導航:首頁 > 廢水污水 > 工廠一年產生多少煤氣化廢水

工廠一年產生多少煤氣化廢水

發布時間:2024-07-20 18:05:30

㈠ 超低排放成就清潔煤電——燃煤發電正在從黑走向白

【能源人都在看,點擊右上角加'關注'】

北極星大氣網訊:10月21日,國務院新聞辦公室舉行新聞發布會稱,截至2019年底,全國實現超低排放的煤電機組占煤電總裝機容量86%,中國建成了世界最大規模的超低排放清潔煤電供應體系。放眼國外,煤電在為世界提供了百十年的電力後雖然漸顯頹勢,但許多國家至今仍在投入技術對其進行污染治理和改造,使它繼續為人類服務。

圖 國際能源署稱世界燃煤發電在2018年到達創紀錄的頂峰,然後從2019年開始下降。

印度:控制煤電污染會損失百億美元

長期以來,煤電一直是全球電力生產的領導者。根據英國石油公司(BP)2018年發布的《世界能源統計年鑒》,本世紀以來,燃煤發電在全球電力生產中的佔比基本徘徊在40%上下,幾乎是核電、水電和可再生能源發電量之和。從煤電占能源供應比例來看,中國、印度、波蘭和南非四國國內超過2/3的電力來自煤電。

圖 印度燃煤電廠長期排放不達標,已經成為國家環境問題中的痛點。

以印度為代表的亞洲發展中國家,由於缺乏較為先進的清潔能源、儲能技術以及成熟的可再生能源政策框架,使用清潔能源的成本較高,對印度這樣的新興經濟體來說,廉價的煤電仍是最佳的發電選擇,這就使得南亞和東南亞一帶成為全球少有的煤電佔比增長地區,但這也給當地煤電治污帶來了不小的麻煩。

圖 印度杜蒂戈林的一座亞臨界燃煤電站,這種電站熱效率最低,單位電量的碳排放最多。

幾年前,印度科學技術與政策研究中心(CSTEP)進行的一項空氣污染研究表明,由於印度的燃煤電廠向大氣中排放大量有害氣體和顆粒物,到2030年因不遵守排放標准導致的早死病例多達30萬至32萬例,此外還有5100萬人因呼吸系統疾病住院。安裝更先進的設備來控制硫氧化物、氮氧化物和顆粒物等是個不錯的選擇,但這筆賬算下來,印度的燃煤電廠要損失98億至115億美元,每度電的成本會因此提高9%至21%,印度當局經過權衡,最後認為控制煤電污值得投入。2015年12月,印度環境、森林與氣候變化部(MOEFCC)出台了限制燃煤電廠中硫氧化物、氮氧化物和顆粒物濃度的新標准,給國內燃煤電廠兩年限期執行。但到2017年12月,當局發現幾乎沒有燃煤電廠安裝了治理污染的設備,於是被迫將最後期限延長至2022年。」有消息人士說,兩年限期讓煤電行業承受了巨大的壓力,這才導致了延期。但大多數專家認為,到2022年許多燃煤電廠仍不會遵守嚴格的標准。當局對此有所准備,正從招標和施工審批、杜絕監測數據造假和監督改造成本上加大管理力度。目前,印度正在改造境內所有舊煤電廠,使其排放水平降至國家標准,同時將關閉一批嚴重超期服役的老舊電廠。

圖 印度是世界產煤大國,圖為印度一處露天煤礦。

拋開具體的技術不談,我們可以認為印度在煤電污染治理中遇到的問題是許多發展中國家普遍存在的。不過,好在隨著可再生能源發電成本的不斷下降,煤電在印度能源結構中的「王者」身份也許會開始動搖。

日本:逐漸淘汰低效燃煤電廠

據國際能源署(EIA)2019年公布的數據,2018年日本90多家燃煤電廠的發電量估計為3170億千瓦時,在日本電力結構中佔比約為1/3。日本煤炭消費總量中99%來自進口。2018年,日本進口煤炭總量超過2.1億噸,若加上天然氣發電量,日本有74%的電力來自於化石能源,這一比例遠高於歐美發達國家。

圖 福島核事故發生後,日本煤電建設連續數年增長。

日本煤電高佔比的原因是一次 歷史 性突發事件。早在2010年時,日本經濟產業省就計劃減少燃煤發電量,計劃到2030年將煤電份額減少一半以上,用核電彌補這一空缺,將核電比例提升至50%。然而,2011年發生的福島核事故不僅大大削弱了日本電力的「清潔度」,更引爆了公眾多年來都無法緩和的「反核」情緒。為彌補關停核電帶來的電力缺口,日本啟動了很多煤電項目。不過,日本較好地處理了煤電產能擴大和污染治理之間的矛盾,原因是日本在煤電污染控制技術上有底氣。

日本自上世紀七八十年代以來,在燃煤發電諸多環節研發了大量先進技術,並投入使用,其中一些技術出口國外(包括中國)。在煙氣污染防治技術方面,日本應用的以低低溫電除塵技術為核心的煙氣協同治理技術路線中,濕法脫硫的協同除塵效率可達 70%~90%。再如資源化脫硫技術中的活性焦脫硫技術,是通過移動床利用活性焦吸附解吸二氧化硫,利用硫酸生產工藝制備硫酸,集脫硫和收集工業原材料於一體。該技術在日本等國的大型電廠中投入應用,日本的新磯子電廠已有 2 600兆瓦機組的應用業績。

在低氮燃燒方面,日本的三菱、日立公司等在低氮氧化物燃燒器開發與應用上均有良好表現。在低氮燃燒技術相關專利申請方面,全球相關專利申請企業排名前10位中,日本佔有6家,美國有3家。但好消息是,近幾年來我國在這方面的專利數量正迅速增加。

2015年6月,日本成立由政產學各界組成的「促進新一代火力發電技術協會」,開始舉全國之力推動下一代火力發電清潔高效利用技術的開發。日本內閣於2018年7月批准第五個戰略能源計劃,推動日本向高效和下一代燃煤發電轉變,以逐步淘汰低效煤炭使用。今年7月,日本經濟產業大臣梶山弘志表示,日本將在2030年前逐漸淘汰低效燃煤發電廠,這是其戰略能源計劃的一部分,日本經濟產業省官員開始制定更為有效的新框架,以確保逐步淘汰低效燃煤發電廠。

美國:煤電發電量最大的發達國家

全球能源監測機構發布的數據顯示,2019年全球燃煤電站發電總量排名前十的國家由高到低依次為:中國、印度、美國、日本、韓國、南非、德國、俄羅斯、印度尼西亞、澳大利亞。在新建燃煤電站方面,2019年這10國中僅有美國、德國、澳大利亞3個國家沒有新建燃煤電站投運,且美國2019年關閉的燃煤電站容量位居10國之首。但如今的美國仍然是煤電發電量最大的發達國家,燃煤電廠對美國空氣污染帶來的影響(包括PM2.5、臭氧和酸雨等)也不容忽視。在美國,燃煤電廠每年消耗的煤炭占煤炭消費總量的90%以上,燃煤電廠排放的二氧化硫約佔全美國排放總量的一半,排放的氮氧化物佔10%。

圖 美國亞拉巴馬州的寡婦溪燃煤電廠停運後,美國谷歌公司2018年開始動工,將其改造成一個使用可再生能源的數據中心。

在美國,大多數燃煤電廠採用濕法煙氣脫硫系統(WFGD)來控制二氧化硫排放,用低氮燃燒器、燃盡風和選擇性催化還原系統(SCR)來控制氮氧化物排放,用靜電除塵器(ESP)來控制顆粒物(PM)。大約有一半的燃煤電廠還會使用帶有袋式除塵器的活性碳噴射系統(ACI)來控制汞排放。美國在低氮燃燒領域較為擅長。美國有公司開發了旋轉對沖燃盡風技術(ROFA),從鍋爐二次風中抽取30%左右的風量,通過不對稱安放的噴嘴,以高速射流方式射入爐膛上部,形成渦流,從而改善爐內的物料混合和溫度分布,從而大幅降低氮氧化物生成。目前,該技術在歐美發達國家有良好的應用。

全球每年排放到大氣中的汞總量約為5000噸,而燃煤過程中汞排放占相當大的比重。從上世紀末開始,汞污染治理一直是美國燃煤電廠的防治重點之一。美國環境保護署(EPA)稱,在1990年,下列三個工業部門的汞排放總量約佔美國的2/3:醫療廢物焚化爐、市政垃圾焚燒廠和燃煤發電廠。前兩個行業已受到排放標準的約束,但燃煤電廠的汞污染還有待治理。

圖 2018年11月,美國北卡萊羅納州的諾曼湖上熱氣蒸騰,附近的馬歇爾電廠向湖中排放了大量溫度較高的廢水

本世紀以來,美國燃煤電廠根據「清潔天空計劃」的要求,開始重點解決排汞控制問題,美國能源部為此選擇了8項新的排汞控制技術試驗項目進行投資。美國電力科學研究院的專利排汞控制技術作為試驗項目的一部分,在6個項目中進行試驗。此外,美國能源部計劃長期大規模地對富有發展前景的排汞控制技術進行試驗,尤其是在燃燒褐煤和裝有較小型靜電除塵器的燃煤電廠展開試驗。

歐盟:多國公布淘汰煤電時間表

在歐洲國家中,德國率先向燃煤發電污染開刀,在上世紀80年代制訂了《大型燃燒裝置法》,要求自 1987年7月1日起,大型燃燒裝置排放煙氣中的二氧化硫濃度不得超過400毫克/立方米,煙氣中的硫含量低於燃料含硫量的15%。因此,幾乎所有的德國電廠都在原有的機爐廠房旁建立起高大嶄新的煙氣脫硫、脫硝設備,這成為德國電廠的一大特色。德國人後來把1983至1988 年期間在全西德范圍內加裝煙氣凈化設備的舉措稱之為「改裝運動」。到1988年,西德已有95%的裝機容量安裝了煙氣脫硫裝置,燃煤電廠的二氧化硫排放量由1982年的155萬噸降低到1991年的20萬噸,削減幅度達到87%,在歐盟和世界范圍內起到了很好的示範帶頭作用。

圖 位於勞西茨的一個德國燃煤電站,德國已經決定於2038年徹底停運燃煤電廠。

由於燃煤電廠煙氣在脫硝、除塵和脫硫的同時,可對汞產生協同脫除的效應。歐盟《大型燃燒裝置的最佳可行技術參考文件》建議,汞的脫除優先考慮採用高效除塵、煙氣脫硫和脫硝協同控制的技術路線。採用電除塵器或布袋除塵器後加裝煙氣脫硫裝置,平均脫除效率在75%(電除塵器為50%,煙氣脫硫為50%),若加上SCR裝置可達90%。

在清潔煤領域,歐盟研究開發的項目有整體煤氣化聯合循環(IGCC)技術、煤和生物質及廢棄物聯合氣化技術、循環流化床燃燒(簡稱CFB,當前主流清潔煤燃燒技術)技術、固體燃料氣化與燃料電池聯合循環技術等。

圖 英國北約克郡的艾格伯勒燃煤電廠已經於2018年關閉,同年該廠區成為電影《速度與激情》的拍攝場地之一。

在歐洲,煤電發展現狀和預期因國家而異。這主要取決於各國監管機構對脫碳、空氣質量的政策,以及煤電在各國電力生產中的地位等。為了落實《巴黎協定》中的節能減排目標,歐洲各國政府也相繼公布了淘汰煤電的時間表:英國決定在2025年前關閉所有煤電設施;法國計劃到2021年關閉所有煤電廠;芬蘭考慮到2030年全面禁煤;荷蘭將從2030年起禁止使用燃煤發電等。類似情況也在世界其他地方發生。包括美國在內的許多國家正在遠離煤炭,因為其他清潔能源正在變得越來越便宜,而環境法規也讓這種礦物燃料的市場遇冷——既然燃煤發電有替代選擇,為什麼還要用呢?

中國:煤電排污標准比發達國家嚴

由於煤電在我國電力供應結構中佔比超過一半,全面實施超低排放和節能改造,有利於提升我國煤電行業清潔、高效、高質量發展的水平。自2014年以來,我國大力推進國內各發電企業實施超低排放和節能改造工程。一方面推行更為嚴格的煤電能效環保標准,提出全國有條件的新建燃煤發電機組大氣污染物排放濃度基本達到燃氣輪機組排放限值,具備條件的現役燃煤機組實施超低排放改造。另一方面,有關部門進一步明確超低排放電價政策,有效降低了企業改造和運行成本。

圖 燃煤電廠是20世紀最重要的人類遺產之一

據中國電力企業聯合會統計,在2012年至2017年這5年間,在全國煤電裝機容量增幅達30%的情況下,煤電的二氧化硫、氮氧化物、煙塵排放量下降幅度達86%、89%、85%。煤電機組供電標准煤耗從325克/千瓦時下降至312克/千瓦時。考慮到我國煤電裝機容量全球最大,現在超低排放改造的基礎容量已經超過7億千瓦,這在全世界都絕無僅有。以前,我國的煙氣污染物排放標准比發達國家要寬松,但現在我國燃煤電廠煙塵、二氧化硫和氮氧化物排放水平已與燃氣電廠接近,比發達國家的排放要求嚴格50%以上。

圖 印尼中爪哇島哲帕拉的孩子們在燃煤電廠附近玩耍,對近在咫尺的污染源視若無睹。這種景象在煤電持續擴張的東南亞很常見。

中國的燃煤電廠發生的變化說明,煤電作為上個世紀遺留下來的象徵物並沒有過時,只要我們有智慧地對其進行充分利用,它就能繼續生存並煥發出生機活力。

圖 南非國有電力公司新建成的庫塞爾燃煤電廠也採用濕法脫硫裝置

全國能源信息平台聯系電話:010-65367702,郵箱:[email protected],地址:北京市朝陽區金台西路2號人民日報社

㈡ 什麼是燃煤電廠近零排放

燃煤電廠污水處理近零排放是指無限地減少污染物和能源排放直至到零的活動。從污水處理設備,污水處理產業周期看,未來國內城市再生水、工業廢水處理、工業污水處理、高鹽廢水處理等細分市場將快速發展。

燃煤電廠近零排放技術應用「由來已久」

事實上,1973年美國佛羅里達州發電廠實現世界上首例電廠廢水零排放。隨後,在冶金、造紙、化工、電鍍、食品等多個行業,都有廢水零排放的成功案例。早在1994年,日本也把循環工業制定為未來工業的基礎和方向。為了更加有力的促進零排放的發展,聯合國大學於1999年創立了「聯合國大學/零排放論壇」。

為了我國經濟、社會的可持續發展,「欣格瑞」結合了十幾年的水處理經驗,經過數百次實驗,研究出了「污水回用於循環水系統近零排污整體解決方案」。可以實現廢水經簡單處理後回用於循環水系統,在保證循環水系統設備長期運行不結垢、不腐蝕的前提下,不排污或少排污,利用循環水系統自身優勢促使污水被降解、消耗。既減少了排污,也節省了大量的水資源;既降低了生產成本,也減少了對環境的破壞。

此外,在加葯方式和加葯頻率這一方面,欣格瑞(山東)環境 使用「普羅名特計量泵」進行24小時連續、均勻的方式投加到循環水泵吸水口附近,在最大程度上保證了循環水中葯劑含量的穩定。

㈢ 煤炭氣化技術的煤氣化工藝

煤炭氣化技術雖有很多種不同的分類方法,但一般常用按生產裝置化學工程特徵分類方法進行分類,或稱為按照反應器形式分類。氣化工藝在很大程度上影響煤化工產品的成本和效率,採用高效、低耗、無污染的煤氣化工藝(技術)是發展煤化工的重要前提,其中反應器便是工藝的核心,可以說氣化工藝的發展是隨著反應器的發展而發展的,為了提高煤氣化的氣化率和氣化爐氣化強度,改善環境,新一代煤氣化技術的開發總的方向,氣化壓力由常壓向中高壓(8.5 MPa)發展;氣化溫度向高溫(1500~1600℃)發展;氣化原料向多樣化發展;固態排渣向液態排渣發展。 固定床氣化也稱移動床氣化。固定床一般以塊煤或焦煤為原料。煤由氣化爐頂加入,氣化劑由爐底加入。流動氣體的上升力不致使固體顆粒的相對位置發生變化,即固體顆粒處於相對固定狀態,床層高度亦基本保持不變,因而稱為固定床氣化。另外,從宏觀角度看,由於煤從爐頂加入,含有殘炭的爐渣自爐底排出,氣化過程中,煤粒在氣化爐內逐漸並緩慢往下移動,因而又稱為移動床氣化。
固定床氣化的特性是簡單、可靠。同時由於氣化劑於煤逆流接觸,氣化過程進行得比較完全,且使熱量得到合理利用,因而具有較高的熱效率。
固定床氣化爐常見有間歇式氣化(UGI)和連續式氣化(魯奇Lurgi)2種。前者用於生產合成氣時一定要採用白煤(無煙煤)或焦碳為原料,以降低合成氣中CH4含量,國內有數千台這類氣化爐,弊端頗多;後者國內有20多台爐子,多用於生產城市煤氣;該技術所含煤氣初步凈化系統極為復雜,不是公認的首選技術。
(1)、固定床間歇式氣化爐(UGI)
以塊狀無煙煤或焦炭為原料,以空氣和水蒸氣為氣化劑,在常壓下生產合成原料氣或燃料氣。該技術是30年代開發成功的,投資少,容易操作,目前已屬落後的技術,其氣化率低、原料單一、能耗高,間歇制氣過程中,大量吹風氣排空,每噸合成氨吹風氣放空多達5 000 m3,放空氣體中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤氣冷卻洗滌塔排出的污水含有焦油、酚類及氰化物,造成環境污染。我國中小化肥廠有900餘家,多數廠仍採用該技術生產合成原料氣。隨著能源政策和環境的要來越來越高,不久的將來,會逐步為新的煤氣化技術所取代。
(2)、魯奇氣化爐
30年代德國魯奇(Lurgi)公司開發成功固定床連續塊煤氣化技術,由於其原料適應性較好,單爐生產能力較大,在國內外得到廣泛應用。氣化爐壓力(2.5~4.0)MPa,氣化反應溫度(800~900)℃,固態排渣,氣化爐已定型(MK~1~MK-5),其中MK-5型爐,內徑4.8m,投煤量(75~84)噸/h,粉煤氣產量(10~14)萬m3/h。煤氣中除含CO和H2外,含CH4高達10%~12%,可作為城市煤氣、人工天然氣、合成氣使用。缺點是氣化爐結構復雜、爐內設有破粘和煤分布器、爐篦等轉動設備,製造和維修費用大;入爐煤必須是塊煤;原料來源受一定限制;出爐煤氣中含焦油、酚等,污水處理和煤氣凈化工藝復雜、流程長、設備多、爐渣含碳5%左右。針對上述問題,1984年魯奇公司和英國煤氣公司聯合開發了液體排渣氣化爐(BGL),特點是氣化溫度高,灰渣成熔融態排出,炭轉化率高,合成氣質量較好,煤氣化產生廢水量小並且處理難度小,單爐生產能力同比提高3~5倍,是一種有發展前途的氣化爐。 流化床氣化又稱為沸騰床氣化。其以小顆粒煤為氣化原料,這些細顆粒在自下而上的氣化劑的作用下,保持著連續不斷和無秩序的沸騰和懸浮狀態運動,迅速地進行著混合和熱交換,其結果導致整個床層溫度和組成的均一。流化床氣化能得以迅速發展的主要原因在於:(1)生產強度較固定床大。(2)直接使用小顆粒碎煤為原料,適應採煤技術發展,避開了塊煤供求矛盾。(3)對煤種煤質的適應性強,可利用如褐煤等高灰劣質煤作原料。
流化床氣化爐常見有溫克勒(Winkler)、灰熔聚(U-Gas)、循環流化床(CFB)、加壓流化床(PFB是PFBC的氣化部分)等。
(1)、循環流化床氣化爐CFB
魯奇公司開發的循環流化床氣化爐(CFB)可氣化各種煤,也可以用碎木、樹皮、城市可燃垃圾作為氣化原料,水蒸氣和氧氣作氣化劑,氣化比較完全,氣化強度大,是移動床的2倍,碳轉化率高(97%),爐底排灰中含碳2%~3%,氣化原料循環過程中返回氣化爐內的循環物料是新加入原料的40倍,爐內氣流速度在(5~7)m/s之間,有很高的傳熱傳質速度。氣化壓力0.15MPa。氣化溫度視原料情況進行控制,一般控制循環旋風除塵器的溫度在(800~1050)℃之間。魯奇公司的CFB氣化技術,在全世界已有60多個工廠採用,正在設計和建設的還有30多個工廠,在世界市場處於領先地位。
CFB氣化爐基本是常壓操作,若以煤為原料生產合成氣,每公斤煤消耗氣化劑水蒸氣1.2kg,氧氣0.4kg,可生產煤氣 (l.9~2.0)m3。煤氣成份CO+H2>75%,CH4含量2.5%左右, CO215%,低於德士古爐和魯奇MK型爐煤氣中CO2含量,有利於合成氨的生產。
(2)、灰熔聚流化床粉煤氣化技術
灰熔聚煤氣化技術以小於6mm粒徑的乾粉煤為原料,用空氣或富氧、水蒸氣作氣化劑,粉煤和氣化劑從氣化爐底部連續加入,在爐內(1050~1100)℃的高溫下進行快速氣化反應,被粗煤氣夾帶的未完全反應的殘碳和飛灰,經兩極旋風分離器回收,再返回爐內進行氣化,從而提高了碳轉化率,使灰中含磷量降低到10%以下,排灰系統簡單。粗煤氣中幾乎不含焦油、酚等有害物質,煤氣容易凈化,這種先進的煤氣化技術中國已自行開發成功。該技術可用於生產燃料氣、合成氣和聯合循環發電,特別用於中小氮肥廠替代間歇式固定床氣化爐,以煙煤替代無煙煤生產合成氨原料氣,可以使合成氨成本降低15%~20%,具有廣闊的發展前景。
U-Gas在上海焦化廠(120噸煤/天)1994年11月開車,長期運轉不正常,於2002年初停運;中科院山西煤化所開發的ICC灰熔聚氣化爐,於2001年在陝西城化股份公司進行了100噸/天制合成氣工業示範裝置試驗。CFB、PFB可以生產燃料氣,但國際上尚無生產合成氣先例;Winkler已有用於合成氣生產案例,但對粒度、煤種要求較為嚴格,甲烷含量較高(0.7%~2.5%),而且設備生產強度較低,已不代表發展方向。 氣流床氣化是一種並流式氣化。從原料形態分有水煤漿、干煤粉2類;從專利上分,Texaco、Shell最具代表性。前者是先將煤粉製成煤漿,用泵送入氣化爐,氣化溫度1350~1500℃;後者是氣化劑將煤粉夾帶入氣化爐,在1500~1900℃高溫下氣化,殘渣以熔渣形式排出。在氣化爐內,煤炭細粉粒經特殊噴嘴進入反應室,會在瞬間著火,直接發生火焰反應,同時處於不充分的氧化條件下,因此,其熱解、燃燒以吸熱的氣化反應,幾乎是同時發生的。隨氣流的運動,未反應的氣化劑、熱解揮發物及燃燒產物裹夾著煤焦粒子高速運動,運動過程中進行著煤焦顆粒的氣化反應。這種運動狀態,相當於流化技術領域里對固體顆粒的「氣流輸送」,習慣上稱為氣流床氣化。
氣流床氣化具有以下特點:(1)短的停留時間(通常1s);(2)高的反應溫度(通常1300-1500℃);(3)小的燃料粒徑(固體和液體,通常小於0.1mm);(4)液態排渣。而且,氣流床氣化通常在加壓(通常20-50bar)和純氧下運行。
氣流床氣化主要有以下幾種分類方式:
(1)根據入爐原料的輸送性能可分為干法進料和濕法進料;
(2)根據氣化壓力可分為常壓氣化和加壓氣化;
(3)根據氣化劑可分為空氣氣化和氧氣氣化;
(4)根據熔渣特性可分為熔渣氣流床和非熔渣氣流床。
在熔渣氣流床氣化爐中,燃料灰分在氣化爐中熔化。熔融的灰分在相對較冷的壁面上凝聚並最終形成一層保護層,然後液態熔渣會沿著該保護層從氣化爐下部流出。熔渣的數量應保證連續的熔渣流動。通常,熔渣質量流應至少佔總燃料流的6%。為了在給定的溫度下形成具有合適粘度的液態熔渣,通常在燃料中添加一種被稱為助熔劑的物質。這種助熔劑通常是石灰石和其它一些富含鈣基的物質。在非熔渣氣流床氣化爐中,熔渣並不形成,這就意味著燃料必須含有很少量的礦物質和灰分,通常最大的灰分含量是1%。非熔渣氣流床氣化爐由於受原料的限制,因此工業上應用的較少。
氣流床對煤種(煙煤、褐煤)、粒度、含硫、含灰都具有較大的兼容性,國際上已有多家單系列、大容量、加壓廠在運作,其清潔、高效代表著當今技術發展潮流。
乾粉進料的主要有K-T(Koppres-Totzek)爐、Shell- Koppres爐、Prenflo爐、Shell爐、GSP爐、ABB-CE爐,濕法煤漿進料的主要有德士古(Texaco)氣化爐、Destec爐。
(1)、德士古(Texaco)氣化爐
美國Texaco(2002年初成為Chevron公司一部分,2004年5月被GE公司收購)開發的水煤漿氣化工藝是將煤加水磨成濃度為60~65%的水煤漿,用純氧作氣化劑,在高溫高壓下進行氣化反應,氣化壓力在3.0~8.5MPa之間,氣化溫度1400℃,液態排渣,煤氣成份CO+H2為80%左右,不含焦油、酚等有機物質,對環境無污染,碳轉化率96~99%,氣化強度大,爐子結構簡單,能耗低,運轉率高,而且煤適應范圍較寬。目前Texaco最大商業裝置是Tampa電站,屬於DOE的CCT-3,1989年立項,1996年7月投運,12月宣布進入驗證運行。該裝置為單爐,日處理煤2000~2400噸,氣化壓力為2.8MPa,氧純度為95%,煤漿濃度68%,冷煤氣效率~76%,凈功率250MW。
Texaco氣化爐由噴嘴、氣化室、激冷室(或廢熱鍋爐)組成。其中噴嘴為三通道,工藝氧走一、三通道,水煤漿走二通道,介於兩股氧射流之間。水煤漿氣化噴嘴經常面臨噴口磨損問題,主要是由於水煤漿在較高線速下(約30m/s)對金屬材質的沖刷腐蝕。噴嘴、氣化爐、激冷環等為Texaco水煤漿氣化的技術關鍵。
80年代末至今,中國共引進多套Texaco水煤漿氣化裝置,用於生產合成氣,我國在水煤漿氣化領域中積累了豐富的設計、安裝、開車以及新技術研究開發經驗與知識。
從已投產的水煤漿加壓氣化裝置的運行情況看,主要優點:水煤漿制備輸送、計量控制簡單、安全、可靠;設備國產化率高,投資省。由於工程設計和操作經驗的不完善,還沒有達到長周期、高負荷、穩定運行的最佳狀態,存在的問題還較多,主要缺點:噴嘴壽命短、激冷環壽命僅一年、褐煤的制漿濃度約59%~61%;煙煤的制漿濃度為65%;因汽化煤漿中的水要耗去煤的8%,比干煤粉為原料氧耗高12%~20%,所以效率比較低。
(2)、Destec(Global E-Gas)氣化爐
Destec氣化爐已建設2套商業裝置,都在美國:LGT1(氣化爐容量2200噸/天,2.8MPa,1987年投運)與Wabsh Rive(二台爐,一開一備,單爐容量2500噸/天,2.8MPa,1995年投運)爐型類似於K-T,分第一段(水平段)與第二段(垂直段),在第一段中,2個噴嘴成180度對置,藉助撞擊流以強化混合,克服了Texaco爐型的速度成鍾型(正態)分布的缺陷,最高反應溫度約1400℃。為提高冷煤氣效率,在第二階段中,採用總煤漿量的10%~20%進行冷激(該點與Shell、Prenflo的循環沒氣冷激不同),此處的反應溫度約1040℃,出口煤氣進火管鍋爐回收熱量。熔渣自氣化爐第一段中部流下,經水冷激固化,形成渣水漿排出。E-Gas氣化爐採用壓力螺旋式連續排渣系統。
Global E-Gas氣化技術缺點為:二次水煤漿停留時間短,碳轉化率較低;設有一個龐大的分離器,以分離一次煤氣中攜帶灰渣與二次煤漿的灰渣與殘炭。這種爐型適合於生產燃料氣而不適合於生產合成氣。
(3)、Shell氣化爐
最早實現工業化的乾粉加料氣化爐是K-T爐,其它都是在其基礎之上發展起來的,50年代初Shell開發渣油氣化成功,在此基礎上,經歷了3個階段:1976年試驗煤炭30餘種;1978年與德國Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建設日處理150t煤裝置;兩家分手後,1978年在美國Houston的Deer Park建設日處理250t高硫煙煤或日處理400t高灰分、高水分褐煤。共費時16年,至1988年Shell煤技術運用於荷蘭Buggenum IGCC電站。該裝置的設計工作為1.6年,1990年10月開工建造,1993年開車,1994年1月進入為時3年的驗證期,目前已處於商業運行階段。單爐日處理煤2000t。
Shell氣化爐殼體直徑約4.5m,4個噴嘴位於爐子下部同一水平面上,沿圓周均勻布置,藉助撞擊流以強化熱質傳遞過程,使爐內橫截面氣速相對趨於均勻。爐襯為水冷壁(Membrame Wall),總重500t。爐殼於水冷管排之間有約0.5m間隙,做安裝、檢修用。
煤氣攜帶煤灰總量的20%~30%沿氣化爐軸線向上運動,在接近爐頂處通入循環煤氣激冷,激冷煤氣量約占生成煤氣量的60%~70%,降溫至900℃,熔渣凝固,出氣化爐,沿斜管道向上進入管式余熱鍋爐。煤灰總量的70%~80%以熔態流入氣化爐底部,激冷凝固,自爐底排出。
粉煤由N2攜帶,密相輸送進入噴嘴。工藝氧(純度為95%)與蒸汽也由噴嘴進入,其壓力為3.3~3.5MPa。氣化溫度為1500~1700℃,氣化壓力為3.0MPa。冷煤氣效率為79%~81%;原料煤熱值的13%通過鍋爐轉化為蒸汽;6%由設備和出冷卻器的煤氣顯熱損失於大氣和冷卻水。
Shell煤氣化技術有如下優點:採用干煤粉進料,氧耗比水煤漿低15%;碳轉化率高,可達99%,煤耗比水煤漿低8%;調解負荷方便,關閉一對噴嘴,負荷則降低50%;爐襯為水冷壁,據稱其壽命為20年,噴嘴壽命為1年。主要缺點:設備投資大於水煤漿氣化技術;氣化爐及廢鍋爐結構過於復雜,加工難度加大。
我公司直接液化項目採用此技術生產氫氣。
(4)、GSP氣化爐
GSP(GAS Schwarze Pumpe)稱為「黑水泵氣化技術」,由前東德的德意志燃料研究所(簡稱DBI)於1956年開發成功。目前該技術屬於成立於2002年未來能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP氣化爐是一種下噴式加壓氣流床液態排渣氣化爐,其煤炭加入方式類似於shell,爐子結構類似於德士古氣化爐。1983年12月在黑水泵聯合企業建成第一套工業裝置,單台氣化爐投煤量為720噸/天,1985年投入運行。GSP氣化爐目前應用很少,僅有5個廠應用,我國還未有一台正式使用,寧煤集團(我公司控股)將要引進此技術用於煤化工項目。
總之,從加壓、大容量、煤種兼容性大等方面看,氣流床煤氣化技術代表著氣化技術的發展方向,水煤漿和干煤粉進料狀態各有利弊,界限並不十分明確,國內技術界也眾說紛紜。

㈣ 國內大型環保企業如何處理煤化工廢水

我國近年來興起的煤化工產業大多分布子在西北地區,水資源少,而煤化工又是水資源消耗量和廢水產生量都相當大的產業,因此,廢
以下為大家分享神華包頭煤制烯烴、神華鄂爾多斯煤直接液化、陝煤化集團蒲城
項目名稱:雲天化集團呼倫貝爾金新化工有限公司煤化工水系統整體解決方案
關鍵詞:煤化工領域水系統整體解決方案典範
項目簡介
呼倫貝爾金新化工有限公司是雲天化集團下屬分公司。該項目位於呼倫貝爾大草原深處,當地政府要求此類化工項目的環保設施均需達到「零排放」的水準。同時此項目是亞洲首個採用BGL爐(BritishGas-Lurgi英國燃氣-魯奇爐)煤制氣生產合成氨、尿素的項目,生產過程中產生的廢水成分復雜、污染程度高、處理難度大。此項目也成為國內煤化工領域水系統整體解決方案的典範。
項目規模
煤氣水:80m3/h污水:100m3/h
回用水:500m3/h除鹽水:540m3/h
冷凝液:100m3/h
主要工藝
煤氣水:除油+水解酸化+SBR+混凝沉澱+BAF+機械攪拌澄清池+砂濾
污水:氣浮+A/O
除鹽水:原水換熱+UF+RO+混床
冷凝水:換熱+除鐵過濾器+混床
回用水:澄清器+多介質過濾+超濾+一級反滲透+濃水反滲透
博天環境集團
技術亮點
1、煤氣化廢水含大量油類,含量高達500mg/L,以重油、輕油、乳化油等形式存在,項目中設置隔油和氣浮單元去除油類,其中氣浮採用納米氣泡技術,納米級微小氣泡直徑30-500nm,與傳統溶氣氣浮相比,氣泡數量更多,停留時間更長,氣泡的利用率顯著提升,因此大大提高了除油效果和處理效率。
2、煤氣化廢水特性為高COD、高酚、高鹽類,B/C比值低,含大量難降解物質,採用水解酸化工藝,不產甲烷,利用水解酸化池中水解和產酸微生物,將污水在後續的生化處理單元比較少的能耗,在較短的停留時間內得到處理。
3、煤氣廢水高氨氮,設置SBR可同時實現脫氮除碳的目的。
4、雙膜法在除鹽水和回用水處理工藝上的成熟應用,可有效降低噸水酸鹼消耗量,且操作方便。運行三年以後,目前的系統脫鹽率仍可達到98%。
項目名稱:陝煤化集團蒲城清潔能源化工有限責任公司水處理裝置EPC項目
關鍵詞:新型煤化工領域合同額最大水處理EPC項目
項目簡介
該項目位於陝西省渭南市蒲城縣,採用的是德士古氣化爐和大連化物所的DMTO二代烯烴制甲醇技術。因此廢水主要以氣化廢水及DMTO裝置排水為主,具有高氨氮、高硬度的特點。博天環境承接了該公司年產180萬噸甲醇、70萬噸烯烴項目的污水裝置、回用水裝置和脫鹽水裝置,水處理EPC合同總額達到5億零900萬元。
項目規模
污水:1300m3/h回用水:2400m3/h
濃水處理系統:600m3/h
脫鹽水:一級脫鹽水1600m3/h
工藝凝液:600m3/h透平凝液:1200m3/h
主要工藝
污水:調節+混凝+沉澱+SBR
回用水:BAF+澄清+活性砂濾+雙膜系統+濃水RO
脫鹽水:UF+兩級RO+混床
濃水處理系統:異相催化氧化
工藝凝液:過濾+陽床+混床
透平凝液:過濾+混床
技術亮點
1、污水系統將多級串聯技術與SBR工藝相結合,將SBR反應工序以時間分隔為多次交替出現的缺氧、好氧轉換階段,這種環境下絲狀菌導致的污泥膨脹會被限制,污泥沉降率就會提高;同時,分隔出的各個反應段時長與微生物活性相契合,充分利用快速反硝化階段,創造良好的生物環境,促使硝化與反硝化反應徹底的進行,提高有機物去除效率,實現高氨氮污水污染物的達標處理。
2、濃水採用異相催化氧化處理技術,所用高活性異相催化填料與反應生成的Fe3+生成FeOOH異相結晶體,催化生成更多羥基自由基,具有極強的氧化能力,減少葯劑投加量和污泥生成量。

㈤ 鐓ゆ皵鍖栧簾姘村嚭姘存爣鍑

2000鑷5000NH3鑷砃mg/L200鑷600錛屾尌鍙戦厷mg/L300鑷500錛屾鞍鍖栫墿mg/L10鑷30pH7.0鑷10.0銆傜叅姘斿寲搴熸按鐨勬潵婧愭槸鍦ㄧ叅鐨勬皵鍖栬繃紼嬩腑錛岀叅涓鍚鏈夌殑涓浜涙愛銆佺~銆佹隘鍜岄噾灞烇紝鍦ㄦ皵鍖栨椂閮ㄥ垎杞鍖栦負姘ㄣ佹鞍鍖栫墿鍜岄噾灞炲寲鍚堢墿錛岃繖浜涙湁瀹崇墿璐ㄥぇ閮ㄥ垎婧惰В鍦ㄦ皵鍖栬繃紼嬬殑媧楁釘姘淬佹礂姘旀按銆佽捀奼藉垎嫻佸悗鐨勫垎紱繪按鍜岃串緗愭帓姘翠腑錛岀叅姘斿寲搴熸按鍑烘按鏍囧噯鏄2000鑷5000NH3鑷砃mg/L200鑷600錛屾尌鍙戦厷mg/L300鑷500錛屾鞍鍖栫墿mg/L10鑷30pH7.0鑷10.0銆傜叅姘斿寲搴熸按鏄涓縐嶉珮嫻撳害鏈夋瘨鏈夊蟲湁鏈哄簾姘淬

㈥ 煤化工廢水處理技術研究及應用分析

背景

煤化工廢水近零排放:煤化工是指以煤為原料,經化學加工轉化為氣體、液體和固體燃料及化學品的過程,是針對我國「富煤、貧油、少氣」的能源特點發展起來的基礎產業。

近年來,受市場需求等因素的刺激,煤炭富集區煤化工產業呈現爆發式增長態勢,《「十二五」規劃綱要》明確提出,推動能源生產和利用方式變革,從生態環境保護滯後發展向生態環境保護和能源協調發展轉變。

我國水資源和煤炭資源逆向分布,煤炭資源豐富的地域,往往既缺水又無環境容量。煤化工廢水如果不加以達標處理直接排入受納水體會對周圍水環境造成較大的污染和破壞,造成可利用的水資源量更加緊缺。因此,我國煤化工廢水實施「近零排放」,實現廢水回用及資源化利用勢在必行。


何為近零排放

煤化工廢水近零排放是以解決我國煤化工水資源及廢水處理難題為目標,形成的煤化工廢水處理及資源化利用重大技術研究領域。目前,該領域已基本確立「預處理—生化處理—深度處理—高鹽水處理」實現「近零排放」的技術路線。但是,最終產生的結晶鹽仍然含有多種無機鹽和大量有機物。從加強環境保護的角度出發,煤化工高鹽水產生的雜鹽被暫定為危險廢物。

按目前的處理技術,一次脫鹽處理後僅有60%~70%的淡水能回用。如果真正的零排放還需要把剩餘的30%~40%濃鹽水濃縮再處理進行回用。

現代煤化工企業廢水按照含鹽量可分為兩類:

一是高濃度有機廢水。 主要來源於煤氣化工藝廢水等, 其特點是含鹽量低、污染物以COD為主;

二是含鹽廢水。主要來源於生產過程中煤氣洗滌廢水、循環水系統排水、除鹽水系統排水、回用系統濃水等,,其特點是含鹽量高。

煤化工廢水「零排放」處理技術主要包括煤氣化廢水的預處理、生化處理、深度處理及濃鹽水處理幾大部分。

預處理:由於煤氣化廢水中酚、氨和氟含量很高,而回收酚和氨不僅可以避免資源的浪費,而且大幅度降低了預處理後廢水的處理難度。通常情況下,煤氣化廢水的物化預處理過程有:脫酚,除氨,除氟等。

生化處理:預處理後,煤氣化廢水的COD含量仍然較高,氨氮含量為50~200mg/l,BOD5/COD范圍為0.25~0.35,因此多採用具有脫氮功能的生物組合技術。目前廣泛使用的生物脫氮工藝主要有:缺氧-好氧法(A/O工藝)、厭氧-缺氧-好氧法(A-A/O工藝)、SBR法、氧化溝、曝氣生物濾池法(BAF)等。

深度處理:多級生化工藝處理後出水COD仍在100~200mg/l,實現出水達標排放或回用都需進一步的深度處理。目前,國內外深度處理的方法主要有混凝沉澱法、高級氧化法、吸附法或膜處理技術。

濃鹽水處理: 針對含鹽量較高的氣化廢水等,TDS濃度一般在10000mg/L左右,除了先通過預處理和生化處理以外,通常後續採用超濾和反滲透膜來除鹽,膜產水回用,濃水進入蒸發結晶設施,這也是實現污水零排放的重點和難點所在。

ZDP工藝解決煤化工廢水近零排放難題

海普創新開發了廢水近零排放ZDP工藝

煤化工行業近零排放項目現場

㈦ 煤炭氣化的優點體現在哪些方面

一、煤氣化原理
氣化過程是煤炭的一個熱化學加工過程。它是以煤或煤焦為原料,以氧氣(空氣、富氧或工業純氧)、水蒸氣作為氣化劑,在高溫高壓下通過化學反應將煤或煤焦中的可燃部分轉化為可燃性氣體的工藝過程。氣化時所得的可燃氣體成為煤氣,對於做化工原料用的煤氣一般稱為合成氣(合成氣除了以煤炭為原料外,還可以採用天然氣、重質石油組分等為原料),進行氣化的設備稱為煤氣發生爐或氣化爐。 煤炭氣化包含一系列物理、化學變化。一般包括熱解和氣化和燃燒四個階段。乾燥屬於物理變化,隨著溫度的升高,煤中的水分受熱蒸發。其他屬於化學變化,燃燒也可以認為是氣化的一部分。煤在氣化爐中乾燥以後,隨著溫度的進一步升高,煤分子發生熱分解反應,生成大量揮發性物質(包括干餾煤氣、焦油和熱解水等),同時煤粘結成半焦。煤熱解後形成的半焦在更高的溫度下與通入氣化爐的氣化劑發生化學反應,生成以一氧化碳、氫氣、甲烷及二氧化碳、氮氣、硫化氫、水等為主要成分的氣態產物,即粗煤氣。氣化反應包括很多的化學反應,主要是碳、水、氧、氫、一氧化碳、二氧化碳相互間的反應,其中碳與氧的反應又稱燃燒反應,提供氣化過程的熱量。 主要反應有: 1、水蒸氣轉化反應 C+H2O=CO+H2-131KJ/mol 2、水煤氣變換反應 CO+ H2O =CO2+H2+42KJ/mol 3、部分氧化反應 C+0.5 O2=CO+111KJ/mol 4、完全氧化(燃燒)反應 C+O2=CO2+394KJ/mol 5、甲烷化反應 CO+2H2=CH4+74KJ/mol 6、Boudouard反應 C+CO2=2CO-172KJ/mol
二、煤氣化工藝
煤炭氣化技術雖有很多種不同的分類方法,但一般常用按生產裝置化學工程特徵分類方法進行分類,或稱為按照反應器形式分類。氣化工藝在很大程度上影響煤化工產品的成本和效率,採用高效、低耗、無污染的煤氣化工藝(技術)是發展煤化工的重要前提,其中反應器便是工藝的核心,可以說氣化工藝的發展是隨著反應器的發展而發展的,為了提高煤氣化的氣化率和氣化爐氣化強度,改善環境,新一代煤氣化技術的開發總的方向,氣化壓力由常壓向中高壓(8.5 MPa)發展;氣化溫度向高溫(1500~1600℃)發展;氣化原料向多樣化發展;固態排渣向液態排渣發展。 1、固定床氣化 固定床氣化也稱移動床氣化。固定床一般以塊煤或焦煤為原料。煤由氣化爐頂加入,氣化劑由爐底加入。流動氣體的上升力不致使固體顆粒的相對位置發生變化,即固體顆粒處於相對固定狀態,床層高度亦基本保持不變,因而稱為固定床氣化。另外,從宏觀角度看,由於煤從爐頂加入,含有殘炭的爐渣自爐底排出,氣化過程中,煤粒在氣化爐內逐漸並緩慢往下移動,因而又稱為移動床氣化。 固定床氣化的特性是簡單、可靠。同時由於氣化劑於煤逆流接觸,氣化過程進行得比較完全,且使熱量得到合理利用,因而具有較高的熱效率。 固定床氣化爐常見有間歇式氣化(UGI)和連續式氣化(魯奇Lurgi)2種。前者用於生產合成氣時一定要採用白煤(無煙煤)或焦碳為原料,以降低合成氣中CH4含量,國內有數千台這類氣化爐,弊端頗多;後者國內有20多台爐子,多用於生產城市煤氣;該技術所含煤氣初步凈化系統極為復雜,不是公認的首選技術。 (1)、固定床間歇式氣化爐(UGI) 以塊狀無煙煤或焦炭為原料,以空氣和水蒸氣為氣化劑,在常壓下生產合成原料氣或燃料氣。該技術是30年代開發成功的,投資少,容易操作,目前已屬落後的技術,其氣化率低、原料單一、能耗高,間歇制氣過程中,大量吹風氣排空,每噸合成氨吹風氣放空多達5 000 m3,放空氣體中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤氣冷卻洗滌塔排出的污水含有焦油、酚類及氰化物,造成環境污染。我國中小化肥廠有900餘家,多數廠仍採用該技術生產合成原料氣。隨著能源政策和環境的要來越來越高,不久的將來,會逐步為新的煤氣化技術所取代。 (2)、魯奇氣化爐 30年代德國魯奇(Lurgi)公司開發成功固定床連續塊煤氣化技術,由於其原料適應性較好,單爐生產能力較大,在國內外得到廣泛應用。氣化爐壓力(2.5~4.0)MPa,氣化反應溫度(800~900)℃,固態排渣,氣化爐已定型(MK~1~MK-5),其中MK-5型爐,內徑4.8m,投煤量(75~84)噸/h,粉煤氣產量(10~14)萬m3/h。煤氣中除含CO和H2外,含CH4高達10%~12%,可作為城市煤氣、人工天然氣、合成氣使用。缺點是氣化爐結構復雜、爐內設有破粘和煤分布器、爐篦等轉動設備,製造和維修費用大;入爐煤必須是塊煤;原料來源受一定限制;出爐煤氣中含焦油、酚等,污水處理和煤氣凈化工藝復雜、流程長、設備多、爐渣含碳5%左右。針對上述問題,1984年魯奇公司和英國煤氣公司聯合開發了液體排渣氣化爐(BGL),特點是氣化溫度高,灰渣成熔融態排出,炭轉化率高,合成氣質量較好,煤氣化產生廢水量小並且處理難度小,單爐生產能力同比提高3~5倍,是一種有發展前途的氣化爐。 2、流化床氣化 流化床氣化又稱為沸騰床氣化。其以小顆粒煤為氣化原料,這些細顆粒在自下而上的氣化劑的作用下,保持著連續不斷和無秩序的沸騰和懸浮狀態運動,迅速地進行著混合和熱交換,其結果導致整個床層溫度和組成的均一。流化床氣化能得以迅速發展的主要原因在於:(1)生產強度較固定床大。(2)直接使用小顆粒碎煤為原料,適應採煤技術發展,避開了塊煤供求矛盾。(3)對煤種煤質的適應性強,可利用如褐煤等高灰劣質煤作原料。 流化床氣化爐常見有溫克勒(Winkler)、灰熔聚(U-Gas)、循環流化床(CFB)、加壓流化床(PFB是PFBC的氣化部分)等。 (1)、循環流化床氣化爐CFB 魯奇公司開發的循環流化床氣化爐(CFB)可氣化各種煤,也可以用碎木、樹皮、城市可燃垃圾作為氣化原料,水蒸氣和氧氣作氣化劑,氣化比較完全,氣化強度大,是移動床的2倍,碳轉化率高(97%),爐底排灰中含碳2%~3%,氣化原料循環過程中返回氣化爐內的循環物料是新加入原料的40倍,爐內氣流速度在(5~7)m/s之間,有很高的傳熱傳質速度。氣化壓力0.15MPa。氣化溫度視原料情況進行控制,一般控制循環旋風除塵器的溫度在(800~1050)℃之間。魯奇公司的CFB氣化技術,在全世界已有60多個工廠採用,正在設計和建設的還有30多個工廠,在世界市場處於領先地位。 CFB氣化爐基本是常壓操作,若以煤為原料生產合成氣,每公斤煤消耗氣化劑水蒸氣1.2kg,氧氣0.4kg,可生產煤氣 (l.9~2.0)m3。煤氣成份CO+H2>75%,CH4含量2.5%左右, CO215%,低於德士古爐和魯奇MK型爐煤氣中CO2含量,有利於合成氨的生產。 (2)、灰熔聚流化床粉煤氣化技術 灰熔聚煤氣化技術以小於6mm粒徑的乾粉煤為原料,用空氣或富氧、水蒸氣作氣化劑,粉煤和氣化劑從氣化爐底部連續加入,在爐內(1050~1100)℃的高溫下進行快速氣化反應,被粗煤氣夾帶的未完全反應的殘碳和飛灰,經兩極旋風分離器回收,再返回爐內進行氣化,從而提高了碳轉化率,使灰中含磷量降低到10%以下,排灰系統簡單。粗煤氣中幾乎不含焦油、酚等有害物質,煤氣容易凈化,這種先進的煤氣化技術中國已自行開發成功。該技術可用於生產燃料氣、合成氣和聯合循環發電,特別用於中小氮肥廠替代間歇式固定床氣化爐,以煙煤替代無煙煤生產合成氨原料氣,可以使合成氨成本降低15%~20%,具有廣闊的發展前景。 U-Gas在上海焦化廠(120噸煤/天)1994年11月開車,長期運轉不正常,於2002年初停運;中科院山西煤化所開發的ICC灰熔聚氣化爐,於2001年在陝西城化股份公司進行了100噸/天制合成氣工業示範裝置試驗。CFB、PFB可以生產燃料氣,但國際上尚無生產合成氣先例;Winkler已有用於合成氣生產案例,但對粒度、煤種要求較為嚴格,甲烷含量較高(0.7%~2.5%),而且設備生產強度較低,已不代表發展方向。 3、氣流床氣化 氣流床氣化是一種並流式氣化。從原料形態分有水煤漿、干煤粉2類;從專利上分,Texaco、Shell最具代表性。前者是先將煤粉製成煤漿,用泵送入氣化爐,氣化溫度1350~1500℃;後者是氣化劑將煤粉夾帶入氣化爐,在1500~1900℃高溫下氣化,殘渣以熔渣形式排出。在氣化爐內,煤炭細粉粒經特殊噴嘴進入反應室,會在瞬間著火,直接發生火焰反應,同時處於不充分的氧化條件下,因此,其熱解、燃燒以吸熱的氣化反應,幾乎是同時發生的。隨氣流的運動,未反應的氣化劑、熱解揮發物及燃燒產物裹夾著煤焦粒子高速運動,運動過程中進行著煤焦顆粒的氣化反應。這種運動狀態,相當於流化技術領域里對固體顆粒的「氣流輸送」,習慣上稱為氣流床氣化。 氣流床對煤種(煙煤、褐煤)、粒度、含硫、含灰都具有較大的兼容性,國際上已有多家單系列、大容量、加壓廠在運作,其清潔、高效代表著當今技術發展潮流。 乾粉進料的主要有K-T(Koppres-Totzek)爐、Shell- Koppres爐、Prenflo爐、Shell爐、GSP爐、ABB-CE爐,濕法煤漿進料的主要有德士古(Texaco)氣化爐、Destec爐。 (1)、德士古(Texaco)氣化爐 美國Texaco(2002年初成為Chevron公司一部分,2004年5月被GE公司收購)開發的水煤漿氣化工藝是將煤加水磨成濃度為60~65%的水煤漿,用純氧作氣化劑,在高溫高壓下進行氣化反應,氣化壓力在3.0~8.5MPa之間,氣化溫度1400℃,液態排渣,煤氣成份CO+H2為80%左右,不含焦油、酚等有機物質,對環境無污染,碳轉化率96~99%,氣化強度大,爐子結構簡單,能耗低,運轉率高,而且煤適應范圍較寬。目前Texaco最大商業裝置是Tampa電站,屬於DOE的CCT-3,1989年立項,1996年7月投運,12月宣布進入驗證運行。該裝置為單爐,日處理煤2000~2400噸,氣化壓力為2.8MPa,氧純度為95%,煤漿濃度68%,冷煤氣效率~76%,凈功率250MW。 Texaco氣化爐由噴嘴、氣化室、激冷室(或廢熱鍋爐)組成。其中噴嘴為三通道,工藝氧走一、三通道,水煤漿走二通道,介於兩股氧射流之間。水煤漿氣化噴嘴經常面臨噴口磨損問題,主要是由於水煤漿在較高線速下(約30m/s)對金屬材質的沖刷腐蝕。噴嘴、氣化爐、激冷環等為Texaco水煤漿氣化的技術關鍵。 80年代末至今,中國共引進多套Texaco水煤漿氣化裝置,用於生產合成氣,我國在水煤漿氣化領域中積累了豐富的設計、安裝、開車以及新技術研究開發經驗與知識。 從已投產的水煤漿加壓氣化裝置的運行情況看,主要優點:水煤漿制備輸送、計量控制簡單、安全、可靠;設備國產化率高,投資省。由於工程設計和操作經驗的不完善,還沒有達到長周期、高負荷、穩定運行的最佳狀態,存在的問題還較多,主要缺點:噴嘴壽命短、激冷環壽命僅一年、褐煤的制漿濃度約59%~61%;煙煤的制漿濃度為65%;因汽化煤漿中的水要耗去煤的8%,比干煤粉為原料氧耗高12%~20%,所以效率比較低。 (2)、Destec(Global E-Gas)氣化爐 Destec氣化爐已建設2套商業裝置,都在美國:LGT1(氣化爐容量2200噸/天,2.8MPa,1987年投運)與Wabsh Rive(二台爐,一開一備,單爐容量2500噸/天,2.8MPa,1995年投運)爐型類似於K-T,分第一段(水平段)與第二段(垂直段),在第一段中,2個噴嘴成180度對置,藉助撞擊流以強化混合,克服了Texaco爐型的速度成鍾型(正態)分布的缺陷,最高反應溫度約1400℃。為提高冷煤氣效率,在第二階段中,採用總煤漿量的10%~20%進行冷激(該點與Shell、Prenflo的循環沒氣冷激不同),此處的反應溫度約1040℃,出口煤氣進火管鍋爐回收熱量。熔渣自氣化爐第一段中部流下,經水冷激固化,形成渣水漿排出。E-Gas氣化爐採用壓力螺旋式連續排渣系統。 Global E-Gas氣化技術缺點為:二次水煤漿停留時間短,碳轉化率較低;設有一個龐大的分離器,以分離一次煤氣中攜帶灰渣與二次煤漿的灰渣與殘炭。這種爐型適合於生產燃料氣而不適合於生產合成氣。 (3)、Shell氣化爐 最早實現工業化的乾粉加料氣化爐是K-T爐,其它都是在其基礎之上發展起來的,50年代初Shell開發渣油氣化成功,在此基礎上,經歷了3個階段:1976年試驗煤炭30餘種;1978年與德國Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建設日處理150t煤裝置;兩家分手後,1978年在美國Houston的Deer Park建設日處理250t高硫煙煤或日處理400t高灰分、高水分褐煤。共費時16年,至1988年Shell煤技術運用於荷蘭Buggenum IGCC電站。該裝置的設計工作為1.6年,1990年10月開工建造,1993年開車,1994年1月進入為時3年的驗證期,目前已處於商業運行階段。單爐日處理煤2000t。 Shell氣化爐殼體直徑約4.5m,4個噴嘴位於爐子下部同一水平面上,沿圓周均勻布置,藉助撞擊流以強化熱質傳遞過程,使爐內橫截面氣速相對趨於均勻。爐襯為水冷壁(Membrame Wall),總重500t。爐殼於水冷管排之間有約0.5m間隙,做安裝、檢修用。 煤氣攜帶煤灰總量的20%~30%沿氣化爐軸線向上運動,在接近爐頂處通入循環煤氣激冷,激冷煤氣量約占生成煤氣量的60%~70%,降溫至900℃,熔渣凝固,出氣化爐,沿斜管道向上進入管式余熱鍋爐。煤灰總量的70%~80%以熔態流入氣化爐底部,激冷凝固,自爐底排出。 粉煤由N2攜帶,密相輸送進入噴嘴。工藝氧(純度為95%)與蒸汽也由噴嘴進入,其壓力為3.3~3.5MPa。氣化溫度為1500~1700℃,氣化壓力為3.0MPa。冷煤氣效率為79%~81%;原料煤熱值的13%通過鍋爐轉化為蒸汽;6%由設備和出冷卻器的煤氣顯熱損失於大氣和冷卻水。 Shell煤氣化技術有如下優點:採用干煤粉進料,氧耗比水煤漿低15%;碳轉化率高,可達99%,煤耗比水煤漿低8%;調解負荷方便,關閉一對噴嘴,負荷則降低50%;爐襯為水冷壁,據稱其壽命為20年,噴嘴壽命為1年。主要缺點:設備投資大於水煤漿氣化技術;氣化爐及廢鍋爐結構過於復雜,加工難度加大。 我公司直接液化項目採用此技術生產氫氣。 (4)、GSP氣化爐 GSP(GAS Schwarze Pumpe)稱為「黑水泵氣化技術」,由前東德的德意志燃料研究所(簡稱DBI)於1956年開發成功。目前該技術屬於成立於2002年未來能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP氣化爐是一種下噴式加壓氣流床液態排渣氣化爐,其煤炭加入方式類似於shell,爐子結構類似於德士古氣化爐。1983年12月在黑水泵聯合企業建成第一套工業裝置,單台氣化爐投煤量為720噸/天,1985年投入運行。GSP氣化爐目前應用很少,僅有5個廠應用,我國還未有一台正式使用,寧煤集團(我公司控股)將要引進此技術用於煤化工項目。 總之,從加壓、大容量、煤種兼容性大等方面看,氣流床煤氣化技術代表著氣化技術的發展方向,水煤漿和干煤粉進料狀態各有利弊,界限並不十分明確,國內技術界也眾說紛紜。
3、我國煤氣化技術進展
煤氣化技術在中國已有近百年的歷史,但仍然較落後和發展緩慢,就總體而言,中國煤氣化以傳統技術為主,工藝落後,環保設施不健全,煤炭利用效率低,污染嚴重。目前在國內較為成熟的仍然只是常壓固定床氣化技術。它廣泛用於冶金、化工、建材、機械等工業行業和民用燃氣,以UGI、水煤氣兩段爐、發生爐兩段爐等固定床氣化技術為主。常壓固定床氣化技術的優點是操作簡單,投資小;但技術落後,能力和效率低,污染重,急需技術改造。如不改變現狀,將影響經濟、能源和環境的協調發展。 近40年來,在國家的支持下,中國在研究與開發、消化引進技術方面進行了大量工作。我國先後從國外引進的煤氣化技術多種多樣。通過對煤氣化引進技術的消化吸收,尤其是通過國家重點科技攻關,對引進裝置進行技術改造並使之國產化,使我國煤氣化技術的研究開發取得了重要進展。50年代末到80年代進行了仿K-T氣化技術研究與開發;80年代中科院山西煤化所開發了灰熔聚流化床煤氣化工藝並取得了專利;「九五」期間華東理工大學、兗礦魯南化肥廠、中國天辰化學工程公司承擔了國家重點科技攻關項目「新型(多噴嘴對置)水煤漿氣化爐開發」(22噸煤/天裝置),中試裝置的結果表明:有效氣成分~83%,比相同條件下的Texaco生產裝置高1.5~2個百分點;碳轉化率>98%,比Texaco高2~3個百分點;比煤耗、比氧耗均比Texaco降低7%。 「十五」期間多噴嘴對置式水煤漿氣化技術已進入商業示範階段。「新型水煤漿氣化技術」獲「十五」國家高技術研究發展計劃(863計劃)立項,由兗礦集團有限公司、華東理工大學承擔,在兗礦魯南化肥廠建設多噴嘴對置式水煤漿氣化爐及配套工程,利用兩台日處理1150噸煤多噴嘴對置式水煤漿氣化爐(4.0MPa)配套生產24萬噸甲醇、聯產71.8MW發電,總投資為~16億元。該裝置於2005年7月21日一次投料成功,並完成80小時連續、穩定運行。裝置初步運行結果表明:有效氣CO+H2超過82%,碳轉化率高於98%。它標志著我國擁有了具備自主知識產權的、與國家能源結構相適應的煤氣化技術具有重大的突破,其水平填補了國內空白,並達到國際先進水平。

㈧ 煤化工廢水預處理的工藝

煤化工廢水預處理的工藝具體內容是什麼,下面中達咨詢為大家解答。
目前,節能環保已成為社會經濟可持續發展的必然要求,零排放理念已成為整個社會公認的環保理念。隨著國家對污染物排放的控制力度日益加強,加之我國大型煤化工基地普遍處於缺水地區,所以強化污水治理,實現廢水的循環利用和零排放,節約水資源,現已成為煤化工企業技術發展的必然趨勢和社會義務。某公司造氣裝置採用魯奇加壓氣化工藝和設備,氣化劑為純氧和中壓蒸汽。氣化過程中,一些干餾附產物及未能氣化分解的水蒸汽和煤炭的內在水分,構成了煤制氣廢水。煤制氣產生的廢水經過汽提和分離提取副產物(中油、焦油),含油量降低後的含酚廢水經萃取劑脫酚後送到生化處理裝置並經生化處理後,煤制氣廢水再被送到電廠進行沖渣處理,然後排入貯灰場,經過灰渣吸附達到國家一級排放標准後排放。由於城市煤氣用量的不斷增大以及工廠使用的原料煤煤質指標遠劣於原設計用煤的煤質指標(原滾族設計造氣用煤灰份為26%,現實際用煤平均灰份為38%,甚至有時灰份超過50%),造成造氣廢水水量、水質都已經超出了原設計指標范圍。並且原設計的造氣廢水排放指標是按《廢水綜合排放標准》中二級標准設計的(COD為200mg/L,BOD為60mg/L)。而目前原設計的技術及規模已不能滿足現在工廠造氣廢水的處理要求,從而導致排放的造氣廢水中主要污染物COD、NH3-N和揮發酚超出國家一級排放標准。雖然目前採用了新的污水預處理工藝,同時放大和改進原有污水處理裝置,來實現生化處理裝置入水指標的合格,但實際上此新工藝在運行中也存在諸多非常突出的問題。
1目前工藝條件情況簡介
煤化工腔備掘廢水是在煤的氣化、干餾、凈化及化工產品合成過程中產生的廢水。煤化工廢水的污染物濃度高,成分復雜。除含有氨、氰、硫氰根等無機污染物外,還含有酚類、萘、吡啶、喹啉、蒽等雜環及多環芳香族化合物(PAHs),是一種最難以治理的工業廢水,處理難度大,處理成本高。我們知道,要想得到符合排放標准要求的工業廢水,對廢水的前期預處理以及副產物分離是至關重要的兩個關鍵環節,其處理結果將直接影響後期的生化處理法和物理法裝置系統的穩定運行,所以要求前期預處理裝置必須運行穩定。(表1某煤化工廠污水水質分析)
2副產品分離工藝說明(除油、脫酸、脫氨)
煤化工氣化洗滌等原料污水先進入1#、2#污水槽,自然沉澱分離除油及部分機械雜質後,經原料污水泵升壓後分兩路,進入塔進行脫酸、脫氨。一路經換熱器與循環水換熱冷卻至35℃左右,作為脫酸脫氨塔填料上段冷進料,以控制塔頂溫度;另一路經三次換熱至150℃左右作為汽提塔的熱進料,進入汽提塔的相應塔板上。塔頂出來的酸性氣體CO2,H2S等經冷卻器冷卻,經分液罐分液,分液後的氣體送入氣櫃或火炬,分凝液相返回酚水罐。當塔頂采出的氣相中含水量和含氨量較低時,也可不經冷卻直接進氣櫃或火炬。
側線粗氨氣經一級冷凝器與原料水換熱至125-140℃左右後,進入一級分凝器進行氣液分離,氣氨從上部出去,經二級冷卻器與循環水換熱冷卻至85-95℃後進入二級分凝器。自二級分凝器出來的粗氨氣經三級冷卻器與循環水換熱冷卻之後進入三級分凝器,富氨氣進入氨精製系統進行精製,塔底凈化水經換熱器換熱冷卻後,進入後續裝置。
3存在問題的分析
經過一段時間的運行發現裝置運行不穩定,換熱器嚴重結垢,達不到設計溫度,蒸汽耗量也隨之上升,同時脫酸脫氨塔內由於嚴重結垢致使浮閥塔件經常堵塞,直接影響了初期的水質處理。裝置連續運行周期不足一月,後期的運行周期逐漸縮短。原因分析:主要是由於採用的煤質質量不可逆的普遍下降原因導致的。由於煤質灰分的逐漸上升,煤氣夾帶飛灰量增高,導致污水中含塵、有機懸浮雜質增高多,在升溫過程中的析出沉積在換熱設備表面形成堅硬的復合水垢導致換熱器堵塞,塔伍核板塔件被密實,從而影響裝置運行。
4解決問題
4.1 研究處理辦法消除部分懸浮類物質,同時加大塔件內流通面積,改變加熱方式。直接方法:脫酸脫氨塔的塔件更換;對換熱器進行物理、化學清洗。間接方法:加強預處理,採用強制過濾裝置(活性焦過濾器)降低結垢物質含量;部分直接加熱改為間接加熱根據季節和水質進行調節切換。
4.2 可實施的解決方法採用新型塔內件代替原有塔內件,對換熱器經行集中清理,判別主要結垢溫度條件。採用深度預處理強制過濾裝置降低水中無機鹽類及懸浮物類結垢物質,改變部分間接加熱為直接加熱。
5理論基礎原因說明
5.1 塔內件對比圖片
5.2 徑向側導噴射塔盤(CJST)工作原理及技術特點
5.2.1 徑向側導噴射塔盤(CJST)工作原理由下一層塔板上升的氣體從板孔進入帽罩,由於氣體通過板孔時被加速,能量轉化,板孔附近的靜壓強降低,致使帽罩內外兩側產生壓差,使板上液體由帽罩底部縫隙被壓入帽罩內,並與上升的高速氣流接觸後,改變方向被提升拉成環狀膜,向上運動。在此過程中, 極不穩定的液膜被高速氣流拉動撞擊分離板後被破碎成直徑不等的液滴。氣液兩相在帽罩內進行充分的接觸、混合,然後經罩體篩孔垂直噴射,氣液開始分離,氣體上升進入上一層塔板,液滴落回原塔板。
5.2.2 徑向側導噴射塔盤技術特點:①處理能力大。CJST塔板,由於帽罩的特殊結構,氣體離開罩呈水平或向下方向噴出,這拉大了氣液分離空間和時間,使氣體霧沫夾帶的可能性大為降低,這使塔板氣體通道的板孔開孔率可大幅提高,一般可達20%~30%。而在開孔率相同時可允許操作氣速比一般塔板高出1.5-2.0倍,仍能將氣體霧沫夾帶限定在允許范圍以內。其次,氣體攜帶液體並流進入帽罩,而不是像浮閥等塔板氣體穿過板上液層,因而使塔板流動的液體基本上為不含氣體的清液,故降液管液泛的可能性大為降低,即同樣截面積的降液管,液體通過能力也可提高近一倍,所以對於擴產改造項目,保留原塔體,只需更換成新型塔板就可將塔的處理量提高100%以上。②傳質效率高。CJST塔板,由於帽罩的存在,罩內液氣比大,液相在氣相中分散較好,特別是氣液混合物撞擊分離板後改變方向或折返,使液膜不斷破碎、更新,氣液接觸混合非常激烈,對於噴射段由於液體經噴射分散度更高,顆粒更小,使氣液接觸面積增大。研究證明這一階段不僅是液滴的沉降,傳質作用仍在進行,罩內外基本上都是有效傳質區域,塔板空間都得到充分利用。因此傳質、傳熱過程比浮閥內進行的充分、完全,所以可達到總的塔板傳質效率比浮閥高出15%以上的效果。③抗堵塞能力強。由於塔板板孔較大且無活動部件,一般不易被較臟或粘性物料堵塞。另外,氣液是在噴射狀態下離開帽罩的,氣速較高,對罩孔本身有較強的自沖洗能力。物流中含有的顆粒、聚合物、污垢等雜質難以在罩孔聚集並堵塞罩孔。④阻力降低。CJST塔板氣體並不穿過板上液層,只需克服被氣體提升的那部分液體的重力,所以造成的壓降要小,塔板壓降在低負荷時與F1型浮閥相當,高負荷時比F1浮閥低20%~30%,負荷愈大,壓降低的愈多。⑤操作彈性好。與普通塔板相比,這類塔板的板孔動能因子F0更大,不易出現降液管液泛和過量液沫夾帶等不正常現象,即操作上限動能因子大,其操作彈性下限與浮閥相當上限要比浮閥稍高一些。⑥通過導向噴射,大大降低塔盤上的液面梯度,使得塔盤氣體分布較為均勻,它非常適合大塔徑單溢流塔板。⑦噴出的液體方向與塔盤液體流動方向一致,從而降低了液相返混程度。⑧導向噴射減小了液面梯度和液層厚度,使得塔板的總體壓降降低。⑨操作條件適應性強,適用於高壓強與較低真空以及高液氣比與低液氣比下操作。⑩操作簡便可靠,這類塔板從開工啟動到穩定運行時間很短,並能持續穩定生產,這與它具有很好的傳質效率有關。
根據以上的特殊優越性能實現主裝置自身的長周期運行。
5.3 深度預處理強制過濾裝置(活性焦過濾器)採用此裝置,科降低水中無機鹽類及懸浮物類結垢物質,改變部分間接加熱為直接加熱。
5.3.1 活性焦過濾器優點說明目前,因國內難處理工業廢水治理市場需求較小,活性焦多活躍在焦化廢水、造紙廢水、制葯廢水等領域,主要應用於其工藝廢水中有機物脫除和脫色。隨著環保形勢日趨緊張的現實要求,加之其逐漸展現出來的處理能力,活性焦將會在煤化工綜合廢水處理中得到更廣泛的應用。
5.3.2 與我們目前所使用的活性炭(煤質破碎炭為主的系列品種)的性能相比較活性焦因結構上中孔發達,其性能指標表現在――碘值有所降低,但亞甲藍值、糖蜜值大為增高,從而在應用上表現出能吸附大分子、長鏈有機物的特性。由於資源優勢的存在,生產成本及生產得率均比破碎炭有一定的優勢,其售價還不到活性炭的50%,單純從原料成本一個角度就大大降低了工藝的運行成本。
5.3.3 活性焦產品質量指標為:
①強度Hardness (w%) 91
②亞甲藍Methylene blue(mg/g)60
③灰分Ash (w%)12.5
④裝填密度Apparent Density(g/l)540
⑤碘值Lodine No.(mg/g)620
⑥比表面積(N2吸附)Specific surface area(m2/g) 490
⑦糖蜜值 Sugar Phickness(mg/g)>200
⑧粒度 Particle size distribution(w%)
0~3.15mm:其中>1.25 92%
5.3.4 吸附原理及主要性能參數(吸附容量和吸附速率)
5.3.5 吸附原理活性焦不斷吸附水中溶質,直到吸附平衡即溶質濃度不再改變時為止。一定溫度下,達到吸附平衡時,單位重量活性焦所吸附的溶質重量和水中溶質濃度的關系曲線,稱為吸附等溫線。其曲線常用弗羅因德利希公式表示:X/M=kC1/n
式中:X為活性炭吸附的溶質量;M為所加活性焦重量;C為達到吸附平衡時,水中溶質濃度;k和n為試驗得出的常數。
5.3.6 主要性能參數(吸附容量和吸附速率)①吸附容量。吸附容量是單位重量活性焦達到吸附飽和時能吸附的溶質量,和原料、製造過程及再生方法有關。吸附容量越大,所用活性焦量越省。②吸附速率。吸附速率是指單位重量活性焦在單位時間內能吸附的溶質量。因吸附有選擇性,性能參數應由實驗測定。顆粒活性焦要有一定的機械強度和粒徑規格。
5.4 活性焦在水處理中的應用
5.4.1 非煤化工廢水應用概述活性焦最早用於去除生活用水的臭味。沼澤水常帶土味,湖泊和水庫水常帶藻類形成的臭味,用活性焦處理最為有效,並且只需在出現臭味時使用。大多用粉狀活性焦,直接投入混凝沉澱池或曝氣池內,隨污泥排除,不再回收利用。活性焦能去除水中產生臭味的物質和有機物,如酚、苯、氯、農葯、洗滌劑、三鹵甲烷等。此外,對銀、鎘、鉻酸根、氰、銻、砷、鉍、錫、汞、鉛、鎳等離子也有吸附能力。在給水處理廠中,活性焦吸附法又起完善水質的作用。
5.4.2 煤化工工藝活性焦應用說明本工藝採用的設備是以粒狀活性焦為濾料的過濾器,運行過程中須定期反復沖洗,以除去焦層中的懸游物,防止水頭損失過大(見過濾)。活性焦濾器也可採用流化床或移動床。與快濾池不同,水流均從下而上。流化床的流速會使炭層膨脹,不易阻塞。移動床內失效的炭會從池底連續排出,而新活性焦會從池頂連續補充。活性焦的再生。粒狀活性焦吸附容量耗盡後再生,常用的方法是加熱法,廢焦烘乾後在850°C左右的再生爐內焙燒。顆粒活性焦每次再生約損耗5~10%,且吸附容量逐次減少。再生效率對活性焦濾池的運行費用(也就是對水處理成本)影響極大。由於活性焦吸附水中有機物的能力特強,而微生物降解有機物的能力將起到再生活性焦的作用。同時活性焦的關鍵作用會大大降低進入換熱器和脫氨脫酚的懸浮物、大顆粒飛灰和有機物含量,從而起到預處理保護作用,實現了污水處理主要裝置的長周期的正常穩定運行。另外,轉化為固態污染物的活性焦還是良好的循環流化床燃料,可充分消除對環境污染。
6工藝改造
①脫酸脫氨塔件的改造,由原來的浮閥塔板,改造更換為徑向側導噴射塔板。②入脫酸脫氨塔前增加深度預處理強制過濾裝置(活性焦過濾器)。③適當的對塔底改變加熱方式,對含懸浮較少的塔底液進行加熱,改變來料預熱方式。改造後工藝裝置見圖4。
7取得的效果
7.1 原料水的改變煤化工制氣廢水經活性焦過濾後出水水質(mg/L)分析見表2。
7.2 運行周期變化煤化工制氣廢水預處理裝置改造前後運行後周期等對比見表3。
7.3 煤化工制氣廢水經萃取後出水水質分析見表4。
8小結
①通過以上改造後裝置達到了穩定運行,成本投資不大。
②預處理運行穩定後,出水水質連續穩定,完全滿足後續生化處理法的要求,為達標排放提供關鍵前提條件。
③對後續生化法、物理法處理裝置的穩定運行起到了重要保障,特別是採用單塔蒸汽汽提脫酸脫氨後有機溶劑萃取法提取副產物,對北方冬季煤化工污水處理裝置的連續達標穩定運行具有重要的指導意義。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

閱讀全文

與工廠一年產生多少煤氣化廢水相關的資料

熱點內容
水星路由器怎麼設置網頁過濾 瀏覽:821
裝載機粗濾芯裡面怎麼會有水垢 瀏覽:204
反滲透膜對鎳的處理效果 瀏覽:752
廢水管一般使用什麼管材 瀏覽:967
萬家樂熱水器去除水垢 瀏覽:937
揮發酚高濃度樣品需要蒸餾 瀏覽:249
RO膜不健康 瀏覽:505
水冷冷凝器水垢厚度 瀏覽:7
尊馳換汽油濾芯多少錢 瀏覽:943
美的空氣凈化器怎麼解兒童鎖 瀏覽:835
安裝廚下凈水機配什麼閥門 瀏覽:759
雙顯示器提升工作效率 瀏覽:928
環氧樹脂固化後屬於塑性材料嗎 瀏覽:105
聯動回膛有啥用 瀏覽:880
從北安回大慶用隔離嗎 瀏覽:294
小米空氣凈化器怎麼除甲醛 瀏覽:890
污水澆地都賣給你們了 瀏覽:303
細胞器在蒸餾水中會漲破嗎 瀏覽:899
漢斯頓凈水器網上賣的多少錢一台 瀏覽:40
ro膜出水示意圖 瀏覽:167