導航:首頁 > 廢水污水 > 決定處理污水好壞的因素有哪些

決定處理污水好壞的因素有哪些

發布時間:2024-06-22 14:00:45

❶ 農村生活污水處理設備要怎麼看質量好不好啊

看農村生活污水處理設備質量好不好可以從如下幾個方面考慮:

1、設備的選材

當用戶第一眼看到設備時,能肉眼判斷的只有設備的外殼材質,以市場上多見的一體化農村生活污水處理設備為例,常見材質有玻璃鋼、碳鋼、耐候鋼。材料種類和厚度直接決定著設備的有效壽命。

2、設備的內部結構

大多數的農村污水處理設備並沒有對設備內部的結構進行優化,不僅各個反應倉的大小比例存在問題,甚至部分隔板還會滲漏。設備結構的優化是為了更好控制設備運行,減少設備能耗。

3、設備的控制系統

農村污水處理設備屬於較大功率的機械產品,通常採用PLC控制系統,控制系統包含各種電子元器件,如選用廉價低質的產品,會增加設備的維修頻率,無形中會增加設備運維成本。

4、設備應用的工藝

農村污水處理設備的核心還是其處理工藝,AO、A2O屬於大眾化的主流工藝,改良型AO、A2O技術比傳統工藝會略有提升,MBBR工藝對水質效果提升會有一定幫助,MBR膜工藝是當前的先進工藝,處理效果一般好於常規技術。

5、設備運行時反應區掛膜效果

農村污水處理好不好終究是要根據出水效果來作為判斷依據,優質的設備在運行一段時間,在生物填料表面會有一層可見的生物膜。生物膜能長期保持生長代謝就可以穩定維持污水凈化效果。

❷ 如何辨別含澱粉廢水處理的好壞

根據排水的COD、總氮、總磷、SS來判斷廢水處理的好壞。
COD為化學需氧量,如果園區有污水處理廠,一般要求COD排放達到500,如果直接排放要求達到100以下。
總氮為廢水中氮的含量,總磷為廢水中總的磷含量,SS為懸浮物標准,都必須達到相應的排放標准,才能排放。

❸ 怎麼選擇生活污水處理工藝都需要哪些數據

目前城市生活污水的生化處理技術已是十分成熟,可供選擇的工藝有普通活性污泥法、氧化溝法和間歇式活性污泥法(SBR)等以及一些演變工藝。這些工藝花樣繁多,人們在不斷探索和改進,力圖使工藝更加高效和節能。
普通活性污泥法具有運行穩定、管理方便的優點,前人在設計和運行方面積累了大量的工程經驗,但普通活性污泥法也存在著在運行不當時或進水水質異常時易發生污泥膨脹導致出水惡化的問題,同時由於污泥泥齡較短和沒有缺氧工況;對氮、磷的去除率不理想,隨著社會經濟發展,進入水體的污染負荷已嚴重超過水體自然凈化能力,特別是氮、磷在自然水體中積累,造成水體的富營養化已成為人們普遍關注的問題。所以城市生活污水的脫氮除磷顯得越來越重要。
正是在這種背景下,氧化溝、SBR工藝近年來在處理城市污水中得到了廣泛的應用,對控制水體氮、磷積累起到了良好效果。
下面就若干主要生物除磷脫氮工藝敘述如下:
1. 按空間分割的連續流活性污泥法
1.A2/O法及UCT法
A2/O工藝是Anaerobic-Anoxic-Oxic的英文縮寫,它是厭氧—缺氧—好氧生物脫氮除磷工藝的簡稱,A2/O工藝於70年代由美國專家在厭氧—好氧除磷工藝(A/O工藝)的基礎上開發出來的,該工藝在厭氧—好氧除磷工藝(A/O工藝)中加一缺氧池,將好氧池流出的一部分混合液迴流至缺氧池前端,以達到硝化脫氮的目的。
A2/O工藝它可以完成有機物的去除、硝化脫氮、磷的過量攝取而被去除等功能,脫氮的前提是NH3-N應完全硝化,好氧池能完成這一功能,缺氧池則完成脫氮功能,厭氧池和好氧池聯合完成除磷功能。
其流程簡圖見圖3-1

進水 出水
厭氧池缺氧池好氧池 二沉池

混合液迴流
活性污泥迴流

圖1A2/O法流程簡圖

首段厭氧池,流入原污水與同步進入的從二沉池迴流的含磷污泥混合。本池主要功能為釋放磷,使污水中P的濃度升高,溶解性有機物被微生物細胞吸收而使污水中BOD濃度下降;另外,NH3--N因細胞的合成而被去除一部分,使污水中NH-3-N濃度下降,但NO-3-N含量沒有變化。
在缺氧池中,反硝化菌利用污水中的有機物作碳源,將迴流混合液中帶入的大量NO-3-N和NH-2-N還原為N2釋放至空氣,因此BOD5濃度大幅度下降,而磷的變化很小。
在好氧池中,有機物被微生物生化降解,而繼續下降;有機氮首先被氨化繼而被硝化,使NH-3-N濃度顯著下降,但隨著消化過程使NO-3-N的濃度增加,P隨著聚磷菌的過量攝取,也以較快的速度下降。所以,A2/O工藝它可以同時完成有機物的去除、硝化脫氮、磷的過量攝取而被去除等功能,脫氮的前提是NH-3-N應完全硝化,好氧池能完成這一功能,缺氧池則完成脫氮功能。厭氧池和好氧池聯合完成除磷功能。
本工藝在系統上是最簡單地同步除磷脫氮工藝,總水力停留時間小於同類工藝,在厭氧、缺氧、好氧交替運行的條件下可處理抑制絲狀繁殖,克服污泥膨脹、SVI值一般小於100,有利於處理後污水與污泥的分離,運行中在厭氧和缺氧段內只需輕緩攪拌,運行費用低。由於厭氧、缺氧和好氧三區嚴格分開,有利於不同微生物菌群的繁殖生長,因此脫氮除磷效果較好。目前,該法在國內外使用較為廣泛。為解決迴流污泥中硝酸鹽對厭氧放磷的影響,工程上可將迴流污泥分兩點厭氧池迴流,大部分污泥迴流至缺氧池,少部分污泥迴流至厭氧池。
為了解決A2/O法迴流污泥中過多的硝酸鹽對厭氧放磷的影響,產生了UCT工藝,流程簡圖見圖3-2。
缺氧迴流 混合液迴流
100%~200% 100%~300%
進水 出水
厭氧池 缺氧池 好氧池 二沉池

污泥迴流 50%~100% 剩餘污泥

圖2UCT除磷脫氮工藝

與A2O法相比,UCT工藝為同之處在於污泥先迴流至缺氧池,而不是厭氧池,再將缺氧池部分混合液迴流厭氧池,從而減少迴流污泥中硝酸鹽對厭氧放磷的影響。但UCT工藝增加了一次迴流,多一次提升,運行費用將有所增加。
2.氧化溝法
氧化溝又稱「循環曝氣池」,污水和活性污泥的混合液在環狀曝氣渠道中循環流動。氧化溝是50年代由荷蘭的巴斯維爾(Pasveer)開發,它屬於活性污泥法的一種變形,由於它運行成本低,構造簡單,易維護管理,出水水質好、運行穩定、並可以進行脫氮除磷,因此日益受到人們重視並逐步得到廣泛應用。
氧化溝處理系統的基本特徵是曝氣池呈封閉式溝渠型,它使用一種方向控制的曝氣和攪動裝置。一方面向混合液中充氧,另一方面向反應池中的物質傳遞水平速度,使污水和活性污泥的混合液在溝內作不停的循環流動。從反應器的觀點看,氧化溝屬於一種獨具特色的連續環式反應器(CLR)。
氧化溝除本身的溝體外,最重要的組成部分就是曝氣機。氧化溝的曝氣設備起著向水中供氧,推動水循環流動,以及混合和保證溝中的活性污泥呈懸浮狀態等作用。氧化溝的曝氣設備不是沿池長均分布,而是分區定位排列,一般位於氧化溝的進水一端。由於氧化溝巧妙地結合了連續式反應器和曝氣設備特定的定位布置,使氧化溝具有若干與眾不同特性。
1)氧化溝結合推動和完全混合的特點,有利於克服短流和提高緩沖擊能力。
一般氧化溝的入流設置在曝氣區上游,而出流安排在入流口的上游。這樣的安排,從短期內(循環一周)看,氧化溝具有推動系統的特點;若從長期內(循環多周)看,氧化溝又具有完全系統的特點。兩者的結合,一方面是入流必須至少循環一周才能流出,這就是基本上杜絕了短流,另一方面,循環的混合液又可提供很大的稀釋倍數對入流進行稀釋,提高了對沖擊負荷的緩沖動力。因而氧化溝是一個有效和可靠的處理系統。
2)氧化溝具有明顯的溶解氧濃度梯度,特別適用於硝化反硝生物處理工藝。
氧化溝由於結合了完全混合的推流式反應器的特徵,同時曝氣器又是定位分區布置的,很明顯,沿水流方向存在溶解氧的濃度梯度。在氧化溝中存在曝氣區、需氧區的氧含量則很有限。因此,氧化溝特別適合於硝化和反硝化。這樣,一方面可利用反硝化過程所釋放的氧來滿足10-20%的需氧量,另一方面可利用反硝化過程恢復部分鹼度。
3)氧化溝功率密度的不均勻分配,有利於氧的傳遞、液體混合和污泥絮凝。
由於氧化溝上曝氣設備的不均勻設置,使氧化溝內的功率密度呈不均勻分布。氧化溝內存在兩個能量內,一個是設備曝氣裝置的高能量區,一個是環流的低能量區,這二者之間可以認為是能量由高到低的彌散過程。
4)氧化溝的整體體積功率密度低,可節省能量。
氧化溝遵守著動量守恆原則,一旦池內混合液被加速到所需流速時,維護循環所需要的水力動力只要克服摩阻和彎道損失即可。與彌散作用不同,循環或對流混合能夠增強其自身的攪動作用。結果,為了保持使用固體懸浮的速度,所需要的單位容積動力就大大低於其它系統。
氧化溝包括很多類型如卡魯塞爾、三溝式、澳巴勒、D型氧化溝、組合式氧化溝等,氧化溝的水流特徵介於推流式和完全混合之間,也可以認為是完全混合池,抗沖擊負荷強,通過控制曝氣轉刷的開停和轉速來控制氧化溝內某池段溶解氧的濃度,形成厭氧、缺氧和好氧區,因此也具有除磷脫氮的功能。
D型氧化溝為雙溝交替工作式氧化溝,由池容完全相同的兩個氧化溝組成,兩溝串聯運行,交替地作為曝氣池和沉澱池,不單設二沉池。D型氧化溝的缺點主要是曝氣設備利用率低、池容積利用率低。為了達到脫氮目的,在D型氧化溝的基礎上又發展了半交替工作式的DE型氧化溝,該溝設獨立的二沉池和迴流污泥系統,兩溝交替進行硝化和反硝化。
T型三溝式氧化溝集缺氧、好氧和沉澱於一體,兩條邊溝交替進行反應和沉澱,無需單獨的二沉池和污泥迴流,流程簡潔,具有生物脫氮功能。由於無專門的厭氧區,因此,生物除磷效果差,而且,由於交替運行,總的容積利用率低(約55%),設備總數量多,設備空置率高。為了達到除磷脫氮目的,提高設備利用率,結合T型、DE型氧化溝的特點,可以組合成半交替工作式的DT型氧化溝,該溝同樣具有獨立的二沉池和迴流污泥系統,三條溝根據進水水質、水量的變化,交替進行硝化和反硝化。
組合式氧化溝是隨著各種氧化溝的廣泛應用而發展起來的一種新型氧化溝污水處理技術。組合式氧化溝就是不單獨設二次沉澱及污泥迴流設備的氧化溝。近幾年在我國四川、山東等地均有組合式氧化溝污水處理工藝的污水廠建成投用,運行效果較好。組合式氧化溝技術既有氧化溝處理工藝的基本特徵,又由於曝氣凈化與固液分離的一體化而獨具特色:
A.工藝流程短,構築物和設備少,不設初沉池、二沉池、污泥消化池,故投資省,佔地少。
B.污泥自動迴流,不設污泥迴流泵站,因此能耗低,管理簡便容易。
C.處理效果優於我國國家二級排放標准,工作穩定可靠。
D.產生的剩餘污泥量少,污泥不需消化,且達到穩定狀態,易稅水,不會帶來二次污染。
E.一體化氧化溝造價低、建造快、設備事故率低、運行管理方便。
F.一體化氧化溝固液分離效果優於普通的二沉池,能承受較大的沖擊負荷,使整個系統能夠在較大的流量范圍內穩定運行。
G.污泥迴流及時,減少了污泥膨脹及反消化浮泥的可能。
3.AB法
AB法處理工藝,系吸附生物降解工藝的簡稱,是把德國亞琛大學賓克(Bohnke)教授於70年代中期開創的。由於它在處理效率、運行穩定性、工程投資和運行費用等方面與傳統活性污泥法相比均有明顯優勢,80年代開始為生產實踐所採用。目前國內已有很多用於處理城市污水的實例,如青島海泊河廢水處理廠,泰安廢水處理廠、深圳濱河污水處理廠,山東淄博污水處理廠、杭州大關污水處理廠以及廣州獵德污水處理廠等。
A段的效應
1)A段中存活大量的細菌,而且還不斷地進行繁殖、適應、淘汰、優選等過程,從而能夠培育出適應性和活性都很強的微生物群體,本工藝不設初沉池,使原污水中的微生物全部進入系統,使A段成為一個開放式的生物動力學系統。
2)A段負荷較高,有利於增殖速度快的微生物增長繁殖,而且在這里成活的只能是抗沖擊能力強的原核細菌,其它微生物都不能存活。
3)污水經A段處理後,BOD去除60~70%;可生化性大大提高,有利於B段工作。
4)A段污泥產率較高,吸附能力強,重金屬、難降解物質以及氮、磷等植物性營養物質等,都可以通過污泥的吸附作用,而得到部分的去除。
5)A段對有機物的去除,主要是靠污泥絮體的吸附作用,生物降解只佔三分之一左右,由於物理化學作用佔主導作用,因此,A段對毒物、 pH值、負荷以及溫度的變化都有一定的適應性。
B段的效應
1)B段所接受的污水來自A段,水質、水量都比較穩定,沖擊負荷不再影響本段,凈化功能得以充分發揮。
2)B段承受的負荷率為總負荷率的40~50%,曝氣池的容積較傳統法減少。
3)B段的污泥齡較長,氮在A段得到了部分去除,BOD/N比值有所降低,這樣,B段具有進行硝化反應的工藝條件。
AB法工藝是由超高負荷性污泥系統(A段)和中低負荷活性污泥系統(B段)串聯組成,A段的主體為吸附池及中間沉澱池,B段的主體為曝氣池及二次沉澱池,AB兩段各自擁有獨立污泥迴流系統。兩段完全分開,各自有獨特的生物群體,有利於功能穩定。A段屬高負荷低供氧,可去除BOD5約50%,曝氣時間僅為0.5hr左右,污泥負荷在3kg/kg.d以上。B段為低負荷,要滿足脫氮除磷要求,還必須在B段採用A2/O法或其他能脫氮除磷的工藝,如深圳濱河污水處理廠B級就是採用三槽式氧化溝工藝。因此本方法只適用於高濃度污水,一般認為BOD5在250~300mg/l以上才合理。從國內污水處理廠的調查情況來看,AB工藝的投資指標是居高位的。
A-B法的工藝特點
AB法工藝的特點:A段負荷高,曝氣時間短,僅0.5h左右,污泥負荷高達2~6kgBOD5/(kgMLSS.d)。B段污泥負荷較低,為0.15~0.30kgBOD5/(kgMLSS.d)。該法對毒物、pH值、負荷以及溫度的變化都有一定的適應性;運行穩定性較好;運行費用相對較低;工藝復雜,工程構築物較多,設備較多;污泥量較大;該法對有機物、氮和磷都有一定的去除率,適用於處理濃度較高、水質水量變化較大的污水,通常要求進水BOD5≥250mg/l,AB法才有明顯的優勢。本工程設計進水BOD5為100mg/l,採用AB法顯然不太合適。
3.2.1按時間分割的間歇式活性污泥法
序批式活性污泥法,又稱間歇式活性污泥法,近幾年來,已發展成多種改良型,主要有:傳統SBR法、CASS法、ICEAS法、Unitank法和MSBR法。
1.傳統SBR法
間歇式活性污水法(SequencingBatch Activated Sludge Reactor縮寫為SBR活性污泥法),又稱序批式活性污泥法,其污水處理機理與普通活性污泥法完全相同。SBR法於70年代由美國開發,並很快得到了廣泛應用。
由於SBR運行操作的高度靈活性,在大多數場合都能代表連續活性污泥法,實現與之相同或相近的功能。改變SBR的操作模式,就可以模擬完全混合式和推流式的運行模式。在反應階段,隨著時間的推移,反應池的有機物被微生物降解,廢水濃度越來越低,非常類似穩態推流式,只不過這是一種時間意義上的推流。如果進水期很長,反應池中廢水的有機物在這個時期累積程度非常小,那麼這種情況就接近於完全混合式。
與連續流相比,SBR有許多優點,具體如下:
(1)運行管理簡單 系統控制硬體如電動閥、氣動閥、電磁閥、液位感測器、流量計、時間控制器及微電腦已產品化,能夠為SBR系統提供可靠的自動化控制,大大縮短了管理人員的操作時間,甚至實現無人化管理。
(2)降低造價,減少佔地 由於SBR將曝氣與沉澱兩個過程全並在一個構築物中進行,不需要二次沉澱池和污泥迴流系統,甚至在大多數情況下可以不設初次沉澱池,所以佔地面積可縮小1/3-1/2,基建投資節省20%-40%。
(3)耐沖擊負荷 SBR充水時可作為均化池,對水質、水量的變化具有調節作用。在採用長時間進水和每周期換水體積很小的運行模式時,SBR可以模擬完全混合式流態,對進水有稀釋作用,這也是SBR耐沖擊負荷的一個原因。
(4)出水水質好 主要原因是:第一,SBR系統可隨時調整運行周期和反應曝氣時間等的長短,使處理水達標後排放;第二,沉澱是靜止條件下進行的,沒有進出水的干擾,泥水分離效果好,可避免短路、異重流的影響;第三,可根據泥水分離情況的好壞控制沉澱時間,使出水SS最少;第四,SBR不僅可以處理一般有機物,還可以去除氮、磷等營養物,某些難降解物也可得到降解。
(5)可抑制活性污泥絲狀菌膨脹:廢水進入反應池後,濃度隨反應時間而逐漸降低。因此,存在有機物的濃度梯度。這一濃度梯度的存在對於抑制絲狀菌膨脹,保持良好污泥性狀,具有重要作用。從另一方面看,缺氧、好氧狀態並存,能夠抑制專性好氧絲狀菌的繁殖。研究和工程應用表明,SBR污泥的SVI值多在100左右,能有效地抑制絲狀菌污泥膨脹。
(6)脫氮除磷 適當控制運行條件,SBR系統可在不投加任何化學葯劑的情況下,同時去除氮、磷等營養物,十分簡便。
與A2/O工藝、氧化溝工藝不同的是其脫氮除磷的厭氧、缺氧和好氧不是由空間來劃分的,而是用時間來控制的。在同一池體中形成厭氧、缺氧和好氧,完成脫氮除磷過程,而後開始沉澱並通過撇水器出水,完成一個周期。該工藝不需要迴流污泥和迴流混合液,也不設置專門的二沉池,處理構築物少,但總的容積利用率較低,一般小於50%,因此一般適用於較小規模的污水處理廠。
SBR由於是變水位靜置排水,沉澱效果雖好,但需專門的撇水設備,自控要求高,另外,由於是變水位排水和運行,一方面造成水頭的浪費;另一方面如採用微孔曝氣方式,水位變化易對曝氣器構成損害。
2.CASS法ICEAS法
CASS、ICEAS工藝即連續進水、間歇操作運行轉的活性污泥法。與傳統SBR法不同之處在於設置了多座池子,盡管單座池子間歇操作運行,但使整過程達到連續進水、連續出水。其進水、反應、沉澱、出水和待機在一座池中完成,常用四座池子組成一組,輪流運轉,一池一池的間歇處理。這種工藝,每座池子都需安裝曝氣設備、用於沉澱的潷水器及控制系統,間歇排水,水頭損失大,設備的閑置率較高、利用率低,投資大,要求自動化程度相當高。
目前,國內昆明第三污水處理廠採用了ICEAS工藝,設計規模為15萬m3/d,已建成投入運行。
CASS工藝是Goronszy教授在ICEAS的基礎上開發出來的,是SBR工藝的一種新的形式。通常CASS一般分為三個反應區:一區為生物選擇器,二區為缺氧區,三區為好氧區。生物選擇區是設置在CASS前端的小容積區,通常在厭氧或兼氧條件下運行。生物選擇器的最基本功能是防止產生污泥膨脹。同時還具有促進磷的進一步釋放和強化反硝化的作用。在這個區內難降解大分子物質易發生水解作用,對提高有機物的去除率是有一定的促進作用。主反應區則是去除有機物的主場所。運行過程中,通常將主反應區的曝氣強度加以控制,以使反應區內主體溶液中處於好氧狀態,主要完成降解有機物過程。
在池的末端設有潛水泵,污泥通過此潛水泵不斷地從主曝氣區抽送至生物選擇器中。CASS生物選擇器和缺氧芪的設置和污泥迴流的措施,保證了活性污泥不斷地在選擇器中經歷一個高絮體負荷(So/Xo)階段,從而有利於系統中絮凝性細菌的生長,進一步有效地抑制絲狀菌的生長和繁殖。CASS工藝沉澱階段不進水,保證了污泥沉降無水力干擾,在靜止環境中進行,可以進一步保證系統有良好的分離作用。
◆CASS工藝運行工藝
CASS反應池內分為選擇區和反應區,CASS反應池的運行操作由進水、反應、沉澱、潷水和待機五個階段組成。
進水期:污水連續流入反應池內前部的選擇區,與從反應池後部的凡庸區不斷循環至此的污泥混合,使污泥吸收易溶性基質,並促使絮凝性微生物產生。污水在選擇區厭氧狀態下停留1小時後,從選擇區與反應區隔牆下部的入口以低速流入反應區。連續進水可簡化對進水的控制,這樣的的分池系統也避免了水力短路。
反應期:污水進入反應區池中發生生化反應,在此階段可以只混合不曝氣,或既混合有曝氣,使污水處於是反復的好氧—缺氧狀態,反應期的長短一般由進水水質及所要求的處理程度而定。
沉降期:在此階段反應器內混合液進行固液分離,因該階段在完全靜止情況下進行,表面水力和固體負荷低,沉澱效率高於一般沉澱池的沉澱效率。
排水期:當池水位升到最高水位時,沉澱階段結束,設置的反應池末端的潷水器開動,將上清液緩緩潷出池外,當池水位降到低水位時停止潷水。
待機期:本處理系統為多池聯合運行,在每池潷水後完成了一個運行周期,在實際操作中,潷手所需時間往往小於理論最大時間,故潷水完成後兩周期閑置時間就是待機期,該階段可視污水的水質、水量和處理要求決定其長短甚至取消。在此階段可以從反應池排除剩餘活性污泥。反池池排出的剩餘污泥由於泥齡長,已基本穩定。
◆CASS生化反應池
在進水期、反應期達到硝化階段時,可減少或停止供氧,沉澱期或排水階段都可以發生反硝化。CASS系統進水初期、高濃度的有機物首先消耗池內溶解氧,反硝化以剛進入的污水中有機物作為電子供體,將池內NO3-N還原為N2逸出水面。在反應後期,達到硝化階段,污水中含有有機物濃度已大為減少,這時可減少或停止曝氣,可以利用內碳源進行反硝化。在沉降期和排水期所發生的反硝化也是利用內碳源作電子供體。
在選擇區活性污泥也會吸附污水中有機物並以多聚物形式貯存起來。當反應達到部分硝化後,減少或停止向混合液中供氧,則貯存碳源釋放。反硝化菌可以利用釋放的貯存碳源進行SBR系統所特有的利用貯存碳源進行反硝化。
反應池曝氣時聚磷菌利用有機物氧化放出的能量,大量吸收混合液中的磷,以聚磷酸鹽的形式儲存於體內,水中的磷轉移到污泥里,沉澱時處於缺氧狀態,部分聚磷菌尚未將吸收的磷大量釋放,即以剩餘污泥形式排出系統,從而達到去除水中磷的目的。至潷水是污泥層呈厭氧狀,DO和NOx-N的接近零,聚磷菌將體內的聚磷酸鹽水解,釋放出正磷酸鹽和能量,有利於下一階段充分吸收磷。即微生物在反應池中不斷地處於厭氧和好氧交替運行狀態,從而實現生物除磷。
CASS處理工藝的特點:
不設二沉池,曝氣池兼具二沉池功能所需的機械和工藝設備較少,自控運行管理簡單;曝氣池容積小於連續式,建設費用和運行費用都較低;SVI值較低,污泥易於沉澱,在一般情況下,不產生污泥膨脹現象;易於維護管理,工藝調整靈活,處理水水質優於連續式;對水質、水量變化的適應性強,運行穩定;處理效果好,BOD5去除效率高,除磷脫氮效果優於傳統活性污泥法、氧化溝法和AB法,產泥量少;佔地面積少,基建費用低;設備閑置率較高;要求自動控製程度較高。
3.MSBR法
MSBR是80年代後期發展起來的技術,MSBR是連續進水、連續出水的反應器,其實質是AA/O系統後接SBR,因此具有AA/O生物除磷脫氮功能和SBR的一體化控制靈活等優點。
污水進入厭氧池,迴流活性污泥在這里進行充分放磷,然後污水進入缺氧池進行反硝化。反硝化後的污水進入好氧池,有機物在這里被好氧菌降解、活性污泥充分吸磷後再進入起沉澱作用的SBR池,澄清後的污水被排放,此時另一邊的SBR在1.5Q迴流量的條件下進行起反硝化、硝化,或起靜置預沉的作用。迴流污泥首先進入濃縮區進行濃縮,上清液直接進入好氧池,而濃縮污泥則進入缺氧池,一方面可以進行反硝化,另一方面可消耗掉迴流濃縮污泥中的溶解氧和硝酸鹽,為隨後的厭氧放磷提供更為有利的條件,在好氧池和缺氧池之間有1.5Q的迴流量,以便進行充分的反硝化。
4.UNITANK法
UNITANK工藝又稱單池活性污泥法,是比利時西格斯水處理工程公司於80年代末開發的專利(SEGHERS ENGINEERING WATER NV)技術。UNITANK生物處理池是由三個矩形池組成,三個池水力相連通,每個池中均設有供氧設備,可採用鼓風曝氣或採用表面曝氣,在外邊兩側矩形池,設有固定出水堰及剩餘污泥排放泵,該池既可作曝氣池,又可作沉澱池,中間一隻矩形池只作曝氣池。進入系統的污水,通過進水閘門控制可分時序分別進入三隻矩形池中任意一隻池。當左池進水,此時左池與中間池曝氣,右池為沉澱池,水從左向右流過,從右池上部的固定堰溢出,經過一定時間後,進水從右池進,左池出,則左池變為沉澱,右池與中間池曝氣,這樣形成一個周期,與SBR原理接近,它是在同一容器中通過攪拌、曝氣完成厭氧、缺氧、好氧過程,因而同樣具有除磷脫氮功能。
UNITANK由於基本是定水位運行,連續進水、出水避免了SBR工藝中水位變化帶來的不利因素。
UNITANK工藝的特點如下:
(1)結構緊湊,模塊化設計;
(2)運行模式靈活,可自控運行;
(3)不需刮泥設備和污泥迴流,工藝流程簡便;
(4)佔地面積少;
(5)投資節省。
但由於UNITANK缺專門的厭氧區,實際操作中很難達到釋磷所需求的絕氧狀態(無分子態氧和無硝態氧),影響到厭氧段磷的釋放,而只有厭氧段磷釋放得徹底,好氧段磷的吸附量才越大,進入剩餘污泥中的磷也越多,從而達到較高的除磷效果。
日前,澳門凼仔污水廠採用了該工藝,設計規模為7萬m3/d,處理效果良好,但該廠不要求脫氮除磷。
5.往復式生化處理法
本工藝借鑒了Unitank、MSBR的成果,兼有Unitank一體化工藝和A2/O工藝的優點,是一種取長補短的組合技術。
該工藝具有如下優點:
(1)池中設有專門的厭氧池,完善了除磷效果,具有A2/O的優點。
(2)本工藝視BOD5負荷的大小,可以A2/O法運行,也可以A2/O法運行,比傳統A2/O法更具靈活性。
(3)每一組池中的每一格池體積較大,且為完全混合型,因而耐沖擊負荷較強。
(4)具有一體化工藝的優點,佔地面積小。
(5)由於佔地面積小,相應的征地費、地基處理費用小,又由於矩形壁可以共用,土建費用小,因此投資相對較低。
(6)本工藝流程簡潔,不需單獨設二沉池,曝氣、沉澱合用一池,交替運行。

❹ 影響氣浮污水處理效果的主要因素有哪些並分析

有以下幾點以供參考:
1、PH,進氣浮前要保證進水的PH在7左右,可以使氣浮的葯劑發揮最大作用,充分混凝絮凝;
2、加葯量,加葯量的多少,決定出水的好壞,適合的加葯量不單能節省葯劑費用,還是產生最佳的泥量;
3、如果是溶氣氣浮的話,還是控制好溶氣的壓力,壓力過大或過小,也是影響絮體的關鍵;
4、刮泥機的運作;

❺ 污水處理中厭氧的VFA一般和其他什麼指標一起來監測水質的好壞

VFA一般和鹼度、pH一起來檢測水質的好壞,,一般厭氧VFA在2~3mmol為較好,超過為產甲烷內菌受到抑制,產酸富集,系統容pH酸性,此時鹼度較低,需要在進水前加入適當加入鹼調節,並且同時降低進水負荷。
若低於上述數值,為產酸菌受到抑制,鹼度過高,進水營養不夠,此時需要加大進水量,同時檢測出水pH和VFA、鹼度,合格後穩定運行。

❻ 污水處理厭氧階段如何看處理的好壞除了從化驗數據上看!

如果說不看化驗數據的話,確實不方便,畢竟去除率什麼的都要看數據,那就只能看產氣情況了,產氣量大,那就是效果比較好

閱讀全文

與決定處理污水好壞的因素有哪些相關的資料

熱點內容
AS樹脂高溫分解生成什麼 瀏覽:454
怎麼處理飲水機水桶里的水垢 瀏覽:255
如何處理濃氟廢水 瀏覽:32
GE和bwt即熱凈水機哪個好 瀏覽:738
一個車間每天產生多少廢水 瀏覽:541
寶雞市十里鋪污水招標 瀏覽:740
飛利浦凈水器怎麼拆除 瀏覽:448
過濾管壁上的孔數計算 瀏覽:360
嘉定新城金茂府凈水器是什麼牌子 瀏覽:948
一米二魚缸底濾加裝雙重過濾 瀏覽:502
城市污水處理廠如何運行 瀏覽:43
生活污水處理後形成再生水 瀏覽:613
D一48乾燥濾芯怎麼安裝 瀏覽:876
反滲透運行論壇 瀏覽:704
處理廢水怎麼說的高大上 瀏覽:214
總結EDI應用文獻的思想中心 瀏覽:293
風景樹脂茶幾 瀏覽:698
污水不經過化糞池直接排入污水管 瀏覽:383
唐山佳尼特凈水器加盟哪個好 瀏覽:51
凈水器有茶滯怎麼回事 瀏覽:295