導航:首頁 > 廢水污水 > 污水tod如何監測

污水tod如何監測

發布時間:2023-12-10 15:11:57

污水檢測用什麼儀器

污水檢測用水質測試儀。

水質測試儀就是用特殊的儀器來代理常規性的內水質測試。適用於大、中、容小型水廠及工礦企業、游泳池疾控中心、生活或工業用水的濃度檢測,以便控制水的濁度、色度、余氯、總氯、化合氯、二氧化氯、氨氮、鎳、懸浮物、銅、磷酸鹽、DPD余氯、溶解氧、亞硝酸鹽、鉻、鐵、錳、TDS、水溫。

本儀器可快速准確測定地表水、地下水、城市污水及工業廢水中多項指標,濃度直讀;廣泛用於自來水廠、生活污水處理廠、純凈水廠、飲料廠、食品廠、環保部門、工業用水、防疫部門、城市供水。

(1)污水tod如何監測擴展閱讀:

水質測試儀儀器特點:

一、比色系統、消解系統、防護罩一體化設計,內置型9孔消解系統,消解孔上端附隔熱層有效保證消解溫度,儀器內置風冷裝置,消解完畢提高散熱速度,保證檢測精度。

二、消解系統採用微迴流快速消解方式,密閉消解防止有機物揮發及樣品逸出,一體化的全透明防護罩可確保消解過程的安全性,同時便於實時監測消解過程。

三、採用使用壽命長達10萬小時的冷光源,無需散熱系統,穩定性優秀;獨立多通道光路系統,各通道獨立控制,互不幹擾,有效消除機械誤差,提高檢測精度。

參考資料來源:網路—水質測試儀

⑵ 水質檢測指標是哪些

1、色度:飲用水的色度如大於15度時多數人即可察覺,大於30度時人感到厭惡。標准中規定飲用水的色度不應超過15度。
2、渾濁度:為水樣光學性質的一種表達語,用以表示水的清澈和渾濁的程度,是衡量水質良好程度的最重要指標之一,也是考核水處理設備凈化效率和評價水處理技術狀態的重要依據。渾濁度的降低就意味著水體中的有機物、細菌、病毒等微生物含量減少,這不僅可提高消毒殺菌效果,又利於降低鹵化有機物的生成量。
3、臭和味:水臭的產生主要是有機物的存在,可能是生物活性增加的表現或工業污染所致。公共供水正常臭味的改變可能是原水水質改變或水處理不充分的信號。
4、肉眼可見物:主要指水中存在的、能以肉眼觀察到的顆粒或其他懸浮物質。
5、余氯:余氯是指水經加氯消毒,接觸一定時間後,余留在水中的氯量。在水中具有持續的殺菌能力可防止供水管道的自身污染,保證供水水質。

⑶ 污水處理後 出水要檢測的指標有哪些呢

污水處理後出水要檢測的指標包括三類:物理性指標、化學性指標、生物性指標。

1、物理性指標:

溫度、色度、嗅和味、固體物質的三種存在形態:懸浮的、膠體的、溶解的。固體物質用總固體量(TS)作為指標,污水處理中常用懸浮固體(SS)表示固體物質的含量(TDS指標高於1000以上)。

2、化學性指標:

(1)化學需氧量(COD):指用強化學氧化劑(中國法定用重鉻酸鉀)在酸性條件下,將有機物氧化成二氧化碳與水所消耗的氧量(mg/L),用CODcr表示,簡寫為COD。化學需氧量越高,表示水中有機污染物越多,污染越嚴重。

(2)生化需氧量(BOD):水中有機污染物被好氧微生物分解時所需的氧量稱為生化需氧量(mg/L)。

(3)總需氧量(TOD):有機物主要元素是C、H、O、N、S等,當有機物被全部氧化時,將分別產生二氧化碳、水等,此時需氧量稱為總需氧量(TOD)。

(4)總有機碳(TOC):包括水樣中所有有機污染物質的含碳量,也是評價水樣中有機物質質的一個綜合參數。

(5)總氮(TN):污水中含氮化合物分為有機氮、氨氮、亞硝酸鹽氮、硝酸鹽氮,四種含氮化合物總量稱為總氮(TN)。凱氏氮(TKN)是有機氮與氨氮之和。

(6)總磷(TP):包括有機磷與無機磷兩類。

(7)pH值。

(8)重金屬。

3、生物性指標:

(1)大腸菌群數:每升水樣中所含有的大腸菌群的數目,以個/L計。

(2)細菌總數:是大腸菌群數、病原菌、病毒及其他細菌數的總和,以每毫升水樣中的細菌菌落總數表示。

(3)污水tod如何監測擴展閱讀:

污水處理的技術:

1、一級處理:主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。

2、二級處理:主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准,懸浮物去除率達95%出水效果好。

3、三級處理:進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法等。

⑷ 水質監測的常規五項指標是哪些

環境監測角度的水質5參數是:PH 水溫 濁度 電導率 溶解氧

《水和廢水監測分析方法》上提到 具體忘了哪頁了

⑸ 城市污水中有機物的檢測與去除方法

由於污水中污染物成份復雜,有機物有成千上萬種,一般不進行特定有機物的檢測,進行已知內有機污染物容的檢測除外。
一般通過用COD和BOD檢測來表明有機污染的程度,用的儀器除常規玻璃儀器外,有電爐和迴流裝置,進行BOD測定還要生化培養箱。
去除的方法有物理的——沉澱和過濾;化學的——絮凝沉澱;生物化學的——活性污泥法。

⑹ 水資源污染的監測

(1)無機污染的監測

被無機鹽污染的水,由於離子濃度增高,使其電阻率降低。一般來說,地下電阻率與介質孔隙的連通性、孔隙中是否有液體以及液體的電阻率有關。如果孔隙的大小和連通性基本不變,而液體的電阻率只和污染有關,用電法就可以確定污染的范圍和程度,通過電測深和時間域電磁法可以確定污染的垂向分布,而通過電剖面法和頻率域電磁法可以確定污染的橫向范圍,用電(磁)測量比只用鑽探成本低、效率高。此外,電(磁)測井也是一種輔助手段。

應用地面電法監測污染的基本條件是:污染水與非污染水電阻率有明顯差別,埋藏不太深,污染水體有一定的厚度,地表物質電性比較均勻。工作時可先用電測深或時域電磁法確定污染水體頂底板深度,然後按一定系統進行固定極距的電剖面或固定裝置和頻率的頻域電磁測量。電法一般都要與少量監測井互相配合,解釋時利用地質、鑽探和其他地球物理資料。對工礦廢水污染的監測是受到廣泛關注的問題,利用地球物理方法對工礦廢水進行污染監測有許多成功的實例。

圖9.1用電法監測工廠廢水對岩溶的加速作用

工廠的廢水排入地下,不僅污染水源,而且在某些地區還加速地下岩溶的發育過程。例如在蘇聯的奧卡河沿岸有一個大的化工廠生產硫酸,酸性廢水滲入地下,溶蝕了石膏質的岩石,在這些岩石中形成了岩溶洞穴,老洞穴不斷加大、新洞穴不斷出現,連續成地下通道,沿著這些通道,溶解的物質流入奧卡河,造成河水污染。通過地面電法測量和河水電阻率測量可以圈定岩溶水的通道位置,並且評價岩溶作用隨時間的變化。從圖9.1中時間t1和t2兩次觀測的視電阻率曲線可以看出,低電阻率的范圍加寬,是溶洞變寬的結果。河水電阻率測量表明,被溶解物質的流入量明顯增加(低電阻率面積擴大)。通過上述測量確定了廢水污染的范圍和程度,以便採取必要的措施。

礦山和油田廢水也是水資源的重要污染源,例如在美國有成千上萬口已經廢棄的、封閉不好的油氣井,由於二次回採而使產油層產生過壓,這些井會使注入油田的鹵水沿鑽孔向上運移而進入淺部的飲用水含水層。在俄克拉荷馬州林肯縣產油的普魯砂層附近曾利用可控源音頻大地電磁法來圈定鹵水的污染。從 20 世紀 30 年代就開始從普魯砂層採油,從 50 年代開始注入鹵水來提高回採率。瓦穆薩組是該區飲水的主要水源層,淡水層的底部深度變化於 40 ~ 135m 之間,固溶物總量低於 500mg/L。1979 年所打的試驗井表明在油田上含水層的鹵水含量異常高。在該區選出的一些部位按一定網格開展了可控源音頻大地電磁法,圖 9. 2 是一口廢井附近典型的視電阻率擬剖面,它表明深部的良導物質向地表運移,其他一些測線上也檢測到另外一些污染體。根據地球物理結果所打的兩口試驗井的 Br/Cl 比值表明,瓦穆薩組的污染源確實是普魯砂層的鹵水。

圖 9. 2 廢注水井附近的視電阻率等值線圖

(2)有機污染的監測

地下水有機污染的種類較多,其物性特徵不盡相同,探測難度較大。來自煉油廠、化肥廠、制葯廠等排放的廢液多為有機污染,它們在自然環境下不易降解,化學需氧量(COD)、總有機碳(TOD)等指標較高。多數情況下有機污染物與水是非混溶的。輕非水相液體污染物(LNPAL)集中在地下水的表層,而重非水相液體(DNPAL)污染物集中在地下水的底部,這使地下水不同程度地混雜了有機雜質,引起地下水在物理性質和化學性質上的變化。這樣可以根據不同的物理性質(化學性質)選取不同的地球物理方法。

20世紀90年代加拿大和美國的學者在加拿大安大略省開展了一項針對乙烯(C2Cl4)的試驗研究。乙烯用於服裝乾洗和金屬清洗,僅1986年美國就生產乙烯12×108L。乙烯的特點是密度大,在水中下沉,不太受地下水橫向流動的影響。雖然乙烯的溶解度(200mg/L)低,但仍然比世界衛生組織規定的飲水標准(0.01mg/L)高幾個數量級,每排放1L乙烯最終可污染1000×104L的地下水。試驗場地面積9m×9m,周圍用鋼板打入地下,穿過3.3m厚的地表含水層進入下伏半隔水層,有效地隔斷場地內外的水力聯系。通過鑽孔向場地內注入770L乙烯,在圍繞注入孔的9個監測孔內進行中子、密度和感應測井,還定期測地面和井地電阻率。探地雷達工作頻率200MHz,300MHz,500MHz,900MHz,沿測線進行測量。地球物理監測開始於注液前幾天,注液延續了3d,注液後觀測38d,第一個星期每8h觀測一次,以後時間逐漸加長。隨後採用表面活化劑清除乙烯,再監測清除的過程。在中子測井曲線上,由於氯俘獲中子,出現明顯的負峰,如圖9.3(a)所示,從電阻率異常的變化上則可以看出乙烯隨時間的運移,如圖9.3(b)所示。探地雷達測量表明,注入的乙烯先在注入點下1m深左右的界面上匯聚,然後沿該界面向兩側擴散。

圖9.3注乙烯後參數變化

地面加油站儲油罐和地下儲油設施普遍存在腐蝕和泄漏現象,難以發現。北京、沈陽、西安、成都均發生過此類事故。發生在北京地區某加油站的一次漏油事故中,由於污染區面積較大,致使自來水廠停水和地下施工停工。國外此類事故更多,據報道美國對21萬個加油站調查發現,在20世紀70年代以前建設的加油站幾乎都有滲漏,其中1.8萬個已對地下水造成污染。油氣滲漏的檢測技術較多,其中烴類檢測技術(油離烴)、探地雷達技術,能現場實時給出檢測結果,且快速、方便;吸收烴乙烷、熒光光譜法探測精度高、結果可靠。圖9.4和圖9.5分別是北京市某加油站滲漏污染范圍的游離烴CH4和吸附烴C2H4檢測效果圖。

圖9.4北京某加油站滲漏污染范圍的游離烴CH4檢測效果圖

圖9.5北京某加油站滲漏污染范圍的吸附烴C2H4檢測效果圖

石油污染頗為常見,已有許多利用地球物理方法探測石油污染的實例。例如利用探地雷達探測石油污染、用常規的直流電法和電磁法有可能探測石油污染。石油進入地下介質的孔隙系統後可使其電阻率明顯增高。研究人員利用地面低頻電磁或電阻率成像方法追索到幾十至幾百米深處的石油污染。例如在美國俄克拉荷馬城的Carlswell空軍基地,利用鑽孔EM測量數據作出地下電阻率三維分布圖像,推斷出石油污染的位置,據此所打的鑽孔證實了高阻區域與油污染吻合。

圖9.6屏蔽體法的室內試驗和數學模擬結果

浮在潛水面上的高阻油層對電法測量來說會產生屏蔽作用,因此研究人員提出了「屏蔽體」法(SB)。屏蔽體法是一種井地電法,一個供電電極置於污染層之下,用於確定污染層的范圍。室內模擬和數學模擬的結果如圖9.6所示。圖(a)為室內測得石油污染帶上的電位值V(mV);圖(b)為數學模擬計算的電位值V(mV);圖(c)為數學模擬計算的電位梯度ΔV(mV/m)。室內模擬在電解質槽內進行,數學模擬採用有限元法。在野外試驗中採用了電測深和屏蔽法兩種方法,其目的是確定石油污染的范圍,污染層厚度0.2m,深5.7m,賦存於7m厚的第四系礫-砂沉積中,下伏不滲透的白堊系沉積。電測深AB/2最大為50m,在AB/2=15m時沿一些測線出現了電阻率的升高,為污染帶的響應,但最高異常值僅達背景值的15%,難於斷定污染帶的橫向范圍,而屏蔽法顯示了污染帶的范圍比電測深要清晰得多,地球物理野外測量結果已被監測孔證實。

澳大利亞CoffeyPartners公司曾提出,用探地雷達和低頻電磁法探測石油污染有一定的困難,只有頻率在30kHz~5MHz間的電磁波法效果最好。當頻率為1.2MHz時,通過土壤和風化岩石的最大探測深度約30m。在南澳的一個大型柴油機車加油站發現在終端泵站和加油點之間有明顯漏油。開始用EM31電磁儀作剖面測量和探地雷達探測均未奏效,後改用GRC-2儀器作無線電波剖面法,其垂直發射線圈和水平接收線圈沿剖面移動,兩者保持零耦合狀態,測量垂直磁場強度,線圈距在工作期間保持不變。結果在柴油污染范圍內測出明顯垂直磁場強度低值異常,並經鑽探和槽探證實。

總之,地下水有機污染濃度較低,物理化學性質上的變化較小,監測難度大,必須採用高解析度、高密度的方法以及應用地球物理的綜合解釋方法技術。

(3)地下水污染路徑的動態監測

以河北滄州為例。河北滄州地處濱海平原,該區以沖積-湖積的粉細砂鬆散岩層為主,並夾有多層海積層。自上而下共有五組含水層,且咸、淡水交替出現,地下水含氟量較高(2~7mg/L),地下水補、經、排條件差,地下水循環交替作用緩慢,垂向補給逐漸被側向補給所代替。由於集中開采地下水,使得滄州地下水失衡而形成巨大的地下水漏斗(圖9.7)。

圖9.7滄州漏斗Q2含水組水位下降剖面圖

滄州漏斗的形成給地下水資源的開發、利用帶來了嚴重的問題,尤其是地下水嚴重污染。由於漏斗的形成,加速了地面污水向地下水的倒灌,使地下水造成污染,同時稠密的機井給地表(淺層)污水、鹹水和淡水層形成的污染通道,使所利用的含水層遭受不同程度的污染。利用地球物理方法,如用直流電法和探地雷達,在地面監(遙)測地下水漏斗的動態變化、監測地面上工業和生活污水向漏斗遷移的路徑,從污染源和污染路徑上卡住污染物對地下水的污染。

(4)井中多個含水層之間交叉污染的監測

已經廢棄的工業用井和供水用井,以及一些設計得不適當的監測井穿過多個含水帶,使得地下水流系統「短路」。如果其中有的含水層已被污染,便會產生水層之間的交叉污染。美國地質調查所和美國環境保護署合作在賓夕法尼亞州東南部三疊紀斯托克頓組地層中利用地球物理方法研究了廢棄井中多個含水層之間的交叉污染,測量了井內的垂向水流,取樣並分析了井中的液體。所使用的地球物理方法包括井徑測井、液體電阻率測井、液體溫度測井、自然伽馬測井和單點電阻測井。在16個鑽孔的45~143之間進行,用以劃分岩性、地層,圈定了含水裂隙和井液垂向運移帶,測量了垂向液流,確定了井液的運移方向和速度。

(5)地表水污染治理中的地球物理工作

在杭州西湖換水過程中曾經成功地應用了地球物理方法。西湖由於常年污染,湖水的水質和透明度日益變差,市政府決定開鑿隧道引錢塘江水更換西湖湖水。為了解江水進入西湖的運移和分布情況、換水的進度和效果,利用電阻率法在換水過程中及其前後進行了動態和靜態觀測(圖9.8)。

在換水之前對江水和湖水的電阻率進行了測量,江水的電阻率變化范圍為81~93Ω·m,平均為88Ω·m。西湖由五個相互連通的湖泊組成,其中電阻率最低的變化范圍為55~60Ω·m,平均為57Ω·m,最高的變化范圍為69.5~75Ω·m,平均為72Ω·m。這是利用電阻率法監測換水過程的基礎。水電阻率觀測比例尺為1∶5000,線距200~400m,整個湖面均勻發布20條測線。觀測儀器為測井全自動記錄儀,安裝在電瓶驅動船上,用七心電纜連接電源、探測器和自動記錄儀。探測器為井液流體電極系,固定在水深約70cm處,換水期間每天沿各測線連續探測水的電阻率一次。根據觀測結果,可以得出江水進入西湖後逐日的擴散范圍、水流的主要方向,指導了換水工作的進行。同時發現了一些原來未發現的污染源。

(6)地下水污染防護中的地球物理工作

地球物理方法也可用來監測有機化合物污染的治理過程。美國能源部執行了一項「非乾旱區土壤和地下水易揮發有機化合物綜合示範計劃(VOC-NAS)」,向地下注入甲烷與空氣的混合物,作為新陳代謝的碳源,以繁殖一種微生物,使三氯乙烯降解。混合物注入地下後,在運移的途徑上,由於置換了地層水,使電阻率升高,因而可以通過地下(井間)電阻率層析使運移的途徑成像。電阻率層析是在5個鑽孔之間進行的,每一孔內有21個電極,從地面到61m深度等距發布,兩孔之間的地面有4個電極。結果發現,注入氣體流動途徑為復雜的三維通道網,有些通道延伸到距注入井30m以外,這些通道在幾個月過程中並不穩定,不斷有新通道出現,氣體注入通道的電阻率隨時間而增大。影響微生物繁殖的其他因素還包括大氣降水和來自地表的水溶養分。所以,在另一組試驗中,水從地面滲入地下並作出滲入前和滲入過程中某一瞬間電阻率差值的圖像,這些圖像表明,水的入滲也是限於具有三維結構的狹窄通道,水流受地層滲透率變化(砂和泥的分布)的控制,不過水流通道隨時間的變化小。這些通道在圖像上表現為低阻帶。

圖9.8西湖初次換水混合流推進圖

美國桑迪亞國家實驗室提出一種不盡相同的治理方案,並在南卡羅萊納州的一個場地進行了試驗。該場地也被揮發性的三氯乙烯和四氯乙烯污染。為了治理污染,打了兩口水平井,由潛水面以下的井注入空氣,而由上面的另一口井抽取污染物,當空氣通過地下孔隙時溶解揮發性污染物,再被上面的井抽出。空氣在地下的分布會直接影響治理的范圍並且影響如何對注入氣流進行調節。因此,桑迪亞實驗室利用監測井井間地震數據,根據注入氣體飽和度變化引起的地震波速變化了解空氣的分布。為能提高解析度,選用井間地震層析成像方法,既減少近地表雜訊的影響及與近地表物質有關的衰減,又使震源和檢波器更接近目標,減少高頻波的能量損耗,高頻波波長短而具有更高的空間解析度。為此,在空氣注入前後都作了S波和P波層析。S波震源為頻率掃描氣動可控震源,用井中三分量檢波器。震源和檢波孔相距27.4m,孔內測點垂向距離1m。

捷克的一家發電廠也進行過類似的監測,他們為了檢查粉煤灰堆放池的施工質量,在未敷設防滲層之前先在池底埋設若干條平行長導線作為檢測用的供電電極,然後在其上敷設防滲層。施工結束後向池內放水,將設置在防滲層下的長導線作為供電線路的一個極,另外一個極置於無窮遠,在小船上用單電位電極進行測量,在池邊用經緯儀測量定位。如果測到高電位異常,即為防滲層破漏處,發現率為94%。

⑺ 污水的可生化性怎麼判斷

用BOD/COD的比值來判斷。

BOD/COD大於0.3時,一般認為該廢水具有可生化性。

判定廢水可生化性能有B/C值法:

B/C>0.58 完全可生物降解;

B/C=0.45~0.58 生物降解良好;

B/C=0.30-0.45 可生物降解;

B/C<0.3 難生物降解;

BOD測定方法使用五日生物需氧量測定法,COD測定使用重鉻酸鉀法。

還有一種是好氧呼吸參量法。通過測定COD、BOD等水質指標的變化以及呼吸代謝過程中的O2或CO₂含量(或消耗、生成速率)的變化來確定某種有機污染物(或廢水)可生化性的判定方法。根據所採用的水質指標,主要可以分為:水質指標評價法、微生物呼吸曲線法、CO₂生成量測定法。

(7)污水tod如何監測擴展閱讀:

傳統觀點認為BOD5/CODCr,即B/C比值體現了廢水中可生物降解的有機污染物佔有機污染物總量的比例,從而可以用該值來評價廢水在好氧條件下的微生物可降解性。在一般情況下,BOD5/COD值愈大,說明廢水可生物處理性愈好。

在各種有機污染指標中,總有機碳(TOC)、總需氧量(TOD)等指標與COD相比,能夠更為快速地通過儀器測定,且測定過程更加可靠,可以更加准確地反映出廢水中有機污染物的含量。

無論BOD/COD、BOD/TOD或者BOD/TOC,方法的主要原理都是通過測定可生物降解的有機物(BOD)占總有機物(COD、TOD或TOC)的比例來判定廢水可生化性的。

微生物在降解污染物的過程中,在消耗廢水中O2的同時會生成相應數量的CO2。因此,通過測定生化反應過程CO2的生成量,就可以判斷污染物的可生物降解性。

常用的方法為斯特姆測定法,反應時間為28d,可以比較CO2的實際產量和理論產量來判定廢水的可生化性,也可以利用CO2/DOC值來判定廢水的可生化性。由於該種判定實驗需採用特殊的儀器和方法,操作復雜,僅限於實驗室研究使用,在實際生產中的應用還未見報道。

閱讀全文

與污水tod如何監測相關的資料

熱點內容
凈水機插電怎麼處理 瀏覽:631
蒸餾殘渣主要成分 瀏覽:906
純水機流量計里的青苔怎麼處理 瀏覽:378
樹脂膠和植筋膠用途一樣嗎 瀏覽:977
16款海馬m3空調濾芯怎麼換 瀏覽:575
不銹鋼飲水機怎麼加熱 瀏覽:720
碧然德凈水器是如何檢測濾芯狀態 瀏覽:385
實驗室純水工程多少錢 瀏覽:240
超濾膜什麼材質 瀏覽:138
純水水處理設備多少錢 瀏覽:876
亞都牌空氣凈化器每小時用多少電 瀏覽:861
別克昂科拉機油濾芯在什麼位置 瀏覽:916
怎麼去除污水中bod 瀏覽:914
凈水機廢水濾芯是什麼垃圾 瀏覽:363
大自然是怎麼自己過濾污水的 瀏覽:572
離子交換器工作原理 瀏覽:80
飲水機水垢清除妙招6 瀏覽:103
基礎下有水泥污水管怎麼處理 瀏覽:542
鍋爐過濾水垢 瀏覽:15
污水處理廠用哪些閥門 瀏覽:52