導航:首頁 > 廢水污水 > 污水管CY是什麼意思

污水管CY是什麼意思

發布時間:2024-06-22 13:10:23

Ⅰ 想問一下水施中一些管道標識的意思

這可能是個建築群,比如一系列的住宅樓,a棟,b棟,c棟……
然後aw指的就是回a棟樓污水,答bw就是b棟樓污水,……
而ay指a棟樓雨水,by就是指b棟樓雨水,……
個人猜測,還是以實際為准,按常理來看,不可能有這么多管代號的,如果有,肯定在總說明裡會說明的。

Ⅱ 好氧活性污泥處理生活廢水

活性污泥法是以活性污泥為主體的廢水生物處理的主要方法。活性污泥法是向廢水中連續通入空氣,經一定時間後因好氧性微生物繁殖而形成的污泥狀絮凝物。其上棲息著以菌膠團為主的微生物群,具有很強的吸附與氧化有機物的能力。
你是想問好氧活性污泥處理生活廢水的工藝流程呢?還是想問出水的具體數據呢?
活性污泥工藝是城市污水處理的主要工藝,它的設計計算有三種方法:污泥負荷法、泥齡法和數學模型法。三種方法在操作上難易程度不同,計算結果的精確度不同,直接關繫到設計水平、基建投資和處理可靠性。正因為如此,國內外專家都在進行大量細致的研究,力求找出一種精確度更高而又便於操作的計算方法。
1 污泥負荷法
這是目前國內外最流行的設計方法,幾十年來,運用該法設計了成千上萬座污水處理廠,充分說明它的正確性和適用性。但另一方面,這種方法也存在一些問題,甚至是比較嚴重的缺陷,影響了設計的精確性和可操作性。
污泥負荷法的計算式為〔1〕:
V=24LjQ/1000FwNw=24LjQ/1000Fr (1)
污泥負荷法是一種經驗計演算法,它的最基本參數Fw(曝氣池污泥負荷)和Fr(曝氣池容積負荷)是根據曝氣的類別按照以往的經驗設定,由於水質千差萬別和處理要求不同,這兩個基本參數的設定只能給出一個較大的范圍,例如我國的規范對普通曝氣推薦的數值為:
Fw=0.2~0.4 kgBOD/(kgMLSS·d)
Fr=0.4~0.9 kgBOD/(m3池容·d)
可以看出,最大值比最小值大一倍以上,幅度很寬,如果其他條件不變,選用最小值算出的曝氣池容積比選用最大值時的容積大一倍或一倍以上,基建投資也就相差很多,在這個范圍內取值完全憑經驗,對於經驗較少的設計人來說很難操作,這是污泥負荷法的一個主要缺陷。
污泥負荷法的另一個問題是單位容易混淆,譬如我國設計規范中Fw的單位是kgBOD/(kgMLSS·d),但設計手冊中則是kgBOD/(kgMLVSS·d),這兩種單位相差很大。MLSS是包括無機懸浮物在內的污泥濃度,MLVSS則只是有機懸浮固體的濃度,對於生活污水,一般MLVSS=0.7MLSS,如果單位用錯,算出的曝氣池容積將差30%。這種混淆並非不可能,例如我國設計手冊中推薦的普通曝氣的Fw為0.2~0.4kgBOD/(kgMLVSS·d)〔2〕,其數值和設計規范完全一樣,但單位卻不同了。設計中經常遇到不知究竟用哪個單位好的問題,特別是設計經驗不足時更是無所適從,加上近年來污水脫氮提上了日程,當污水要求硝化、反硝化時,Fw、Fr取多少合適呢?
污泥負荷法最根本的問題是沒有考慮到污水水質的差異。對於生活污水來說,SS和BOD濃度大致有數,MLSS與MLVSS的比值也大致差不多,但結合各地的實際情況來看,城市污水一般包含50%甚至更多的工業廢水,因而污水水質差別很大,有的SS、BOD值高達300~400 mg/L,有的則低到不足100 mg/L,有的污水SS/BOD值高達2以上,有的SS值比BOD值還低。污泥負荷是以MLSS為基礎的,其中有多大比例的有機物反映不出來,對於相同規模、相同工藝、相同進水BOD濃度的兩個廠,按污泥負荷法計算曝氣池容積是相同的,但當SS/BOD值差異很大時,MLVSS也相差很大,實際的生物環境就大不相同,處理效果也就明顯不同了。
綜上所述,污泥負荷法有待改進。因此,國際水質污染與控制協會(IAWQ)組織各國專家,於1986年首次推出活性污泥一號模型(簡稱ASM1)〔3〕,1995年又推出了活性污泥二號模型(簡稱ASM2)〔4、5〕。
2 數學模型法
數學模型法在理論上是比較完美的,但在具體應用上則存在不少問題,這主要是由於污水和污水處理的復雜性和多樣性,即使是簡化了的數學模式,應用起來也相當困難,從而阻礙了它的推廣和應用。到目前為止,數學模型法在國外尚未成為普遍採用的設計方法,而在我國還沒有實際應用於工程,仍停留在研究階段。
數學模型法的主要問題是模型中有很多系數和常數,ASM1中有13個,ASM2中有19個,它們都需要設計人員根據實際污水水質和處理工藝的要求確定具體數值,其中多數要經過大量監測分析後才能得出,而且不同的污水有不同的數值。由於污水水質多變,確定這些參數很困難,如果這些參數有誤,就直接影響到計算結果的精確性和可靠性。國外已經提出了這些參數的數值,但我國的污水成分與國外有很大差別,特別是污水中的有機物成分差別很大,盲目套用國外的參數值肯定是不行的。因此,要將數學模型法應用於我國的污水處理設計,必須組織力量監測分析各種污水水質,確定有關參數,才有可能把數學模型實用化。然而,從我國目前情況看,數據分析和積累恰恰是最大的薄弱環節之一,我國已運轉的城市污水處理廠有上百座,至今連一些最基本的數據都難以確定,更不用說數學模型法所需的各種數據了,顯然,要在我國應用數學模型法還需做大量的工作,還需要相當長的時間。
3 泥齡法
3.1泥齡法的計算式
設計規范中提出了按泥齡計算曝氣池容積的計算公式〔1〕:
V=〔24QθcY(Lj-Lch)/1 000Nwv(1+Kdθc) (2)
設計規范對式中幾個關鍵參數提出了推薦值:
Y=0.4~0.8(20℃,有初沉池)
Kd=0.04~0.075(20℃)
當水溫變化時,按下式修正:
Kdt=Kd20(θt)t-20 (3)
式中 θt——溫度系數,θt=1.02~1.06
θc——高負荷取0.2~2.5,中負荷取5~15,低負荷取20~30
可以看出,它們的取值范圍都很寬,Y值的變化幅度達100%,Kd值的變化幅度達87.5%,θc值的變化幅度從50%到幾倍,實際計算時很難取值,這也是泥齡法在我國難以推廣的原因之一。
為了使泥齡計演算法實用化,筆者根據自己的設計體會,建議採用德國目前使用的ATV標准中的計算公式,並對式中的關鍵參數取值結合我國具體情況適當修改。實踐證明,按該公式計算概念清晰,特別便於操作,計算結果都能滿足我國規范的要求,不失為一種簡單、可信而又十分有效的設計計算方法。其基本計算公式為:
V=24QθcY(Lj-Lch)/1000Nw (4)
式中 Y——污泥產率系數(kgSS/kgBOD)
Q、Lj、Lch值是設計初始條件,是反映原水水量、水質和處理要求的,在設計計算前已經確定。
泥齡θc是指污泥在曝氣池中的平均停留時間,其數值為:
θc=VNw/W (5)
式中 W——剩餘污泥量,kgSS/d
W=24QY(Lj-Lch)/1000 (6)
根據以上計算式,採用泥齡法設計計算活性污泥工藝時,只需確定泥齡θc、剩餘污泥量W(或污泥產率系數Y)和曝氣池混合液懸浮固體平均濃度Nw(MLSS)即可求出曝氣池容積V。與污泥負荷法相比,它用泥齡θc取代Fw或Fr作為設計計算的最基本參數,與數學模型法相比,它只需測定一個污泥產率系數Y,而不需測定13或19個參數數據。
3.2泥齡的確定
泥齡是根據理論同時又參照經驗的累積確定的,按照處理要求和處理廠規模的不同而採用不同的泥齡,德國ATV標准中單級活性污泥工藝污水處理廠的最小泥齡數值見表1。
表1 德國標准中活性污泥工藝的最小泥齡
d處理目標處理廠規模
≤5 000 m3/d≥25 000 m3/d
無硝化54
有硝化(設計溫度:10 ℃)108
有硝化、反硝化(10 ℃)
VD/V=0.2
VD/V=0.3
VD/V=0.4
VD/V=0.512
13
15
1810
11
13
16
有硝化、反硝化、污泥穩定25不推薦
注 VD/V為反硝化池容與總池容之比。

表中對規模小的污水廠取大值,是考慮到小廠的進水水質變化幅度大,運行工況變化幅度大,因而選用較大的安全系數。
泥齡反映了微生物在曝氣池中的平均停留時間,泥齡的長短與污水處理效果有兩方面的關系:一方面是泥齡越長,微生物在曝氣池中停留時間越長,微生物降解有機污染物的時間越長,對有機污染物降解越徹底,處理效果越好;另一方面是泥齡長短對微生物種群有選擇性,因為不同種群的微生物有不同的世代周期,如果泥齡小於某種微生物的世代周期,這種微生物還來不及繁殖就排出池外,不可能在池中生存,為了培養繁殖所需要的某種微生物,選定的泥齡必須大於該種微生物的世代周期。最明顯的例子是硝化菌,它是產生硝化作用的微生物,它的世代周期較長,並要求好氧環境,所以在污水進行硝化時須有較長的好氧泥齡。當污水反硝化時,是反硝化菌在工作,反硝化菌需要缺氧環境,為了進行反硝化,就必須有缺氧段(區段或時段),隨著反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥齡要加長。上述關系的量化已體現在表1中。
無硝化污水處理廠的最小泥齡選擇4~5 d,是針對生活污水的水質並使處理出水達到BOD=30 mg/L和SS=30 mg/L確定的,這是多年實踐經驗的積累,就像污泥負荷的取值一樣。
有硝化的污水處理廠,泥齡必須大於硝化菌的世代周期,設計通常採用一個安全系數,以確保硝化作用的進行,其計算式為:
θc=F(1/μo) (7)
式中θ c——滿足硝化要求的設計泥齡,d
F——安全系數,取值范圍2.0~3.0,通常取2.3
1/μo——硝化菌世代周期,d
μo——硝化菌比生長速率,d-1
μo=0.47×1.103(T-15) (8)
式中 T——設計污水溫度,北方地區通常取10 ℃,南方地區可取11~12 ℃
代入式(8)得:
μo=0.47×1.103(10-15)=0.288/d
再代入式(7)得:
θc=2.3×1/0.288=7.99 d
計算所得數值與表1中的數值相符。
表1是德國標准,但它的理論依據和經驗積累具有普遍意義,並不隨水質變化而改變,因此筆者認為可以在我國設計中應用。
在污泥負荷法中,污泥負荷是最基本的設計參數,泥齡是導出參數。而在泥齡法中,泥齡是最基本的設計參數,污泥負荷是導出參數,兩者呈近似反比關系:
θcFw=Lj/Y(Lj-Lch) (9)
式中污泥產率系數Y是泥齡θc的函數。

3.3污泥產率系數的確定
採用泥齡法進行活性污泥工藝設計計算時,准確確定污泥產率系數Y是十分重要的,從式(4)中看出,曝氣池容積與Y值成正比,Y值直接影響曝氣池容積的大小。
式(6)給出了Y值和剩餘污泥量W的關系,剩餘污泥量是每天從生物處理系統中排出的污泥量,它包括兩部分:一部分隨出水排除,一部分排至污泥處理系統,其計算式為:
W=24QNch/1000+QsNs (10)
式中 Nch——出水懸浮固體濃度,mg/L
Qs——排至污泥處理系統的剩餘污泥量,m3/d
Ns——排至污泥處理系統的剩餘污泥濃度,kg/m3
剩餘污泥量最好是實測求得。從式(10)可以看出,對於正常運行的污水處理廠,Q、Nch、Qs及Ns值都不難測定,這樣就能求出W和Y值。問題在於設計時還沒有污水處理廠,只有參照其他類似污水處理廠的數值。由於污水水質不同,處理程度及環境條件不同,各地得出的Y值不可能一樣,特別是很多城市污水處理廠由於資金短缺等原因,運行往往不正常,剩餘污泥量W的數值也測不準確,這勢必影響設計的精確性和可靠性。
從理論上分析,污泥產率系數與原水水質、處理程度和污水溫度等因素有關。首先,污泥產率系數本來的含義是一定量BOD降解後產生的SS。由於是有機物降解產物,這里的SS應該是VSS,即揮發性懸浮固體,但污水中還有相當數量的無機懸浮固體和難降解有機懸浮固體,它們並未被微生物降解,而是原封不動地沉積到污泥中,結果產生的SS將大於真正由BOD降解產生的VSS,因此在確定污泥產率系數時,必須考慮原水中
無機懸浮固體和難降解有機懸浮固體的含量。其次,隨著處理程度的提高,污泥泥齡的增長,有機物降解越徹底,微生物的衰減也越多,這導致剩餘污泥量的減少。至於水溫,是影響生化過程的重要因素,水溫增高,生化過程加快,將使剩餘污泥量減少。對於各種因素的影響,可根據理論分析通過實驗建立數學方程式,其計算結果如經受住實踐的檢驗,就可用於實際工程。德國已經提出了這樣的方程式,按這個方程式計算出的Y值已正式寫進ATV標准中。
Y=0.6(Nj/Lj+1)-0.072×0.6θc×FT/1+0.08θc×FT (11)
F=1.072(T-15) (12)
式中 Nj ——進水懸浮固體濃度,mg/L
FT——溫度修正系數
T——設計水溫,與前面的計算取相同數值
可以看出,Nj/Lj值反映了污水中無機懸浮固體和難降解懸浮固體所佔比重的大小,如果它們占的比重增大,剩餘污泥量自然要增加,Y值也就增大了。θc值影響污泥的衰減,θc值增長,污泥衰減得多,Y值相應減少。溫度的影響體現在FT值上,水溫增高,FT值增大,Y值減小,也就是剩餘污泥量減少。
這個方程式對我國具有參考價值。由於我國的生活習慣與西方國家差異很大,污水中有機物比重低,有機物中脂肪比例低,碳水化合物比例高,因而產泥量也不會完全相同。根據國內已公布的數據和筆者的經驗,我國活性污泥工藝污水處理廠的剩餘污泥產量比西方國家要少,因此,式(11)中須乘上一個修正系數K:
Y=K×0.6(NjLj+1)-〔(0.072×0.6θc×FT)/(1+0.08θc×FT) (13)
一般取K=0.8~0.9。
在目前缺乏我國自己的Y值計算式的情況下,筆者認為採用式(13)計算Y值是可行的。
3.4 MLSS的確定
不管採用哪種設計計算方法,都需要合理確定MLSS。在其他條件不變的情況下,MLSS增大一倍,曝氣池容就減小一倍;MLSS減小一倍,曝氣池容就增大一倍。它直接影響基建投資,因此需要慎重確定。
在設計規范和手冊中,對MLSS值推薦了一個選用范圍,如普通曝氣是1.5~2.5 kg/m3,延時曝氣是2.5~5.0 kg/m3,變化幅度都比較大,設計時不好操作。為了選定合適的MLSS值,有必要弄清影響它的因素。
MLSS不能選得過低,主要有三個原因:
①MLSS過低,曝氣池容積V就要相應增大,在經濟上不利。
②MLSS過低,曝氣池中容易產生泡沫,為了防止泡沫,一般需保持2 kg/m3以上的污泥濃度。
③當污泥濃度很低時,所需氧量較少,如MLSS過低,池容增大,單位池容的供氣量就很小,有可能滿足不了池內混合的要求,勢必額外增加攪拌設備。MLSS也不能選得過高,主要是因為:
①要提高MLSS,必須相應增加污泥迴流比,降低二沉池表面負荷,加長二沉池停留時間,這就要求增大二沉池體積和迴流污泥能耗。把曝氣池、二沉池和迴流污泥泵房作為一個整體來考慮,為使造價和運行費用總價最低,污泥迴流比通常限制在150%以內。對於一般城市污水,二沉池的迴流污泥濃度通常為4~8 kg/m3,若按最高值約8 kg/m3計,迴流比為150%時的曝氣池內MLSS為4.8kg/m3,實際設計中MLSS最高一般不超過4.5kg/m3。
②污水的性質和曝氣池運行工況對MLSS有巨大影響,如果污水中的成分或曝氣池的工況有利於污泥膨脹,污泥指數SVI值居高不下(如SVI>180 mL/g),迴流污泥濃度就會大大降低,MLSS就必須選擇低值。
根據以上分析,在選定MLSS時要照顧到各個方面:
①泥齡長、污泥負荷低,選較高值;泥齡短、污泥負荷高,選較低值;同步污泥好氧穩定時,選高值。
②有初沉池時選較低值,無初沉池時選較高值。
③SVI值低時選較高值,高時選較低值。
④污水濃度高時選較高值,低時選較低值。
⑤合建反應池(如SBR)不存在污泥迴流問題,選較高值或高值。
⑥核算攪拌功率是否滿足要求,如不滿足時要進行適當調整。
德國ATV標准對MLSS值規定了選用范圍,有硝化和無硝化時其MLSS值是一樣的,這不完全符合我國具體情況。我國城市污水污染物濃度通常較低,在無硝化(泥齡短)時如果MLSS值過高,有可能停留時間過短,不利於生化處理,故將無硝化時的MLSS值降低0.5kg/m3,推薦的MLSS值列於表2。
表2 推薦曝氣池MLSS取值范圍
kg/m3處理目標MLSS
有初沉池無初沉池
無硝化2.0~3.03.0~4.0
有硝化(和反硝化)2.5~3.53.5~4.5
污泥穩定 4.5

3.5泥齡法的優缺點
①泥齡法是經驗和理論相結合的設計計算方法,泥齡θc和污泥產率系數Y值的確定都有充分的理論依據,又有經驗的積累,因而更加准確可靠。
②泥齡法很直觀,根據泥齡大小對所選工藝能否實現硝化、反硝化和污泥穩定一目瞭然。
③泥齡法的計算中只使用MLSS值,不使用MLVSS值,污泥中無機物所佔比重的不同在參數Y值中體現,因而不會引起兩者的混淆。
④泥齡法中最基本的參數——泥齡θc和污泥產率系數Y都有變化幅度很小的推薦值和計算值,操作起來比選定污泥負荷值更方便容易。
⑤泥齡法不像數學模型法那樣需要確定很多參數,使操作大大簡化。
⑥計算污泥產率系數Y值的方程式是根據德國的污水水質和實驗得出的,結合我國情況在應用時需乘以一個修正系數。
4 結論
①活性污泥工藝的設計計算方法有必要從污泥負荷法逐步向泥齡法過渡,最終過渡到數學模型法。在數學模型法實用化之前,泥齡法將發揮重要作用。
②按泥齡法計算用式(4),該式與設計規范中的計算式相比,Nw與Nwv的轉換和污泥衰減的影響在Y值的計算中考慮,這樣理論意義更加清晰,使用起來更加方便。
③德國ATV標准中推薦的泥齡選用數據(見表1)是根據有機物降解和微生物生長規律結合實
際經驗產生的,不涉及污水的具體水質變化,在我國有實用價值。
④污泥產率系數Y值的計算式(11)有充分的理論依據,但它是用德國污水實驗得出的,為了適用於我國,須乘以修正系數,修正後的計算式(13)可用於實際設計計算。
⑤MLSS的取值在設計規范中有規定,但范圍較大,不太好操作,建議參照表2中的數據選用,相互對比檢驗。
⑥建議對我國有一定代表性的城市污水進行實驗研究,推出自己的Y值計算方程式,使泥齡法的實用基礎更加扎實可靠。
活性污泥法處理城市生活污水主要運行方式:
1、推流式活性污泥法
2、完全混合活性污泥法
3、分段曝氣活性污泥法
4、吸附-再生活性污泥法
5、延時曝氣活性污泥法
6、高負荷活性污泥法
7、淺層、深水、深井曝氣活性污泥法
8、純氧曝氣活性污泥法
9、氧化溝工藝
10、序批式活性污泥法

Ⅲ 城市污水處理廠管線圖里的CY線是什麼意思

超越管線(渠)的意思:污水廠內合理布置超越管渠,可使水流越過專某處理構築物,而屬流至其後續構築物,也可使水流直接排出廠外。其合理布置應保證在構築物維護和緊急修理以及發生其他特殊情況時,對出水水質影響小,並能迅速恢復正常運行。

Ⅳ 污水處理站怎樣處理含氰廢水

處理含氰廢水的方法
除了氯氧化法、二氧化硫-空氣氧化法、過氧化氫氧化法、酸化回收法、萃取法已獨立或幾種方法聯合使用於黃金氰化廠外,生物化學法、離子交換法、吸附法、自然凈化法在國內外也有工業應用,由於報道較少,工業實踐時間短,資料數據有限,本章僅對這些方法的原理、特點、處理效果進行簡要介紹。
一、生物化學法
1、生物法原理
生物法處理含氰廢水分兩個階段,第一階段是革蘭氏桿菌以氰化物、硫氰化物中的碳、氮為食物源,將氰化物和硫氰化物分解成碳酸鹽和氨:
微生物
Mn(CN)n(n-m)-+4H2O+O2─→Me-生物膜+2HCO3-+2NH3
對金屬氰絡物的分解順序是Zn、Ni、Cu、Fe對硫氰化物的分解與此類似,而且迅速,最佳pH值6.7~7.2。
細菌
SCN-+2.5O2+2H2O→SO42-+HCO3-+NH3
第二階段為硝化階段,利用嗜氧自養細菌把NH3分解:
細菌
NH3+1.5O2→NO2-+2H++H2O
細菌
NO2-+0.5O2→NO3-
氰化物和硫氰化物經過以上兩個階段,分解成無毒物以達到廢水處理目的。
生物化學法根據使用的設備和工藝不可又分為活性污泥法、生物過濾法、生物接觸法和生物流化床法等等,國內外利用生物化學法處理焦化、化肥廠含氰廢水的報導較多。
據報道,從1984年開始,美國霍姆斯特克(Homestake)金礦用生物法處理氰化廠廢水,英國將一種菌種固化後用於處理2500ppm的廢水,出水CN-可降低到1ppm,是今後發展的方向。
微生物法進入工業化階段並非易事,自然界的菌種遠不能適應每升數毫克濃度的氰化物廢水,因此必須對菌種進行馴化,使其逐步適應,生物化學法工藝較長,包括菌種的培養,加入營養物等,其處理時間相對較長,操作條件嚴格。如溫度、廢水組成等必須嚴格控制在一定范圍內,否則,微生物的代謝作用就會受到抑制甚至死亡。設備復雜、投資很大,因此在黃金氰化廠它的應用受到了限制。但生物化學法能分解硫氰化物,使重金屬形成污泥從廢水中去除,出水水質很好,故對於排水水質要求很高、地處溫帶的氰化廠,使用生物法比較合適。
2、生物法的應用情況
國外某金礦採用生物化學法處理氰化廠含氰廢水。首先,含氰廢水通過其它廢水稀釋,氰化物含量降低到生化法要求的濃度(CN-<10.0mg/L)、溫度(10℃~18℃,必要時設空調),pH值(7~8.5)然後加入營養基(磷酸鹽和碳酸鈉),廢水的處理分兩段進行,兩段均採用Φ3.6×6m的生物轉盤,30%浸入廢水中以使細菌與廢水和空氣接觸,第一段用微生物把氰化物和硫氰化物氧化成二氧化碳、硫酸鹽和氨,同時重金屬被細菌吸附而從廢水中除去,第二段包括氨的細菌硝化作用,首先轉化為亞硝酸鹽,然後被轉化為硝酸鹽,第一段採用事先經過馴化的,微生物從工藝水中以兩種適應較高的氰化物和硫氰化物的濃度。第二段採用分離出來的普通的亞硝化細菌和硝化細菌,被附著在轉盤上的細菌的浮生物膜吸附重金屬並隨生產膜脫落而被除去,通過加入絮凝劑使液固兩相分開,清液達標排放,污泥排放尾礦庫。該處理裝置處理廢水(包括其它廢水)800m3/h,每個生物轉盤直徑3.6m,長6m。由波紋狀塑料板組成。該處理廠總投資約1000萬美元,其處理指標見表10-1。
表10-1 生物化學法處理含氰廢水效果
廢水名稱 廢水各組份含量(mg/L)
總CN- CN- SCN- Cu
處理前 3.67 2.30 61.5 0.56
處理後 0.33 0.05 0.50 0.04
3、生物化學法的特點
(一)優點
生物法處理的廢水,水質比較好,CN-、SCN-、CNO-、NH3、重金屬包括Fe(CN)64-均有較高的去除率,排水無毒,尤其是能徹底去除SCN-,是二氧化硫-空氣法、過氧化氫氧化法、酸化回收法等無法做到的。
(二)缺點
1)適應性差,僅能處理極低濃度而且濃度波動小的含氰廢水,故氰化廠廢水應稀釋數百倍才能處理,這就擴大了處理裝置的處理規模,大大增加了基建投資。
2)溫度范圍窄,寒冷地方必須有溫室才能使用。
3)只能處理澄清水,不能處理礦漿。
二、離子交換法
1950年南非開始研究使用離子交換法處理黃金行業含氰廢水。1960年蘇聯也開始研究,並在傑良諾夫斯克浮選廠處理含氰廢水並回收氰化物和金。
1970年工業裝置投入運行,取得了較好的效果,1985年加拿大的威蒂克(Witteck)科技開發公司開發了一種處理含氰廢水的離子交換法,不久又成立了一個專門推廣該技術的公司,叫Cy-tech公司,離子交換法處理進行研究,取得了許多試驗數據,並已達到了工業應用的水平。
1、離子交換法的基本原理
離子交換法就是用離子交換樹脂吸附廢水中以陰離子形式存在的各種氰化物:
R2SO4+2CN-→2R(CN)2+SO42-
R2SO4+Zn(CN)42-→R2Zn(CN)4+SO42-
R2SO4+Cu(CN)32-→R2Cu(CN)3+SO42-
2R2SO4+Fe(CN)64-→R4Fe(CN)6+2SO42-
Pb(CN)42-、Ni(CN)42-、Au(CN)2-、Ag(CN) 2-、Cu(CN)2-等的吸附與上述類似,硫氰化物陰離子在樹脂上的吸附力比CN-更大,更易被吸附在樹脂上。
R2SO4+2SCN-→2RSCN
在強鹼性陰離子交換樹脂上,黃金氰化廠廢水中主要的幾種陰離子的吸附能力如下:
Zn(CN)42->Cu(CN)32->SCN->CN->SO42-
樹脂飽和時,如果繼續處理廢水,新進入樹脂層的Zn(CN)42-就會將其它離子從樹脂上排擠下來,使它們重新進入溶液,但即使繼續進行這一過程,樹脂上已吸附的各種離子也不會全部被排擠下來,各種離子在樹脂上的吸附量根據各種離子在樹脂上的吸附能力以及在廢水中的濃度不同有一部分配比。對於強鹼性樹脂來說,這種現象十分明顯,具體表現在流出液的組成隨處理量的變化特性曲線上。各組分當被吸附力強於它的組分從樹脂上排擠下來時,其流出液濃度會出現峰值。
不同的弱鹼樹脂具有不同的吸附特性。因此,對不同離子的吸附力也有很大差別,研究用離子交換法處理含氰廢水的一個重要任務就是去選擇甚至專門合成適用於我們要處理的廢水特點的樹脂,否則樹脂處理廢水的效果或洗脫問題將難以滿足我們的需要。難以工業化應用。
2、離子交換法存在的問題及解決途徑
離子交換法存在的問題主要是樹脂的中毒問題,主要是吸附能力強於氰化物離子的硫氰化物、銅氰絡合物和鐵氰絡合物。由於上述物質吸附到樹脂上,使樹脂的洗脫變得較為復雜甚至非常困難。
(一)硫氰化物
對於大部分金氰化廠來說,廢水中含有100mg/L以上的SCN-,其中金精礦氰化廠廢水SCN-高達800mg/L以上,由於強鹼性陰離子交換樹脂對SCN-的吸附力較大,而且SCN-的濃度如此之高,使樹脂對其它應吸附而從廢水中除去的組分的吸附量大為降低,如Zn(CN)42-、Cu(CN)32-,同時,由於SCN-的飽和,會使CN-過早泄漏,導致離子交換樹脂的工作飽和容量過低。例如,當廢水中SCN-350mg/L時,其工作飽和容量(指流出液中CN-≤0.5mg/L條件)僅20倍樹脂體積,而且SCN-難以從樹脂上通過簡單的方法洗脫下來,這就限制了具有大飽和容量的強鹼性陰離子交換樹脂的應用,而弱鹼性陰離子交換樹脂飽和容量最高不過強鹼性樹脂的一半,從處理洗脫成本考慮,也不易使用,可見較高的SCN-濃度給離子交換樹脂帶來很大麻煩。如果從樹脂上不洗脫SCN-,那麼流出液CN-不能達標,即使不考慮CN-的泄漏,樹脂對其它離子的工作容量也減少。
(二)銅
盡管樹脂對Cu(CN)32-的吸附力不如Zn(CN)42-大,但它的濃度往往較高,在強鹼樹脂上的飽和容量約8~35kg/m3,甚至更高,但用酸洗脫樹脂上的氰化物時,銅並不能被洗脫下來,而是在樹脂上形成CuCN沉澱,為了洗脫強鹼樹脂上的銅,必須採用含氨洗脫液洗脫,使銅溶解,形成Cu(NH3)42-或Cu(NH3)2+而洗脫下來,這就使工藝復雜化,尤其是洗脫液的再生也不夠簡便。
(三)亞鐵氰化物離子
Fe(CN)64-盡管在樹脂上吸附量不大,但在用酸洗脫樹脂上氰化物和鋅時,會生成Zn2Fe(CN)6、Fe2Fe(CN)6、Cu2Fe(CN)6沉澱物,而使樹脂呈深綠至棕黑色,影響樹脂的再生效果,如果專門洗脫Fe(CN)64-,盡管效果好,可是,洗脫液再生等問題均使工藝變得更長,操作更復雜。
3、技術現狀
根據國產強鹼樹脂的上述特點,提出二種工藝:一是用強鹼性陰離子處理高、中濃度含氰廢水,旨在去除廢水中的Cu、Zn,廢水不達標但由於Cu、Zn的大為減少而有宜於循環使用。二是用強鹼性樹脂處理不含SCN-或SCN-濃度100mg/L以下的廢水,回收氰化物為主,處理後廢水達標外排。例如,在金精礦燒渣為原料的氰化廠用離子交換法處理貧液。把離子交換法用於這兩方面在技術和經濟上估計比用酸化回收法優越。最好的辦法是開發易洗脫再生的新型樹脂,國外的許多開發新型樹脂的報導介紹了吸附廢水中Fe(CN)64-、而且較容易被洗脫下來的樹脂,近年來,由於越來越重視三廢的回收,使人們十分重視使用離子交換法處理廢水使其達到排放標准同時使大多數氰化物得以回收並重新使用這類課題。
加拿大Witteck開發公司開發出的一種氰化物再循環工藝就是其中比較有代表性的一例,該公司為此成立了一個Cy-tech公司專門推銷這種工藝裝置。一份報導介紹,該工藝用於處理鋅粉置換工藝產生的貧液,使用強鹼性陰離子交換樹脂吸附重金屬氰化物,當流出液CN-超標時對樹脂進行酸洗,使用硫酸自下而上通過樹脂床即可使樹脂上的重金屬和氰化物被洗脫下來,其重金屬以陽離子形式存在於洗脫液中,洗脫液用類似於酸化回收法的裝置回收HCN,然後大部分洗脫液進行再生並重復用於洗脫。回收的NaCN用於氰化工段,少量洗脫液經過中和沉澱出重金屬離子後外排。據稱這種方法也可用於處理炭漿廠的尾漿,其工藝和樹脂礦漿法十分類似。Cy-tech公司認為該工藝經改進後也可消除尾礦庫排水中殘余氰化物及其它重金屬,該報導無詳細數據、資料以及樹脂的型號。
另一報導稱,這項工藝的關鍵是在廢水進入離子交換柱前,先完成一個化學反應(使游離CN-形成Zn(CN)42-),並在化學反應中應用一種催化劑,有關人士解釋說,如果沒有這個反應,廢水就不得不通過若干個交換柱提出那些無用的分子,從而增加了系統的成本和復雜性。
採用一段順流吸附裝置處理效果是CN-<0.5mg/L、各種重金屬的總和小於1mg/L,處理能力約720加侖/h,樹脂量約36加侖。
該試驗裝置大約需要處理3500加侖廢水才能使一個交換柱飽和,每隔一天對交換柱進行一次解吸,每月最大產渣量(重金屬沉澱物)也可裝入1隻45加侖的桶中,其廢水按所給數據估算重金屬總含量不大於50mg/L,估計重金屬絕大部分是鋅粉置換產生的Zn(CN)42-,該工藝裝置的投資與其它處理裝置相當。能在一年多的時間里靠回收氰化物而收回全部投資,該工藝由Cy-tech公司開始轉讓。但無工業應用的詳細報導。
我國對離子交換法處理氰化廠含氰廢水的研究主要有兩個目的,一是解決氰化—鋅粉置換工藝產生貧液的全循環問題,即從貧液中除去銅和鋅,為了達到較高的吸附容量,通常使用強鹼性陰離子交換樹脂, 當廢水中銅、鋅含量分別為140、100mg/L時,強鹼樹脂的工作吸附容量不小於15kg/m3和6.5kg/m3。飽和樹脂經酸洗回收氰化物並能洗脫部分鋅,然後用另一種洗脫劑洗脫銅,樹脂即可再生,而銅的洗脫劑需經再生方可重復使用,由於工藝較長目前尚無工業應用。
含氰廢水→過濾→離 子 交 換→(低濃度含氰廢水)返回浸出或處理

(飽和樹脂)回收氰化物
↓ 再生樹脂返回使用
洗脫重金屬

重金屬回收

圖11-1離子交換法回收氰化物工藝

當然如果廢水中銅和SCN-極低時,樹脂的再生僅通過酸洗就
可完成,此條件下可保證離子交換工藝出水達標。無論是國內還是國外,其離子交換工藝原則流程大致相同,見圖11-1。
4、離子交換法的特點
(一)優點:
1)當廢水中CN-低於酸化回收法的經濟效益下限時,採用離子交換法由於氰化物和貴金屬具有較好的經濟效益,其處理效果優於酸化法,當廢水組成簡單時可排放。
2)投資小於酸化回收法
3)與酸化回收法相比,該方法葯耗、電耗小,金回收率高。
(二)缺點:
1)當廢水中SCN-含量高時,洗脫困難,樹脂的容量受到影響,處理效果變差,離子交換法的應用范圍受SCN-很大影響。
2)在洗脫氰化物過程中,很難洗脫銅,故需專門的洗脫方法和步驟,使工藝復雜化。
3)在酸洗過程中,Fe(CN)64-會在樹脂顆粒內形成重金屬沉澱物而使樹脂中毒。
4)對操作者的素質要求高。
三、吸附—回收法
前面已談過,離子交換為化學吸附,吸附力較強,故解吸困難,解吸成本高。近來,國外開發了用吸附樹脂、活性炭做吸附劑,從含氰礦漿或廢水中回收銅和氰化物的技術,已完成了半工業試驗。
1、吸附樹脂吸附—回收法
西澳大利亞一炭浸廠對液相中銅、氰化鈉濃度分別為85、158mg/L之氰尾進行了吸附─回收法半工業試驗,採用法國地質科學研究所開發的V912吸附樹脂,處理能力為10m3/d,處理後尾漿液相中游離氰化物(CN-)濃度小於0.5mg/L。飽和樹脂分兩級洗脫再返回使用,用金屬洗脫劑洗重金屬,用硫酸洗脫氰化物,洗脫液用與酸化回收法類似的方法回收氰化物。
試驗表明,當銅濃度增加時,處理成本增加較大。
以半工業試驗結果推算,建一座年處理能力100萬噸的裝置,在銅、氰化鈉濃度分別為100、300mg/L條件下,設備費為250萬加元。年回收銅122t,氰化鈉377t,年洗脫樹脂1700t次,洗脫每噸樹脂的消耗如下(單位:t):

H2SO4攭NaOH Na2S 水 動力
0.5 0.453 0.048 17.5m3 12.3kwh
2、活性炭吸附—回收法
活性炭具有吸附廢水中重金屬和氰化物的特性,這早已人所共知,國外早在十年前就有金礦試驗用來處理貧液中銅等雜質,使貧液全循環,但沒能解決洗脫再生問題。
近年來,西澳大利亞一個炭漿廠完成了用洗性炭從浸出礦漿中回收銅和氰化物的半工業試驗,採用加溫解吸法選擇性解吸銅,含銅解吸液在酸性條件下沉澱氰化銅,再把氰化銅用硫酸氧化為硫酸銅出售。酸性水中的HCN用鹼性解吸液吸收再用於解吸工藝中。
銅是氰化過程增加氰化物耗量的一個較大因素,從浸出礦漿中回收銅和氰化物不但避免了銅對浸出的影響,提高了金的浸出率,而且減少了氰化物的消耗,具有一定的經濟效益,這一技術在特定的條件下可用來做為貧液全循環工藝中的去除銅措施。
四、自然凈化法
黃金氰化廠除少數收購金精礦進行提金然後把氰渣做硫精礦出售而不設尾礦庫外,絕大部分礦山建有較大容量的尾礦庫(池)。氰化廠廢水在其內停留時間一般在1~3天,有個別尾礦庫,廢水可停留十天以上。由於曝氣、光化學反應,共沉澱和生物作用,氰化物的濃度逐漸降低,這種靠尾礦庫(池),降低氰化物含量的方法稱為自然凈化法。目前絕大部分氰化廠都把尾礦庫自然凈化法做為除氰的一種輔助手段,經廢水處理裝置處理後的廢水再經尾礦庫進行二級處理,排水氰含量進一步降低,由於這種方法沒有處理成本問題(尾礦庫的建設是為了沉降懸浮物和貯有尾礦),故對人們有很大的吸引力,甚至有些氰化廠建立了專門的自然凈化池以期使自然凈化法的處理效果更好,如何提高自然凈化法的處理效果,把目前做為輔助處理方法的自然凈化法單獨用來處理含氰廢水?這是一項很有意義的科研工作,許多科研人員都在深入研究這一課題。
1、自然凈化法的特點
由於使用自然凈化法的氰化廠不多,可靠的數據有限,其特點尚未充分暴露出來。
(一)優點
1)不使用葯劑,處理成本低。
2)與其它方法配合,可做為一級處理方法也可做為二級處理方法,可靈活使用。
3)無二次污染。
(二)缺點
1)對尾礦庫要求高,必須不滲漏,匯水面積要大。
2)受季節、氣候影響大,在寒冷地區效果差。
2、自然凈化法原理
已完成的研究表明,自然凈化法至少是曝氣、光化學反應、共沉澱和生物分解四種作用的疊加。自然,影響自然凈化法效果的因素也就是上述四種作用之影響因素的疊加。
(一)曝氣
含氰廢水與大氣接觸,大氣中的SO2、NOx、CO2就會被廢吸收,使廢崐水pH值下降。
CO2+OH-→HCO3-
SO2+OH攩-攪→HSO3-
隨著廢水pH值的下降,廢水中的氰化物趨於形成HCN:
CN-+H+→HCN(aq)
亞鐵氰化物會與重金屬離子形成沉澱物這一反應促使重金屬氰化物的解離,以Zn(CN)42-為例:
Zn(CN)42-+Fe(CN)64-+4H+→Zn2Fe(CN)6↓+4HCN(aq)
由於空氣中HCN極微,廢水中的HCN將傾向於全部逸入大氣中,從動力學角度考慮,HCN的逸出速度受如下因素影響:
1)廢水溫度,廢水溫度高,HCN蒸氣分壓高,有利於HCN逸出,而且水溫高,水的粘度小,液膜阻力減少。
2)風力,尾礦庫上方風力大,水的擾動劇烈,氣—液接觸面積增大,酸性氣體和HCN在氣相擴散速度加快,水體內HCN的液相擴散也加快,酸性氣體與水的反應加快。
3)尾礦庫匯水特性
尾礦庫匯水面積大,水層淺,使單位體積廢水與空氣接觸表面增大,風力對水體的攪動效果增大,有利於HCN的逸出和酸性氣體的吸收。
4)廢水組成
廢水中重金屬含量高時,HCN的形成和逸出由於受絡合物解離平衡的限制,速度明顯變慢。
5)廢水pH值
廢水pH值低,有利於重金屬氰絡物的解離和HCN的形成。
HCN全部從水中逸出需要較長時間,其道理與酸化回收相似,在1m深的水層條件下,表層氰化物濃度為0.5mg/L時,底層氰化物濃度15mg/L,可見HCN逸出之難度。
在曝氣過程中,空氣中的氧不斷地溶於廢水中,其傳質速率也受液相擴散阻力的影響,表層溶解氧濃度高,底部濃度低,溶解氧進入液相後,與氰化物發生氧化反應:
2Cu(CN)2-+0.5O2+3H2O+2H+→2Cu(OH)2↓+4HCN
2CN-+O2→2CNO-
CNO-+2H2O→CO32-+NH4+
含氰廢水在尾礦庫內,還會發生水解反應,生成甲酸銨,廢水溫度越高,反應速度越快:
HCN+H2O=HCO-ONH4
這些反應的總和就是曝氣的效果,為了提高曝氣效果,必須提高廢水溫度,廢水與空氣的接觸表面積,增大水體的攪動程度,這樣才能保證HCN迅速逸入空氣而氧迅速溶解於廢水中並和氰化物反應,曝氣法受季節地域影響較大。
(二)光化學反應
廢水中的各種氰化物在陽光紫外線的照射下,發生如下反應:
Fe(CN)64-+H2O→Fe(CN)53-·H2O+CN-
4Fe(CN)64-+O2+2H2O→4Fe(CN)63-+4OH-
4Fe(CN)64-+12H2O→4Fe(OH)3↓+12HCN+12CN-
亞鐵氰化物和鐵氰化物離子在光照下分解出遊離氰化物,文獻介紹在3~5小時的光照時間里,60%~70%的鐵氰化物分解、80%~90%的亞鐵氰化物分解。由於分解出的氰化物不會很快地被氧化,因而會造成水體氰化物含量增高,這就是地表水水質指標中要求用總氰濃度的原因之一。
分解出的游離氰化物不斷地被氧化,水解以及逸入空氣中,達到了降低廢水中氰化物濃度的目的。
逸入空氣中的HCN,在陽光紫外線作用下,與氧發生反應。
HCN+0.5O2→HCNO
夏季,反應時間約10分鍾,冬季約1小時,從這點看,HCN的逸出不會影響大氣的質量,許多焦化廠利用曝氣法處理含氰廢水,其氰化物揮發量比黃金行業多,而且大部分工廠位於城市,並未聞發生污染事故。
光化學反應與氣溫和光照強度有關,因此,夏季除氰效果遠比冬季好。
(三)共沉澱作用
廢水中亞鐵氰化物還會形成Zn2Fe(CN)6、Pb2Fe(CN)6之類的沉澱,與Cu(OH)2、Fe(OH)3、CaCO3、CaSO4等凝聚在一起,沉於水底從而達到了去除重金屬和氰化物的效果,沉澱效果受pH值和廢崐水組成的制約,pH值低時效果好。
(四)生物化學反應
當尾礦庫廢水氰化物濃度很低時,廢水中的破壞氰化物的微生物將逐漸繁殖起來,並以氰化物為碳、氮源,把氰化物分解成碳酸鹽和硝酸鹽。
生物化學作用受廢水組成和溫度影響,如果氰化物濃度高達100mg/L,那麼微生物就會中毒死亡,如果溫度低於10℃,則微生物不能繁殖,生化反應也不能進行。
綜上所述,自然凈化法的效果受地理位置(南、北方、高原、平原)、天氣(陰、晴、氣溫、風力)、尾礦庫(匯水面積、水深、水流速度)微生物,廢水組成(pH、氰化物濃度、重金屬濃度)廢水在尾礦庫內停留時間等諸因素的影響。至崐於上述因素對曝氣、光化學反應,共沉澱以及生化反應的影響程度,以及這四種除氰途徑哪個作用大,目前尚無定量的數據可供參考。某研究所提出的氰化物自凈數學模型如下:
C=C0e-kt
其中,k為常數,單位:小時;t為自然凈化時間(小時),C、C0分別為某時某刻氰化物濃度和原始氰化物濃度。當溫度在10~30℃范圍內時,式中k值在0.005~0.01范圍,由於k值僅反應了溫度,沒有反應其它眾多的因素,故無多大應用價值。
正因為自然凈化法受許多因素制約,其處理效果並不穩定,如果進入尾礦庫的崐廢水氰化物濃度低(<10mg/L)、廢水在尾礦庫停留時間長,排水有可能達標,大部分氰化廠把尾礦庫做為二級處理設施。然而近年來,由於氰化物處理費用增高,一些氰化廠正探索用尾礦庫做為氰化物的一級處理設施。
3、自然凈化法的實踐
某全泥氰化廠尾礦庫建在較厚(2~5m),黃土層的溝內,廢水無滲入地下水的可能,該地區乾燥少雨,年蒸發水量大於降雨量,故尾礦庫無排水,氰化物在尾礦庫內自然凈化,不再採用其它方法處理,節省了大量葯劑、費用,降低了選礦成本。
某全泥氰化廠尾礦庫不滲漏,含氰化物尾礦漿直接排入尾礦庫,經自然凈化再進行二級處理,使其達標排放,由於二級處理的是澄清水,而且氰化物濃度有較大的降低,故處理成本大幅度下降,處理效果好。
某浮選—氰化—鋅粉置換工藝裝置,其貧液用酸化回收法處理後,殘氰在5~20mg/L經浮選廢水(漿)稀釋後,氰化物含量在0.5~2范圍,進入尾礦庫自然凈化,外排水CN-<0.5mg/L。
某氰化廠採用酸化回收法處理貧液,其酸性廢水含氰5~10mg/L,在2m深的廢水池內,經20天的自然凈化,氰化物降低到0.5mg/L。

閱讀全文

與污水管CY是什麼意思相關的資料

熱點內容
污水中的有機物怎麼水解 瀏覽:33
反滲透進出水管怎麼分 瀏覽:800
高校實驗室純水機多少錢 瀏覽:887
馬桶污水口有裂 瀏覽:926
賓果凈化器怎麼樣 瀏覽:681
上過濾怎樣放磁環 瀏覽:649
怎麼用蒸鍋提取蒸餾水 瀏覽:690
小蘇打對污水處理有什麼作用 瀏覽:162
手工木樹脂製作過程 瀏覽:285
承插式污水雨水施工開挖順序 瀏覽:397
市政污水管網工程施工流程 瀏覽:918
喝了含磷的廢水會怎麼樣 瀏覽:484
反滲透進水orp受什麼影響 瀏覽:471
6月1日起edi證書 瀏覽:327
魚缸底部過濾器安裝圖 瀏覽:925
開洗車店污水排放問題 瀏覽:852
米家空氣凈化器3什麼時間上市的 瀏覽:317
如何調節醫療廢水的總氯低怎麼辦 瀏覽:747
八代雅閣汽油濾芯什麼品牌 瀏覽:406
不飽和樹脂皮膚 瀏覽:431