① 總氮超標如何處理
你好樓主,總氮包含(有機氮、氨氮、硝態氮、亞硝態氮)四種形式存在,因此控制總氮的話,首先明白這四種氮的存在濃度,如果氨氮濃度和有機氮濃度較高,這個需要核算好氧工藝參數及硝化菌的優勢性,如果硝態氮和亞硝態氮濃度較高,需要核算反硝化單元的工藝參數和反硝化菌的優勢性,如此才能真正做到總氮出水標準的控制。新爾特生物研究硝化菌和反硝化菌長達8年時間,篩選了自然界惡劣環境中的優勢菌種,優化組合成XRT@硝化菌和XRT@反硝化菌,詳細技術問題可以聯系交流。
新爾特生物為您提供!
② 污水處理廠MBR一體化設備出水氨氮不高,總氮超標是什麼原因如何解決
城市污水處理廠出水氮磷超標因素分析及對策
摘要:脫氮除磷工藝越來越多的應用到城市污水處理廠當中,但是在實際運行過程中,出水氮磷含量超標的情況常常困擾著水廠的工作人員。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行,出水氮磷含量達標。
關鍵詞:城市污水處理廠,脫氮除磷,對策分析
1概述
近年來污水處理的主要工藝已發生變化,從常規二級處理逐漸變為重視脫氮除磷的深度處理上來。但是在實際運行過程中,由於工藝復雜性及參數的變化性,導致常常出水氮磷含量超標,影響著水廠的運行。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行。
2污水氮含量超標原因及控制方法
2.1氨氮超標
2.1.1污泥負荷與污泥齡
生物硝化屬低負荷工藝,F/M一般在0.05~0.15kgBOD/kgMLVSS?d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。
2.1.2迴流比與水力停留時間
生物硝化系統的迴流比一般較傳統活性污泥工藝大,主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。通常迴流比控制在50~100%。生物硝化曝氣池的水力停留時間也較活性污泥工藝長,至少應在8h以上。這主要是因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。
2.1.3BOD5/TKN
BOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。
2.1.4溶解氧
硝化細菌為專性好氧菌,無氧時即停止生命活動,且硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。
2.1.5溫度與pH
硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。因此,冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯。硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。因此,應盡量控制生物硝化系統的混合液pH大於7.0。
2.2 總氮超標
2.2.1污泥負荷與污泥齡
由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
2.2.2內、外迴流比
生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
2.2.3缺氧區溶解氧
對反硝化來說,希望DO盡量低,最好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
2.2.4BOD5/TKN
反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
2.2.5溫度與pH
反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至最大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的最佳pH范圍為6.5~8.0。
3 污水生物除磷總磷超標原因及對策
3.1 污泥負荷與污泥齡
厭氧-好氧生物除磷工藝是一種高F/M低SRT系統。當F/M較高,SRT較低時,剩餘污泥排放量也就較多。因而,在污泥含磷量一定的條件下,除磷量也就越多,除磷效果越好。對於以除磷為主要目的生物系統,通常F/M為0.4~0.7kgBOD5/kgMLSS•d,SRT為較大,選擇價廉,易得的填料也是需要考慮的一個重要因子。
③ 污水處理廠總氮高怎麼辦
總氮(TN)包括硝態氮、、氨氮(NH3-N)、有機氮。
氨氮超標去除:
一般通過以下幾種辦法去除。
(1)折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。
(2)利用微生物硝化和反硝化去除污水(廢水)中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。
2、有機氮過高去除
常用如下方法:
生物法,氮化合物在生物作用下可實現向氮氣的轉化
化學法,通過氧化使氮化合物直接從有機氮、氨氮直接轉化為氮氣
3、硝態氮超標去除
硝態氮主要是指硝酸根離子,目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。其中離子交換法、膜滲透法以及吸附法都只是硝酸根離子的濃縮與轉移,無法真正去除總氮,濃縮以後的硝酸根廢液需要進一步處理。
在生物脫氮中,主要是指硝酸根離子通過反硝化細菌降解轉化為氮氣的過程。
④ 污水處理後的總氮過高怎麼辦
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
(4)污水處理廠排水總氮高怎麼辦擴展閱讀:
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污染和自凈狀況。地表水中氮、磷物質超標時,微生物大量繁殖,浮游生物生長旺盛,出現富營養化狀態。
水質總氮的測定方法主要有:
1、鹼性過硫酸鉀紫外分光光度法(HJ 636-2012)[2]:現如今,水質監測的主要方法,如英國RAIKING,中國銳泉等品牌是主流的在這個標准基礎上優化的在線監測產品。
2、氣相分子吸收光譜法:該方法主要應用於實驗室。
3、也有採用氨氮、硝酸根、亞硝酸根分別進行測量,然後將結果累加值作為總氮的測量結果。典型應用如德國WTW。
4、在環境地表水、水質監測領域,鹼性過硫酸鉀紫外分光光度法以及優化方法是當前的主要方法。
⑤ 污水處理如何控制總氮超標
1、化學法去除總氮,先測試總氮的濃度,如果濃度差值不大,建議直接用氨氮去除劑處理,這樣氨氮處理下來了,總氮也會隨之降低(PS:氨氮去除劑只適用於去除總氮中的氨氮,而總氮和氨氮的比例會根據水質不一樣而有所不同,所以使用的處理效果不一,也根據實際情況判斷)
2、污水廠內的生物脫氮反應是一個兩段式反應過程,在每一段進行合理的工藝控制,從而使出水總氮合格達標。這也是總氮的控制難點,在污水廠中實現總氮的控制達標,首先要了解生物脫氮的反應機理,然後有選擇的進行工藝管控。
比較常見的就是AO工藝,還有增加了除磷的AAO工藝,也有SBR工藝及其變種,還有各類氧化溝工藝,利用時間和空間上的交替實現的總氮處理。
(5)污水處理廠排水總氮高怎麼辦擴展閱讀:
控制總氮的排放的原因
水中氮元素的過量排放會引起水體富營養化,使藻類大量繁殖,出現水華赤潮,當水中總氮含量大於0.3mg/L時,即達到富營養化的標准;另外,硝酸鹽本身對人無害,但在體內會被還原為亞硝酸鹽。
一方面,亞硝酸鹽會與血紅蛋白反應生成高鐵血紅蛋白,影響氧的傳輸能力,特別對於嬰兒,易導致高鐵血紅蛋白症(藍嬰病);另一方面,亞硝酸鹽過高,會與蛋白生成亞硝胺,屬於強致癌物質,對健康危害極大。
⑥ 污水處理廠總氮高怎麼辦
我們在給某污水處理廠配套風機時,常遇到污水廠的總氮指標經過處理設施處理後的濃度總是達不到預期的處理效率的情況,現將我們掌握的總氮濃度偏高不下的原因歸納總結如下,希望能幫到您:
(1)污泥負荷與污泥齡。由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得而穩定的的反硝化。因此,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
(2)內、外迴流比。生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。相對來說,二沉池由於反硝化導致污泥上浮的危險性已很小。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
(3)反硝化速率。反硝化速率系指單位活性污泥每天反硝化的硝酸鹽量。反硝化速率與溫度等因素有關,典型值為0.06~0.07gNO3- -N/gMLVSSd。
(4)缺氧區溶解氧。對反硝化來說,希望DO盡量低,是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
(5)BOD5/TKN。因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
(6)pH。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的有效pH范圍為6.5~8.0。
(7)溫度。反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至zui大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。因此,在冬季要保證脫氮效果,就必須增大SRT,提高污泥濃度或增加投運池數。