導航:首頁 > 廢水污水 > 污水中的氟離子是什麼意思

污水中的氟離子是什麼意思

發布時間:2024-09-07 09:56:23

污水處理中氟離子和氫氧化鈉反應嗎

不反應的。

㈡ 半導體晶元製造廢水處理方法

晶元製造生產工藝復雜,包括矽片清洗、化學氣相沉積、刻蝕等工序反復交專叉,生產中使屬用了大量的化學試劑如HF、H2SO4、NH3・H2O等。

所以一般晶元製造廢水處理系統有含氨廢水處理系統+含氟廢水處理系統+CMP研磨廢水處理系統。具體方案可以咨詢澤潤環境科技(廣東)有限公司網頁鏈接

㈢ 工業廢水處理中氟離子濃度達到多少才可以排放

氟離子濃度應小於10 mg/L才達到國家工業廢水排放標准;對於飲用水,氟離子濃度要求在1 mg/L以下。通過石灰乳中和、混凝劑絮凝、除氟過濾器過濾後,使廢水中的氟去除率達到96%以上,系統出水優於《污水綜合排放標准》(GB8978-1996)一級標准。

人們日常飲用水含氟量一般控制在0.4~0.6mg/L,長期飲用氟離子濃度大於1mg/L水對人體不利,嚴重的會引起氟斑牙與氟骨症以及其他一些疾病,甚至會誘發腫瘤的發生,嚴重威脅人類健康。

(3)污水中的氟離子是什麼意思擴展閱讀

現代工業的發展的同時,排放了大量的高濃度含氟工業廢水,這些廢水一般含有呈氟離子(F-)形態的氟。

而很多企業尚無完善的處理設施來對這些廢水加以處理,排放的廢水中氟含量超過國家排放標准,氟離子濃度遠遠超過10mg/L,嚴重地污染著人類賴以生存的環境的同時給人類的健康造成很多威脅。因此,高濃度含氟廢水處理成為了當前環保及衛生領域重要工程。

水污染物排放標准通常被稱為污水排放標准,它是根據受納水體的水質要求,結合環境特點和社會、經濟、技術條件,對排入環境的廢水中的水污染物和產生的有害因子所作的控制標准,或者說是水污染物或有害因子的允許排放量(濃度)或限值。

它是判定排污活動是否違法的依據。污水排放標准可以分為:國家排放標准、地方排放標准和行業標准。

㈣ 怎樣除掉污水中的氟

採用實驗室規模的化學沉降法處理含氟水,研究結果表明:當聯合投加CaCl2-AlCl3-Ce(SO4)2調節pH = 8 攪拌反應30min時,能一次將含孫和中F- 500mg/L降至 10mg/L以下,此種方法簡單易行,便於操作,實驗結果為含F- 廢水的達標處理提供了一定的科學依據.
氟離子半徑小,溶解性能好,是較難去除的污染物之一.目前認識到的除氟機理主要有:
(1)生成難溶氟化物沉澱
如鈣鹽法中將氟離子轉化為難溶的CaF2沉澱.鈣鹽聯合使用鎂鹽、鋁棚洞鹽、磷酸鹽後,除氟效果增加,殘氟濃度更低,主要原因是形成了新的更難溶的含氟化合物.如鈣鹽與磷酸鹽合用時,生成Ca5(PO4)3F沉澱;CaCl2和AlCl3合用時,形成一種由Ca、Al及F組成的絡合物沉澱,其具體組分和結構尚待進一步研究.一些由多種元素組成的氟化物,比單一元素組成的氟化物具有更低的溶解度,對它們形成條件的研究,有助於除氟工藝的改進和新方法的研究與開發.
(2)離子或配位體交換
F-與OH-半徑及電荷都較為相近,除氟劑中的OH-基團可與F-交換而達到除氟的目的.如羥基磷酸鈣Ca10(PO4)6(OH)2的除氟機理:
Ca10(PO4)6(OH)2+2F- Ca10(PO4)6F2+2OH-
鋁鹽混凝法中,鋁鹽混凝劑的最有效成分Al13O4(OH)7+24及其水解後形成的Al(OH)3(am)凝膠,其中的OH-配位體都可與F-交換:
Al13O4(OH)7+24+xF- Al13O4(OH)24-xF7+x+xOH-
Al(OH)3(am)+xF- Al(OH)3-xFx+xOH-
這一機理已被除F-後體系pH升高現象所證實.[Al13O4(OH)24-xFx]7+等陽離子形成後,可進一步水解生成Al13O4(OH)21F10等羥氟鋁化合物.由於這一類化合物在水中有一定的溶解度,致使單獨使用鋁鹽混凝除氟時最終出水的氟離子質量濃度很難降至4~7mg/L以下.
多數情況下離子與配位體交換是在固相中的OH-和液相中的F-之間進行的,降低液相中OH-濃度或提高F-濃度都有利於交換過程的進行.體系pH降低時,OH-濃度降低,但F-濃度會因形成HF而降低.最有利於F-與OH-進行交換的環境是pH為6~7的微酸性體系,這也是多數氟離子交換劑的最佳pH范圍.
(3)物理或化學吸附
X光電子能譜的研究表明,活性氧化鋁對F-的吸附是通過對NaF的化學吸附來實現的:
Al2O3+Na++F- Al2O3.NaF
羥基磷酸鈣Ca10(PO4)6(OH)2對F-的吸附是通過對CaF2的化學吸附來實現:
Ca10(PO4)6(OH)2+Ca2++2F- Ca10(PO4)6(OH)2.CaF2
氟具有很強的電負性.紅外光譜證實,在一些水化的Al2O3表面,F-可發生氫鍵吸附:
物理吸附中,最重要的是靜電吸附.混凝除氟過程中,鋁鹽水解生成的Al3(OH)5+4、Al7(OH)4+17和Al13O4(OH)7+24等高價陽離子,可通過靜電作用吸附F-,從而被隨後形成的Al(OH)3(am)礬花捲掃下來.在這種情況下,當水中SO2-4、Cl-等陰離子的濃度較高時,由於存在競爭作用,會使Al(OH)3(am)礬花對F-的吸附容量顯著減少.
(4)絡合沉降
F-能與Al3+、Fe3+、Mg2+等陽離子形成絡合物而沉降.如鋁鹽混凝法中Al3+與F-形成AlF(3-x)+x而夾雜在Al(OH)3(am)中沉降下來.
目前的技術情況
(1)對含氟水的處理,切實可行的方法有吸附法、化學沉澱法和混凝沉降法.吸附法適用於水量較小的飲用水的處理,使用羥基磷灰石、活性氧化鎂、稀土金屬氧化物等新型吸附劑可提高處理效率則山.化學沉澱法適用於氟濃度高的工業廢水的處理,在傳統的鈣鹽沉澱法基礎上,聯合使用磷酸鹽、鎂鹽、鋁鹽等,比單純用鈣鹽除氟效果好.混凝沉降法中,使用聚合鋁類混凝劑,如聚合氯化鋁、聚合硫酸鋁等,除氟效果比用Al2(SO4)3、AlCl3好.總的看來,各種方法中提高除氟效率的關鍵在於除氟劑的改進,如引入新組分,提高其中有利於除氟的化學形態的含量等.
(2)目前人們已認識到的除氟機理主要有生成難溶氟化物沉澱、離子或配位體交換、物理或化學吸附、絡合沉降等.含氟水處理過程中,各種除氟機理有可能同時發生.開展除氟機理的研究工作,有助於現有除氟工藝的改進和除氟新方法的開發.
希望對你有用

㈤ 氟對污水生化有影響嗎

氟對污水生化有影響,氟也屬於污染物的范疇,因此對污水生化指標有影響。

㈥ 地下水中的主要化學成分

地下水是由各種無機物和有機物質組成的天然溶液,從化學成分來看,它是溶解的氣體、離子以及來源於礦物和生物膠體物質的復雜綜合體。

(一)地下水中的主要氣體成分

地下水中溶有不等量的氣體,一般其含量為10-4%~10-1%,常見的氣體有氧(O2)、氮(N2)、硫化氫(H2S)、二氧化碳(CO2)等。

1.氧(O2)、氮(N2)

氧是地殼中分布最廣的元素,地下水中氧主要來源於大氣,在高度25km大氣圈中氧的含量佔20.95%。植物的光合作用也能析出氧。近地表的地下水中氧的含量多,越往深處,含量越少,其變化范圍通常在每升十幾毫克以內。氧在水中有較大的溶解度,其溶解量與水的礦化度、埋藏深度、大氣壓力等有關。含溶解氧多的水,說明處於氧化環境。

氮在空氣中佔78.09%,地下水中的氮氣主要來源於大氣,結晶岩地區一些構造破碎帶的低礦化含氮溫泉,以及火山熱液氣體成分中,經常含有氮氣(表5-6)。氮的溶解度與溫度有關,但它的變化幅度較小。

表5-6 火山熱液氣體成分的含量(單位:%)

2.硫化氫(H2S)

天然水中硫化氫的含量很少,能夠呈溶解氣體和硫氫酸鹽的離解形式存在,但各種形式的存在狀況與pH值有關系(表5-7)。

地下水中硫化氫來源於硫酸鹽的還原、硫化物的分解以及火山噴發物質。

普通水文地質學

某些地下熱水、工業廢水及生活污水中也含有H2S。硫化氫含量大於2mg/L的地下水,稱為硫化氫礦水。在某些油田水中,每升水中硫化氫含量可高達幾克,因此,常以此作為尋找油氣田的間接標志。

表5-7 硫化氫和硫氫酸的存在形式與pH值的關系

3.二氧化碳(CO2)

二氧化碳的來源很復雜,它可能來自大氣(空氣中二氧化碳佔0.03%);土壤中生物化學作用(土壤中每年形成13.5×1010t二氧化碳);火山岩漿活動地帶碳酸鹽遇熱分解:

普通水文地質學

沉積岩中含碳酸鹽岩石與酸性礦水作用也能形成二氧化碳:

普通水文地質學

地下水中的pH值決定了各種形式碳酸的含量(表5-8)。地下水中二氧化碳含量通常為每升幾十毫克,一般不超過150mg/L,由於二氧化碳的存在,使水的類型、侵蝕性、礦化度等發生了變化。

表5-8 pH值與碳酸形態之間的關系表

(二)地下水中的主要離子成分

地下水中離子成分是水溶解礦物鹽分的產物。地下水中分布最廣的有Cl,SO2-4,HCO3,Na+,K+,Ca2+,Mg2+七種離子。這七種離子在很大程度上決定了地下水化學的基本特性。

1.氯離子(Cl)

氯離子是地下水中分布最廣的陰離子,溶解度比較高,幾乎存在於所有的地下水中,其含量由每升數毫克至百餘克,在弱礦化的地下水中,氯離子含量極少,隨著礦化度的增加,氯離子含量有所增加。在乾旱地區的潛水中,氯離子含量與礦化度成正比。

地下水中氯離子來源於鹽岩礦床、岩漿岩的風化礦物(如氯磷灰石Ca5[PO43Cl、方鈉石Na8[AlSiO46Cl2),火山噴發物質等。此外,還來源於生活污水及工業、農業排放的廢水。在沿海地區由於海水入侵使氯離子含量增高。

2.硫酸根離子(SO2-4)

地下水中硫酸根離子的含量每升水中由十分之幾毫克至數十克不等,由於鈣離子的存在使硫酸根離子的含量受到限制,因為它們能形成CaSO4沉澱。在中等礦化的水中,硫酸根離子可成為含量最高的陰離子。

地下水中硫酸根離子來源於石膏及其他硫酸鹽沉積物的溶解,硫化物和自然硫的氧化。如:

普通水文地質學

火山噴發時,有相當數量的硫化物和硫化氫氣體噴出並被氧化成硫酸根離子。

硫酸根離子也來自有機質的分解及某些工業廢水,因此,居民點附近地下水中SO2-4的存在常常和污染有關。

3.重碳酸根離子(HCO3)

重碳酸根離子是地下水中重要的組成部分。它是低礦化水的主要陰離子成分,常和Ca2+,Mg2+共存,其含量一般小於1g/L。當地下水中有大量二氧化碳時,重碳酸根離子的濃度大大增加。在碳酸水中可達1.24g/L或更多,而在河、湖水中不超過250mg/L。

地下水中重碳酸根離子主要來源於碳酸鹽岩類(如石灰岩、白雲岩、泥灰岩)的溶解。

普通水文地質學

在岩漿岩與變質岩地區來自鋁硅酸鹽礦物(如鈉長石鈣長石)的風化。

4.鈉離子(Na+)

天然水中,鈉離子的分布在陽離子中占首位,海水中鈉離子含量佔全部陽離子的84%。鈉鹽具有較高的溶解度,在低礦化水中鈉離子含量由每升幾毫克至幾十毫克,隨著礦化度的增加鈉離子含量也增加,在鹵水中最高含量可達每升數十至百克。

地下水中鈉離子來源於鹽岩礦床及火成岩和變質岩中含鈉的礦物(如鈉長石、斜長石、霞石)的風化。如:

普通水文地質學

鈉還可以由含有吸附鈉的岩石與含有鈣離子的水發生陽離子交替吸附作用,使原來岩石上吸附的鈉離子轉入地下水中。

5.鉀離子(K+)

鉀在地殼中的含量與鈉相似(鉀佔2.59%,鈉佔2.83%),鉀離子來源於含鉀鹽沉積物的溶解及岩漿岩、變質岩中含鉀礦物的風化。鉀同鈉一樣與主要陰離子組成易溶化合物(KCl,K2SO4,K2CO3)。鉀鹽的溶解度較大,但在地下水中鉀離子的含量卻很少,一般只有鈉離子含量的4%~10%,其原因是鉀離子易被植物吸收和黏土膠體吸附,也可形成難溶的次生礦物(如水雲母等)。

6.鈣離子(Ca2+)

鈣離子是低礦化水的主要陽離子,由於鈣鹽的溶解度很小,因此,在天然水中鈣離子的含量並不高,一般很少超過1g/L。只有在深層的氯化鈣鹵水中鈣離子的含量才能達到每升幾十克。

鈣離子的主要來源是石灰岩、白雲岩和含鈣硫酸鹽礦物的溶解及岩漿岩與變質岩中含鈣礦物的風化。

7.鎂離子(Mg2+)

鎂離子在地下水中分布也很廣,但絕對含量卻不高。Mg2+在低礦化水中,可達數毫克每升,中等礦化水中幾克每升,高礦化水中可達幾十克每升。鎂鹽的溶解度大於鈣鹽,但在地下水中鎂離子的含量比鈣離子少,其主要原因是鎂離子易被植物攝取,易參與次生礦物生成。

鎂離子的主要來源是白雲岩、泥灰岩的溶解或基性、超基性岩石中某些礦物(黑雲母、橄欖石、角閃石等)的風化和分解。

(三)地下水中的主要微量元素

地下水中的元素含量小於10mg/L時稱為微量元素。常見的微量元素有:溴(Br)、碘(I)、氟(F)、硼(B)、磷(P)、鉛(Pb)、鋅(Zn)、鋰(Li)、銣(Rb)、鍶(Sr)、鋇(Ba)、砷(As)、鉬(Mo)、銅(Cu)、鈷(Co)、鎳(Ni)、銀(Ag)、鈹(Be)、汞(Hg)、銻(Sb)、鉍(Bi)、釩(V)、鎢(W)、鉻(Cr)、錳(Mn)及放射性元素:鈾(U)、鐳(Ra)、氡(Rn)、釷(Th)等。

水中微量元素呈膠體、分子或離子等形式存在。它們的含量一般低於1mg/L,因此,常用μg/L表示。

下面著重介紹地下水中常見的溴、碘、氟、硼四種微量元素。

1.溴(Br)

溴是地殼中數量不多且處於分散狀態的元素。它在天然水中的含量低於氯。淡水中的溴含量為0.001~0.2mg/L;海水中為65mg/L;礦水中溴的含量較高,為10~50mg/L;某些鹽湖水中可高達900mg/L;油田水中最高可達2000mg/L。

溴與氯一樣,隨礦化度增加而增加。結晶岩、沉積岩和土壤中處於分散狀態的溴和海洋中的溴是地下水中溴的主要來源。

2.碘(I)

碘在天然水中的含量比溴少,海水中碘含量為0.05mg/L,鹽湖鹵水中不含碘。與溴相似,在石油天然氣田中聚集了大量碘。我國四川盆地某石油井在5237m深處地下水中含碘量高達586mg/L。

碘是人體中不可缺少的重要元素,地下水中碘的高含量可能與有機質有關,或從海水蒸發進入大氣,形成降水入滲到含水岩層中。

3.氟(F)

河水、湖水和自流水鑽孔中的氟含量為0.3~1.0mg/L,海水中氟含量在1mg/L左右,礦泉水中氟含量增高,如雲南騰沖礦泉中氟的最高含量可達32.50mg/L,鹽湖鹵水可達37.80mg/L。

含氟礦物(如磷灰石、螢石、電氣石、雲母)是地下水中氟離子主要來源。岩石的平均含氟量以酸性岩最高,超基性岩最低。在現代火山活動區,氟可能來源於初生水。

4.硼(B)

硼屬稀散元素。天然水中都含有硼元素,但含量不高。礦化度低的地下水中硼含量為每升千分之幾到萬分之幾毫克;海水中硼為1.50~4.44mg/L;鹽湖鹵水中硼含量可高達150.00mg/L。地下水中的硼是從溶濾海相沉積岩或火山活動區岩石中富硼礦物進入地下水中的。

(四)地下水中其他成分

1.膠體成分

純水一般呈真溶液狀態,由於溶解某些鹽類或含有固體懸浮物質往往形成膠體溶液或懸濁液。組成地下水中膠體成分很多,但由於許多膠體成分不穩定,易生成次生礦物而沉澱。地下水中膠體成分主要有硅酸、氫氧化鐵、氫氧化鋁等。

(1)硅酸

硅酸是很弱的酸,它的離解程度很低。硅酸在每升地下水中的含量一般是十分之幾毫克,少數達幾毫克,但在鹼性熱水中,它的溶解性能好,可達到100mg/L。我國南方多雨潮濕的結晶岩地區,在一些低礦化度水中富集了硅酸鹽型水。黏土礦物即是硅鋁酸化合物膠體,最簡單的形式是Al2O3·2SiO2·2H2O,硅鋁酸陰離子使黏土膠體粒子帶有負電荷,是吸附陽離子的主要原因。

(2)氫氧化鐵

在還原環境中,地下水中的鐵通常以低價Fe2+出現,亞鐵離子在水中是不穩定的,極易氧化成氫氧化鐵析出:

普通水文地質學

膠體氫氧化鐵在地殼中分布很廣,也是鐵在天然水中存在的主要形式之一。

(3)氫氧化鋁

氫氧化鋁膠體主要由鋁硅酸鹽風化分解而來,但很不穩定,容易形成水礬土,葉蠟石等次生礦物,氫氧化鋁在地下水中含量不高。

2.有機質

有機質的化學成分十分復雜。構成有機質的主要元素碳、氫、氧佔98.5%,此外還有少量的氮、磷、硫、鉀、鈣等元素。

地下水中的有機質大部分由腐殖質所組成,它是有機質經微生物分解後再合成的一種褐色或黑褐色的膠體物質。沼澤地區的地下水,有機質含量較高,呈酸性。油田水中有機質含量最高達n×10-1%。大氣降水和海洋水中有機質的含量最少。其他地下水中含量只有n×10-3%。

地下水中有機質的主要來源是土壤、岩石或石油天然氣的溶解,細菌或生物的作用,沿海鹽水的侵入等。此外,工業廢水、石油、天然氣、煤等礦產的開發,農業排灌以及城市污染等也能形成有機質。

3.細菌成分

地下水中的細菌成分來自生活污水、生物製品、造紙等各種工業廢水,這些污水中往往含有各種病原菌,流入水體後會傳染各種疾病。此外,人類及動物的排泄物也能產生致病菌,污染地下水。

水的細菌分析結果一般用細菌總數(每升水中)、菌度(含有1條大腸桿菌的水的毫升數)和檢定量(1L水中大腸桿菌的含量)表示(表5-9)。我國規定1mL飲用水中細菌總數不得超過100個,大腸桿菌不得超過3個。

表5-9 地下水衛生狀況按菌度劃分

閱讀全文

與污水中的氟離子是什麼意思相關的資料

熱點內容
東莞污水廠廢氣治理多少錢 瀏覽:708
污水泡沫對人體有什麼危害 瀏覽:250
日本排入廢水最新消息 瀏覽:238
社區緊急聯系搶修污水外流怎麼辦 瀏覽:239
不銹鋼蜂蜜化晶過濾器 瀏覽:278
香港蒸餾水廣告古天樂 瀏覽:489
三聚異氰胺樹脂 瀏覽:396
超濾膜正沖洗 瀏覽:914
qq音樂播放器音質會提升嗎 瀏覽:761
河北污水排水管多少錢 瀏覽:37
污水水池要做什麼實驗 瀏覽:487
小米凈水廢水怎麼排 瀏覽:430
什麼水不會起水垢 瀏覽:577
純凈水比普通水有什麼好處 瀏覽:766
溫度降低半透膜 瀏覽:762
我國園區污水處理廠 瀏覽:753
聚三氟氯乙烯樹脂f2314 瀏覽:803
小米空氣凈化器怎麼用更好 瀏覽:567
污水令水藻增加 瀏覽:896
商用凈水器怎麼盈利 瀏覽:81