液均從距底部1.2m處注入,內設JJ-1大功率電動攪拌器,使原水和混凝劑充分混合,以去除原水中的SS和TP;溶葯池採用相同設計參數,同樣使用攪拌器使固體混凝劑充分溶解為液狀,並由蠕動泵注入絮凝池;氣浮池接觸室高2.2m,直徑0.12m,分離室高2.4m,直徑0.32m,加入混凝劑的原水使用DP-130高壓隔膜泵、與空氣充分混合的迴流液使用尼克尼20FPD04Z氣液混合泵從接觸室底部共同注入,經分離室將其中的泡沫殘渣去除,並從頂部平台排出;水解沉澱池柱高4.5m,直徑0.5m,盛裝厭氧污泥,污水從底部注入,經污泥層去除部分SS和COD;前置反硝化曝氣生物濾池使用柱高4.3m,直徑0.5m的有機玻璃濾柱填裝火山岩濾料,濾柱中的火山岩濾料粒徑分別為6~8mm、4~6mm和3~5mm,其中承托層高0.3m,濾料高4.0m,水面超高1.0m,設計三級生物濾柱分別為反硝化DN池、氧化硝化CN池和硝化N池,即分別進行反硝化、氧化和硝化反應,對污水中的TN、COD和NH3-N進行生化去除,CN池和N池使用空壓機進行曝氣,三級濾柱均採用向上流方式,使用高壓隔膜泵從底部注水。中試裝置日處理水量2t。
2.3水質分析方法
TN的測試採用過硫酸鉀氧化法,NH3-N的測試採用納氏試劑比色法,硝酸鹽氮的測試採用麝香草酚分光光度法,亞硝酸鹽氮的測試採用N(-1-奈基)-乙二胺分光光度法,COD的測試採用重鉻酸鉀法,DO(溶解氧)的測試使用溶解氧快速測定儀[14]。
3試驗結則蔽讓果與分析
3.1運行參數優化
3.1.1水解酸化預處理
水解酸化單元的作用是在進一步去除水中COD和SS濃度的同時,提高水質的可生化性[15~17],其主要控制參數為HRT(水力停留時間)。現通過對進出水COD、SS濃度以及BOD/COD的檢測與分析優化HRT。
如圖2所示,當HRT在2.0h以下時,COD的去除率不足30.0%,由於時間較短,這部分去除的主要是水中懸浮狀COD。而隨著HRT的逐漸提高,水中難降解有機污染物在水解和發酵細菌的作用下,轉化為單糖、氨基酸、脂肪酸等小分子、易降解的有機物[18~20],COD的去除率也不斷升高,達到50%以上。隨著出水COD濃度的不斷下降,出水BOD的濃度也隨之下降,但由於工業廢水中的難降解有機物濃度所在比例較高,出水COD濃度下降的速率要高於出水BOD濃度下降的速率,出水BOD/COD的比值也隨之升高。如圖3所示,進水BOD/COD的值基本在0.3~0.4,當HRT大於2.0h時,出水BOD/COD的值升至0.4以上。而當HRT大於4.0h時,水中的難降解有機物已完成水解,出水COD的去除率變化不大,BOD/COD的值也開始回落。所以,當HRT介於2.0~4.0h時,出水BOD/COD的值保持在0.4以上,屬於較易進行生化處理的范圍,有助於後續生物濾池的進一步處理。考慮到在流量不變的條件下,構築物的體積會隨著HRT的升高而增大,故確定水解酸化的HRT為2.0h。
此外,水解池對原水中的SS也有較強的去除能力。由於工業綜合廢水中含有較多的粘渣和懸浮物,雖然通過混凝氣浮工藝可以去除50.0%,但出水的SS濃度仍在60.0mg/L,如果這些SS直接進入濾池,將會增加濾池的反沖洗次數。經過水解池厭氧污泥層對水中顆粒物質和膠體物質的截留和吸附作用,出水的SS得到進一步的去除,其濃度基本保持在40.0mg/L以下,去除率在44.0%以上。由於水解池對SS的去除主要是通過截留和吸附作用,故過長的HRT對SS的去除並無明顯的效果,所以對於佔地面積有限的污水處理廠,水解池在升級改造過程中完全可以取代初沉池,起到初級去除原水中的SS和COD的作用。
3.1.2強化化學除磷
試驗選用Al(2SO4)3、聚合氯化鋁(PAC)、FeCl3和聚合硫酸鐵(PFS)四種常用的混凝劑,通過對原水以及出水中TP濃度的考察,確定使用PFS為強化化學除磷試驗的混凝劑,並對其投葯量和攪拌時間兩個參數進行優化[21~24]。
如圖4所示,隨著混凝劑PFS投加量的增加,水中TP的濃度不斷減少。當投葯量達到30.0mg/L時,水中TP的濃度已低於0.5mg/L,去除率達到75.0%以上。根據鐵鹽除磷的化學方程式可知,每去除1mg的P,需要1.8mg的Fe。原水中TP的濃度在1mg/L至4mg/L,若使出水TP濃度小於0.5mg/L,最多需要12.0mg/L的硫酸鐵,以至少40.0%有效成分計算,需要30.0mg/L。考慮水解等因素,最終選定投葯量為40.0mg/L,此時的出水TP濃度為0.3mg/L。可以保證出水水質符合一級A排放標準的要求。
確定PFS的投葯量後,對攪拌時間進行了優化。在投葯量40.0mg/L條件下,改變攪拌時間,測定出水TP濃度。攪拌時間及進出水TP濃度和去除率如圖5所示,隨著攪拌時間的增長,水中TP的濃度不斷減少。時間從5.0min增加到15.0min,水中TP的去除率提高了5.1%,而從15.0min增加到30.0min,去除率僅提高了2.0%,故過長的攪拌時間對TP的去除並無顯著的效果,反而會增加額外的能源消耗和構築物的建築體積。由於出水TP濃度均小於國家一級A標准要求的0.5mg/L,故從運行成本上考慮,確定最佳攪拌時間為15min。
3.1.3高效氣浮除油
原水與混凝劑PFS混合後進入氣浮池,目的是將水中造成濾池堵塞的油污以及混凝產生的泡沫殘渣去除。氣浮池採用加壓溶氣氣浮方式,主要有溶氣壓力和迴流比兩個控制參數,通過對進出水含油量的檢測分析,優化氣浮單元的運行參數[25,26]。溶氣壓力對油類去除的影響如圖6所示,出水含油量隨溶氣壓力的變化趨勢可分為三個階段。
當壓力小於2kg/cm2時,氣浮形成的氣泡粒徑還較大,對水中絮狀顆粒的去除能力有限。在壓力增加到3.5kg/cm2的過程中,隨著氣泡粒徑的減小,氣浮的去除能力也有了顯著的提高。但此後即便形成氣泡的粒徑不斷減小,出水含油量卻不再降低,這說明並非氣泡粒徑越小氣浮效果越好,而是當氣泡粒徑和水中雜質粒徑越接近時效果越好。一般的,氣浮工藝的微氣泡平均粒徑在40.0μm左右,從試驗中可以看出,當溶氣壓力為3.5kg/cm2時就可以取得較好的去除效果,此時出水含油量為2.73mg/L,去除率為84.6%,而過高的溶氣壓力只會增加動力的輸出和電能的消耗。
迴流比對含油量的去除影響如圖7所示,氣浮的去除效果受迴流比的影響較大。當迴流比低於30%時,由於形成的氣泡較少,對水中油類的去除能力較差。當迴流比增大到30.0%~50.0%時,氣浮的去除效果達到最佳。而當迴流比增大到50.0%以上時,去除率卻出現下降,經分析認為這是由於水中空氣比例過高,微氣泡聚合成粒徑較大的氣泡,導致氣浮效果變差。故確定氣浮除油的迴流比為50.0%,此時出水含油量為3.12mg/L,去除率為82.9%。
3.1.4A/O深度脫氮
脫氮單元採用前置反硝化曝氣生物濾池。其控制參數主要有迴流比、HRT和曝氣量,通過對出水COD、TN、NH3-N和DO的檢測,對各個參數進行優化。
迴流比是前置反硝化脫氮工藝中最為重要的控制參數,它直接影響水中TN的去除效果。根據中試設計中的BOD負荷和硝化負荷計算以及COD負荷校核,在單池HRT為45.0min,氣水比為5∶1的條件下,出水可穩定實現一級A達標排放,首先在50%~250%的范圍內對參數迴流比進行考察。如圖8所示,當迴流比從50%增加到150%時,出水TN的濃度在不斷下降,TN的去除率也不斷提高。這是由於在迴流比較低時,水中作為電子受體的硝酸鹽不足,影響了反硝化的速率,而隨著迴流比的升高,有足夠的硝酸鹽作為電子受體,並利用水中的有機物作為電子供體,在無需外加碳源的條件下,完成反硝化和深度脫氮的目的。但迴流比從150%繼續升高時,出水TN的濃度卻不再繼續降低,增加到200%時TN的去除率已呈下降趨勢。一方面,隨著硝酸鹽濃度的不斷升高,造成水中的碳源不足進而影響反硝化的進行;另一方面,隨著迴流比的增加,進入DN池的溶解氧也在增加,而溶解氧可作為電子受體,競爭性的阻礙硝酸鹽的還原,同時還將抑制硝酸鹽還原酶的形成。由於迴流比和HRT越高所需反應池構築物容積越大,從水廠實際升級改造工程考慮,對100%、125%、150%和175%四個迴流比以及各個迴流比下出水TN隨HRT的變化進行進一步研究。
增加,出水TN的濃度也隨之降低,微生物對基質的去除率也越高。但一般的,當HRT增加到20.0min以上時,出水TN濃度的下降趨勢以及去除率的增加都變得平緩,而且所需的構築物體積也在不斷增加。為了確保出水TN濃度達到一級A排放標准要求15.0mg/L以下時,選擇迴流比為125%,HRT為20.0min的參數條件,此時出水TN濃度為12.74mg/L,去除率為67.0%。
溶解氧是維持好氧微生物生長代謝的重要因素,對於曝氣生物濾池來說,水中溶解氧的供給,即空壓機的曝氣量也是主要的能源消耗所在,過低的曝氣量將降低微生物的新陳代謝能力;而過高的曝氣量一方面會造成經濟的浪費,一方面又會導致微生物的活性過度增強,在營養供給不足的情況下,導致生物膜發生自身的氧化分解。試驗通過對CN池進水COD濃度以及去除率的監測,對曝氣量進行參數優化。如圖10所示,隨著曝氣量的增加,出水COD的濃度隨之不斷下降,去除率也在不斷提高。但在曝氣量增加到0.8m3/h時,兩項指標的變化都不大,這說明過多的曝氣量和溶解氧對於COD的去除已無太大作用,只會增加動力費用。故確定CN池的曝氣量為0.8m3/h,此時出水DO濃度在2.5mg/L左右,氣水比為4∶1。CN池的出水已有較高的DO濃度,如圖11所示,在進入N池後,在較低曝氣量的條件下,對水中的NH3-N便有較高的去除率。同出水COD濃度的變化率相似,出水NH3-N濃度也隨著曝氣量提高而不斷降低,為了達到一級A排放標准,確定N池的曝氣量為0.6m3/h,此時出水DO濃度在3.0mg/L左右,氣水比為3∶1。
3.2技術經濟分析
該污水處理廠目前擁有日處理水量4×105t的兩級曝氣生物濾池一套,單池HRT為45.0min,兩級濾池氣水比分別為3∶1和4∶1。根據中試研究結果,如採用前置反硝化曝氣生物濾池工藝,需要增加125%的迴流液,但由於HRT減少至20.0min,根據計算同樣可以利用現有兩級濾池分別作為CN池和N池,並有少量的富餘,只需增加一套前置DN池,以及迴流管道,同時還需對水泵和曝氣風機設備進行更換,如圖12所示。如採用後置反硝化曝氣生物濾池工藝,可將現有兩級濾池分別作為CN池和N池,另外還需修建一套DN池,以及甲醇投加和儲備間,同時要對曝氣風機設備進行更換,如圖13所示,虛線部分為新建構築物。
根據中華人民共和國住房和城鄉建設部頒布的《全國市政工程投資估算指標》以及遼寧省建築、安裝、市政工程預算定額、費用定額和近年來的同類工程預、決算資料分別對兩種工藝流程升級改造的建設成本和運行費用進行估算,如表2所示。
經過經濟費用估算,前置反硝化工藝較後置反硝化工藝,在投資總費用方面,由於構築物建設和設備購置原因要高出1330.12萬元;而在年運行費用方面,由於無需外加碳源則要低1915.01萬元。即在升級改造完成後第2年,兩工藝的建設和運行總費用將會基本持平,此後前置反硝化工藝較之後置反硝化工藝每年將節省大量的運行成本,故從長遠考慮,推薦採用前置反硝化作為水廠的深度脫氮工藝。
通過工業綜合廢水深度處理全流程工藝的中試研究,結合該污水處理廠現有工藝情況,制定了升級改造的工藝路線,如圖14所示。
4結語
1)由於工業綜合廢水具有高油高粘渣、可生化性差又極難降解的問題,在對其進行處理時需要增加必要的預處理工藝。通過中試研究表明,高效氣浮除油工藝可以有效去除廢水中的油污、粘渣等雜質;水解酸化工藝一方面能夠有效提高水質的可生化性,同時還能有效去除水中的SS,具有良好的預處理效果。在氣浮溶氣壓力3.5kg/cm2、迴流比50%、水解酸化HRT2.0h條件下,能夠去除原水中40%的有機污染物,並將原水的BOD/COD提高至0.4以上。
2)通過對比試驗研究和技術經濟分析,前置反硝化深度脫氮工藝對於以曝氣生物濾池為主體的污水廠升級改造具有更廣泛的應用前景,在節省大量運行成本的前提下,充分利用原水中的碳源,實現污水的深度脫氮。在迴流比為125%,HRT為20.0min的條件下,出水TN和NH3-N濃度均穩定達到一級A排放標准。
3)通過中試研究,研發了針對工業綜合廢水的「化學除磷+氣浮除油+水解酸化+前置反硝化曝氣生物濾池」的深度處理全流程工藝。長期運行數據表明,該工藝對於難降解、波動幅度大的工業廢水,具有較好的抗沖擊能力和處理效果,出水能夠穩定達到國家一級A排放標准。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
Ⅲ 浙江准四類一體化設備報價
超濾技術工藝分類超濾膜是一種高精密過濾技術,浙江准四類一體化設備報價,在水處理方面其主要功能是實現懸浮物,浙江准四類一體化設備報價、細菌及顆粒性雜質與水的分離達到水凈化效果,浙江准四類一體化設備報價,根據處理對象和處理目標不同,可以選擇不同的膜元件形式和膜過濾工藝,目前在飲用水凈化、市政污水處理以及工業廢水深度處理與回用方面的應用概括起來主要有三種類型:膜生物反應器(Membrane-Bioreactor)、壓力式超濾(UF)以及浸沒式負壓膜過濾工藝 (Submerged Membrane Ultrafiltration)。在用地緊張及高標准排小型准四類生活污水處理設備哪家好?浙江准四類一體化設備報價
水藝准四類一體化高效生物反應器,膜生物反應器(MBR)是膜分離技術與生物處理技術有機結合的污廢水處理系統。MBR 系統中膜元件取代了傳統生物處理技術中二次沉澱池,在生物反應器中保持高活性污泥濃度,提高了生物處理系統的有機負荷,同時利用膜分離系統的優異過濾性能截留水中的活性污泥與大分子有機物,可以達到極好的污水處理效果,為污水處理新工藝的發展開辟了新道路。由於膜的高精度分離作用,使 MBR 工藝技術具有許多傳統生物處理工藝不具備的突出優點:出水水質標准高、安全、穩定,佔地面積小,模塊化設計,具有按量擴容的靈活性。江蘇品牌廠家准四類一體化設備多少錢一體化污水處理設備的種類有哪些?
水藝准四類一體化高效生物反應器膜產品特點 :抗拉伸強度高、耐葯性能高。內襯增強型 PVDF 中空纖維膜,具有較高的拉伸強度(大於 200N),可耐受度的氣擦洗和水力沖洗。 膜絲機械強度高,不易脫皮斷絲。高性能的塗覆復合技術,使支撐層與膜過濾層緊密結合,運行過程中不會出現膜絲脫皮的現象。親水性好,耐污染,高通量 。基於水藝獨有的親水改性技術制備的膜絲具有長久親水性,膜絲耐污染、通量高、清洗恢復性好。膜孔徑小且分布均勻,產水水質好。0.1μm 的過濾孔徑充分保障了良好的細菌截留性和有效的泥水分離,產水水質好。低壓大通量,運行穩定且周期長,產水通量大,污泥負荷分布均勻,有效降低跨膜壓差,延長運行周期。
. 水藝膜生物反應器(MBR)工藝是一種將膜浸沒於活性污泥混合液中的使用方式, 其直接作用是泥水分離,間接作用是可以提高污泥濃度,有效截留各種微生物, 具有強化有機物、氨氮的去除效果,減少佔地面積。因此在用地緊張及高標准排 放要求地區,或高氨氮廢水處理方面具有較大優勢。浸沒式膜過濾技術(SMF)是將膜組件浸沒在被處理的水中,採用重力流或負壓運行方式實現水的凈化過濾,其功能和處理對象與壓力式超濾基本相同,適用於污水深度處理回用,更適用於傳統工藝中水廠的提標擴容和自來水廠的升級改造。
使用准四一體化高效生物反應器時要注意什麼?
水藝准四類一體化高效生物反應器技術主要優勢:抗沖擊能力強,脫氮除磷效果佳:該技術將強化脫氮除磷的改良AAO工藝和MBBR技術結合,實現高效去除污水中有機物、氮磷;模塊化生產技術:相比傳統AAO活性污泥工藝,該專有技術將各工藝集成於一個箱體中,實現標准化、快速生產,縮短建設周期,降低施工難度,適用於分散式農村生活污水的處理;自動化程度高:通過引入物聯網技術,實現各個分散式污水站點的互聯,並實現設備在線監控、故障報警、遠程管理、數據積累、數據實時傳送等,解決了農村後期設備運維難的問題;剩餘污泥少:剩餘污泥量較少,無需考慮污泥膨脹問題,可以降低污泥處理費用,簡化操作;佔地面積小:容積負荷高,佔地面積小,比普通活性污泥法節省50%以上。准四一體化高效生物反應器有哪品牌?江蘇高標准准四類一體化設備報價
水藝准四一體化高效生物反應器是自己生產的嗎?浙江准四類一體化設備報價
水藝膜生物反應器系統的是內襯增強型聚偏氟乙烯(PVDF)中空纖維超濾膜,處理後的水質優且穩定,不僅可以避免傳統工藝中沉降分離工藝出現的懸浮物泄露問題,還可以去除大腸桿菌、隱孢子蟲等微生物,膜系統產水可直接或者添加少量消毒劑後作為雜用水或者類似用途的中水回用。MBR 膜系統通過抽吸泵(產水泵)在中空纖維膜內形成負壓,待處理水因負壓作用通過超濾膜的微孔進入到中空纖維內部通道中,然後匯集到產水管中通過抽吸泵進入到清水池,達到對混合液進行固液分離得到凈化水的處理目的。
浙江准四類一體化設備報價
水藝控股集團股份有限公司位於杭州灣新區興慈一路368號,交通便利,環境優美,是一家生產型企業。公司致力於為客戶提供安全、質量有保證的良好產品及服務,是一家股份有限公司企業。以滿足顧客要求為己任;以顧客永遠滿意為標准;以保持行業優先為目標,提供的分散式生活污水一體化設備,分散式一體化供水設備,准四類生活污水一體化設備,尾水提標。水藝集團以創造產品及服務的理念,打造高指標的服務,引導行業的發展。
Ⅳ 污水處理廠提標工程中提標具體是什麼意思
1. 污水處理廠提標工程中的"提標"指的是提高污水處理設施的處理標准,以確保處理後的污水能夠滿足更嚴格的排放要求。
2. 這一過程涉及對現有污水處理設施進行升級改造,增強其處理能力,特別是對化學需氧量(COD)、氨氮、總氮、總磷等關鍵污染物的排放指標進行嚴格控制。
3. 為了達到更高的排放標准,污水處理廠可能需要重新設計處理工藝,優化操作流程,甚至引入新的技術和設備。
4. 提標工程的目的是確保污水處理廠的處理效果能夠持續滿足國家及地方環保法規的要求,減少對環境的影響。
5. 污水處理廠提標改造的進水水質受多種因素影響,包括城市性質、經濟水平、工業構成等。這些因素決定了污水的初始濃度和質量。
6. 工業廢水是影響進水水質的一個關鍵因素。理想情況下,工業廢水應在廠內處理至符合標准後才排入城市管網。然而,實際情況中,未經處理的工業廢水直接排入城市下水道的現象並不罕見。
7. 在規劃污水處理廠提標改造時,必須考慮到工業廢水未經處理排入城市下水道的情況,並在設計中預留相應的餘地。
8. 除了工業廢水,其他污染源,如農業污染、城市垃圾處理場滲濾液等,也可能影響進水水質。在確定進水水質時,應考慮這些因素的綜合影響。
9. 排水體制的選擇也會影響進水水質的確定。例如,採用截流合流制的排水體制可能會導致污水濃度隨截流倍數和截流水量的變化而變化。
10. 綜上所述,污水處理廠提標工程是一個復雜的系統工程,需要綜合考慮多種因素,以確保污水處理廠能夠穩定達到更高的排放標准。
Ⅳ 污水處理廠提標工程中提標具體是什麼意思
提高污水排放標准。常見於污水處理廠工程,對設施進行重新設計,提高污水處理能力,使出水達到國家及地方標準的要求。
污水處理廠提標改造主要是提高污水排放標准,對污水中的COD、氨氮、總氮、總磷等等的排放指標提高。要達到這些要求,就要對污水處理設施進行重新設計、盡量少改動,提高污水處理能力,使出水達到標準的要求。
(5)海南氨氮廢水提標設備多少錢擴展閱讀:
進水水質
污水處理廠進水水質主要與下列因素有關:
城市性質及經濟水平 如處理規模部分中所述,由於城市所在地域及經濟發展程度不同,污水的水質亦不相同。例如沿海發達城市和南方城市用水量較大,污水濃度較低;北方城市特別是西部地區用水量較少,相對濃度較高;工業比重大的城市,由於工業廢水排入下水道的濃度較高,致使城市污水濃度較高等。
1、工業廢水水質
原則上工業廢水必須經過廠內處理後達到「污水排入城市下水道水質標准」後才可納入城市管網,最終進入污水處理廠。但由於目前我國對點源污染的管理體制和手段尚未健全,工業廢水不經處理後直接排入城市下水道的現象屢有發生;因此在確定污水處理廠提標改造進水水質時,必須充分考慮該因素的影響而留有餘地。
2、其它污染源
除生活污水和工業廢水污染源外,常常還有農牧業污染和城市垃圾衛生填理場內滲濾液的納入等因素。因此在確定污水處理廠進廠水水質,應對上述水量及水質進行綜合平衡計算。
3、排水體制
當排水體制採用全部或部分截流合流制時,應注意由於截流倍數、截流水量而造成的污水濃度的變化給進水水確定帶的影響。