導航:首頁 > 廢水污水 > 氨氮農葯廢水怎麼辦

氨氮農葯廢水怎麼辦

發布時間:2024-10-29 14:30:47

污水處理氨氮高怎麼辦

含有氨氮污水的處理:

進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法等。

整個過程為通過粗格柵的原污水經過污水提升泵提升後,經過格柵或者篩率器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理(即物理處理),初沉池的出水進入生物處理設備,有活性污泥法和生物膜法。

生物處理設備的出水進入二次沉澱池,二沉池的出水經過消毒排放或者進入三級處理,一級處理結束到此為二級處理,三級處理包括生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法。

二沉池的污泥一部分迴流至初次沉澱池或者生物處理設備,一部分進入污泥濃縮池,之後進入污泥消化池,經過脫水和乾燥設備後,污泥被最後利用。

(1)氨氮農葯廢水怎麼辦擴展閱讀:

生活污水處理

1、農村生活污水治理方法

生活污水→化糞池→厭氧池→人工濕地(種植根系發達、喜濕、吸收能力強的美人蕉、水蔥、菖蒲等植物)經「過濾」後排放的方法進行處理,主要適用於農村分散生活污水處理,建成後運行費用基本為零,使用壽命在10年以上。

2、城市生活污水治理方法

將城市生活污水輸送到城市周圍的農村,利用農村廣闊的土地來凈化城市生活污水。將是一勞永逸與一舉多得的好方法。以日供應生活用自來水100W立方的大中型城市為例:普通的污水處理設施造價1000元/立方。

建設成本10億,年運營成本100W立方/天×365×0.5元/立方=1.8億.採用土壤凈化法建設成本1000元/立方,年運營成本100W立方/天×365×0.1元/立方=0.4億.同時年節約農用水資源3.6億立方,節約化肥約1萬噸/年,減少農葯用量5噸/年。

3、生活污水處理新技術:分散式處理

生活污水分散式生物集成處理系統是針對生活污水的一種新型、經濟環保的處理系統。該系統具備設備投資少、運行成本低、安裝簡便等優勢,利用生物強化技術對污染物進行高效降解,可實現對生活污水就地、就近處理,並達到水資源循環再生利用的目的。

分散式污水處理技術具有設備佔地面積小、無須鋪設管網、設備集成度高等特點,因此基礎設施費用及土建費用在整體投資中佔比較小,僅30%左右,而約有70%的投資主要用於對污水處理設備的采購和安裝。

㈡ 高氨氮高鹽度無機廢水怎麼處理

廢水中氨氮的構成主要有兩種,一種是氨水形成的氨氮,一種是無機氨形成的氨版氮,主要是硫酸銨,權氯化銨等等。
高氨氮廢水的一般在形成上由於 氨水和無機氨 共同存在所造成的,ph呈中性以上的廢水中,氨氮的主要來源是無機氨和氨水共同的作用,ph在酸性條件下,廢水中的氨氮主要由於無機氨所導致。
提及高濃度氨氮廢水首先往往讓我們想到的是蒸餾和吹脫,這時候氨氮以氨水的形式脫出。在這個過程中,廢水需要加熱,需要吹風,需要加鹼液……
然而,除此之外,你還能想到什麼妙招,有針對性的減少能耗和投資? ipgood 和 yjqin1 兩位大神,都對高氨氮廢水有一定的了解,在對一個高氨氮廢水時間里的探討過程中,他們從原本秉持的是不同的思路,互相取長補短,最終給出了一個都比較滿意的改進方案。

㈢ 井水氨氮超標怎麼辦

當井水中的氨氮含量超過標准限值時,需要採取適當的措施進行處理和管理。以下是一些可能的應對措施:

1、氨氮源控制

首先,通過分析和評估井水中氨氮的來源,確定主要的污染源。可能的源頭包括農業活動、工業廢水、生活污水、動物糞便等。針對不同的源頭,採取控制措施以減少氨氮的輸入量是關鍵。

2、水源保護和管理

加強水源保護,避免污染源進入水體系統。維護和管理井水周邊的土地和水域,減少農葯、化肥等的使用,避免過度施肥和過度灌溉,控制動物糞便的排放等。

3、水處理

如果源頭控制難以實施或者效果不明顯,可以考慮採用適當的水處理技術來降低井水中的氨氮含量。常見的處理方法包括氧化法、吸附法、萃取法和生物法等。選擇合適的處理方法應根據實際情況和水質特點來確定。

4、定期監測和檢測

建立健全的水質監測體系,定期檢測井水的氨氮含量,以及其他相關水質參數,對水質變化進行及時跟蹤和分析。這有助於評估處理效果,並及時採取必要的措施進行調整和改進。

5、法規合規

確保遵守當地相關的環境法規和標准,井水的氨氮含量應符合國家或地方規定的限值。及時向相關政府部門報告超標情況,並積極參與相關的環境整治行動以及井水保護計劃。

需要根據具體的情況和實際問題來制定適用的應對方案。建議尋求專業機構或環境工程師的幫助,以獲得准確的分析和指導,確保高質量的水資源管理和保護。

㈣ 農葯廢水的農葯廢水處理方法

光催化法
銳鈦型的TiO2 在紫外光的照射下能產生氧化性極強的羥基自由基,能夠氧化降解有機物,使其轉化為CO2、H2O以及無機物,降解速度快,無二次污染,為降解處理農葯廢水提供了新思路 。對於光催化降解有機物目前關注的問題,一方面是降解過程中的影響因素和降解過程的轉化問題 ,對納米TiO2 的固載化和反應分離一體化成為光催化領域中具有挑戰性的課題之一,另一方面是提高制備催化劑催化效率的問題。
陳士夫等在玻璃纖維、玻璃珠、玻璃片上負載TiO2 薄膜光催化劑,並用於有機磷農葯的降解,取得了滿意的結果。梁喜珍通過研究TiO2 光催化降解有機磷農葯樂果廢水的影響因素,獲得了適宜的工藝條件。潘健民通過對納米TiO2 及其復合材料光催化降解有機磷農葯進行的研究,分析了在不同催化劑、不同濃度AgNO3 浸漬、不同實驗裝置條件下的光催化降解效果,說明TiO2 表面擔載微量的Ag後,不僅能提高納米TiO2 催化活性,而且有較好的絮凝作用,使TiO2 與處理後的水易分離,後處理更方便。葛湘鋒研究發現光催化降解在一定條件下符合零級動力學反應模式,而且反應速率常數和反應物起始濃度也呈線形關系,當反應物濃度增長過快達到一定值時,其反應速率常數明顯下降,反應物濃度過高時,則降解反應不再符合零級反應。
目前採用的光催化體系多為高壓燈、高壓氙燈、黑光燈、紫外線殺菌燈等光源,能量消耗大。若能對納米TiO2 進行有效、穩定地敏化,擴展其吸收光譜范圍,能以太陽光直接作為光源, 則將大大降低成本。
超聲波技術
超聲波是頻率大於20 kHz的聲波,超聲波誘導降解有機物的原理是在超聲波的作用下液體產生空化作用,即在超聲波負壓相作用下,產生一些極端條件使有機物發生化學鍵斷裂、水相燃燒、高溫分解 或自由基反應。
鍾愛國等研究表明,在甲胺磷濃度為1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、溫度30 ℃、Fe2 + >50 mg·L - 1、充O2 至飽和的條件下,用低頻超聲波(80W·cm- 2 )連續輻照120 min,甲胺磷去除率達到99. 3% ,乙醯甲胺磷的去除率達到99. 9%。孫紅傑等研究了各種因素超聲波頻率、功率、聲強、變幅桿直徑和溶液初始pH等對超聲降解甲胺磷農葯廢水的影響。Kotronarou等得出對硫磷在超聲條件下可以被完全降解為PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反應溫度為20 ℃、pH為7. 4時,對硫磷無催化水解半衰期為108 d,其有毒代謝產物對氧磷水解半衰期為144 d。Cristina等對馬拉磷農葯在超聲波輻射下, 82μmol·L - 1的馬拉磷溶液30 min內pH從6下降到4, 2 h內所有的馬拉磷全部降解,產物均為無機小分子。
蔣永生、傅敏等報道了用超聲波降解模擬廢水中低濃度樂果的試驗表明,輻射時間延長,降解率增加,加入H2O2 可明顯提高樂果的降解率,在溶液初始濃度較低的范圍內,降解速率隨濃度增大而加快,
濃度增大到一定值後,降解速率變化不明顯,超聲降解時溶液溫度控制在15~60 ℃為宜。謝冰等對久效磷和亞磷酸三甲酯生產過程中產生的廢水進行了超聲氣浮預處理,可降低其COD和毒性,提高其可生化性,再經以光合細菌為主的生化處理,可使其COD降至200 mg·L - 1。
王宏青等研究表明: 滅多威經超聲作用35min,可被完全轉換為無機物,其降解過程為假一級反應;濃度增加時,降解減慢; Fe2 +和H2O2 對降解有促進作用,且Fe2 +促進作用比H2O2 的大;採用不同氣體飽和溶液時,降解率的大小順序為Ar >O2 >Air >N2。紅外光譜表明降解產物為SO42 - 、NO3- 和CO2。
目前有關超聲輻射降解有機污染物的研究,大多屬於實驗室研究,還缺乏系統的研究,更缺少中試數據。
生物法
在國內,農葯廠家大多建有生化處理裝置,但目前幾乎沒有一家能夠獲得理想的處理效果。因此,對這類廢水的生化處理研究是十分必要的。已有大量研究表明真菌、細菌、藻類等微生物對有農葯有很好的降解作用。
程潔紅從土壤中分離得到以多菌靈生產農葯廢水為惟一碳源生長的13株菌,經鑒定為假單胞菌屬( Pseudom onas sp. ) ,研究了SBR 工藝運行的最佳條件,所篩選的菌株對多菌靈農葯廢水的COD去除率為52. 3%。張德詠,譚新球從生產甲胺磷農葯的廢水中篩選具有促生活性及可降解甲胺磷的光合細菌菌株, 培養後第7 d, 該菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,樂果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,該菌株也能夠以三唑磷、辛硫磷作為惟一碳源生長。
生物膜法將微生物細胞固定在填料上,微生物附著於填料生長、繁殖,在其上形成膜狀生物污泥。與常規的活性污泥法相比,生物膜具有生物體積濃度大、存活世代長、微生物種類繁多等優點,尤其適宜於特種菌在廢水體系中的應用。王軍、劉寶章利用半軟性填料進行掛膜,處理菊酯類、雜環類綜合農葯廢水。當進水CODCr為6 810、3 130、1 890mg·L - 1時,經過24 h的作用,細菌膜對CODCr的降解率分別達到24. 8%、43. 5%、53. 4%。
電解法
鐵炭微電解法是絮凝、吸附、架橋、卷掃、共沉、電沉積、電化學還原等多種作用綜合效應的結果,能有效地去除污染物提高廢水的可生化性。新產生的鐵表面及反應中產生的大量初生態的Fe2 +和原子H具有高化學活性,能改變廢水中許多有機物的結構和特性,使有機物發生斷鏈、開環;微電池電極周圍的電場效應也能使溶液中的帶電離子和膠體附集並沉積在電極上而除去;另外反應產生的Fe2 + 、Fe3 +及 其水合物具有強烈的吸附絮凝活性,能進一步提高處理效果。
雍文彬採用鐵屑微電解法能有效去除農葯生產廢水中的COD、色度、As、氨氮、有機磷和總磷,去除率分別可達76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。張樹艷採用鐵炭微電解法對幾種農葯配水進行處理,試驗結果表明,最佳反應條件下,廢水的CODC r 去除率都可達67%以上;最佳反應條件:鐵/水比為(0. 25~0. 375) ∶1,鐵/炭比為( 1~3) ∶1, pH3~4,反應時間1~1. 5 h。廢水經微電解處理,然後進行Fenton試劑氧化,則微電解出水中Fe2 + 可作為Fenton的鐵源,且微電 解時有機污染物的初級降解也有利於後續Fenton反應的進行。吳慧芳採用微電解和Fenton試劑氧化兩種物化手段對菊酯、氯苯BOD5 /CODCr = 0. 03)和對鄰硝氯苯(BOD5 /CODCr = 0. 05) 3種廢水按比例配製而成的綜合農葯廢水進行預處理,結果表明:在廢水pH為2~2. 5時,經微電解處理後,BOD5 /CODCr比值達0. 45以上,可生化性提高; Fenton試劑對綜合農葯廢水CODCr去除率為60%左右,色度去除率接近100%。劉占孟以活性炭-納米二氧化鈦為電催化劑,對甲胺磷溶液的電催化氧化降解規律進行研究表明,該工藝能有效去除廢水中的有機物,納米二氧化鈦催化劑的催化效果顯著。電解效果隨著電解時間的延長、催化劑的增加而升高,低pH有利於電催化氧化過程中H2O2 和·OH 的生成。王永廣採用電解/UASB /SBR工藝處理生化性差、氯離子濃度高的氟磺胺草醚農葯廢水。設計電流密度取30. 0 A·m- 2 ,該工程的電費為2. 30 元·m- 3 ,葯劑費為0. 30 元·m- 3 ,人工費為1. 50元·m- 3 ,運行成本為4. 10元·m- 3 , COD去除率> 97%。
氧化法
深度氧化技術(AOPs)可通過氧化劑的組合產生具有高度氧化活性的·OH,被認為是處理難降解有機污染物的最佳技術。
引入紫外線、雙氧水聯合作用和調控反應體系pH,可進一步提高臭氧深度氧化法的效率。陳愛因研究表明,紫外光催化臭氧化降解農葯2, 4-二氯苯氧乙酸(2, 4- D)廢水成效顯著,臭氧/紫外(UV)深度氧化法(比較單獨臭氧化、臭氧/紫外、臭氧/雙氧水、臭氧/雙氧水/紫外4種臭氧化過程)是最好的臭氧化處理方法。2, 4- D 200 mg·L - 1的水樣,反應30min, 2, 4- D降解完全, 75 min時礦化率達75%以上。鹼性反應氛圍有利於臭氧化反應進行。雙氧水的引入對2, 4- D降解無明顯促進作用,這是因為雙氧水分解消耗OH- ,沒有緩沖的反應體系pH降低,限制了雙氧水的分解和·OH自由基鏈反應。表明添加H2O2 對光解效果有一定改善作用,投加量達到75 mg·L - 1時,水樣的COD去除率由零投加時的20%提高到40% ,但過量投加對處理效果沒有進一步促進作用。曝氣能促進光解效果,特別對UV /Fenton工藝作用更為顯著,光解水樣2 h後,曝氣條件下的COD 去除率可從不曝氣條件下的30%提高到80%。
催化濕式氧化能實現有機污染物的高效降解,同時可以大大降低反應的溫度和壓力,為高濃度難生物降解的有機廢水的處理提供了一種高效的新型技術。催化劑是催化濕式氧化的核心,諸多學者致力於研究開發新型高效的催化劑。韓利華等以Cu和Ce為活性組分,制備了Cu /Ce復合金屬氧化物,比較了均相-多相催化劑的催化性能。韓玉英在催化濕式氧化法處理吡蟲啉農葯廢水中,分別用硝酸亞鈰和硝酸銅作催化劑,反應一定時間後COD去除率分別達到80%和95. 5%。用硝酸銅作催化劑處理吡蟲啉農葯廢水具有較高的活性,但Cu2 + 有較高的溶出量。張翼、馬軍在廢水中加入2種自製的催化劑,結果表明,只用臭氧處理的情況下7 d後有機磷的去除率為78. 03%; 在催化劑A 存在下, 去除率可達93. 85%;在催化劑B存在下,去除率可達為88. 35%。在室溫和中性介質中均屬於一級反應。ClO2 是一種強氧化劑,鹼性條件下氰根(CN- )先被氧化為氯酸鹽,氯酸鹽進一步被氧化為碳酸鹽和氮氣,從而徹底消除氰化物毒性。陳莉榮將含氰農葯廢水空氣吹脫除氨後,採用ClO2 作為氰化物的氧化劑,氰化物濃度為60~80 mg·L - 1 , pH為11. 5左右時,按ClO2 ∶CN- ≥3. 5 (質量比)投葯,氰化物的去除率達97%以上,氧化後廢水經生物處理系統進一步處理後各項指標都能達排放標准要求。

閱讀全文

與氨氮農葯廢水怎麼辦相關的資料

熱點內容
中水超濾膜飲用 瀏覽:144
散紙除塵機過濾落差 瀏覽:236
市政污水處理廠運營是什麼意思 瀏覽:912
艾歐史密斯佳尼特直飲水機多少錢 瀏覽:608
衛生間廢水是怎麼回事 瀏覽:425
拖拉機什麼樣濾芯好 瀏覽:317
去離子樹脂的更換周期計算 瀏覽:912
污水管道內堵怎麼處理 瀏覽:280
牆上掛飲水機怎麼接 瀏覽:137
軟水加除垢劑 瀏覽:806
中葯醇提液大孔樹脂 瀏覽:27
可蘭素scr噴嘴除垢劑 瀏覽:85
車間清洗設備污水怎麼處理 瀏覽:298
村污水治理情況匯報 瀏覽:850
名圖汽車汽油濾芯如何換 瀏覽:817
燒水壺里的水垢圖 瀏覽:921
反滲透膜產量排名 瀏覽:365
凈水機氣罐多少壓力 瀏覽:15
捷豹壓縮空氣濾芯堵塞怎麼辦 瀏覽:556
怎麼提高腎小球過濾低 瀏覽:806