導航:首頁 > 廢水污水 > 含氨碳化廢水什麼意思

含氨碳化廢水什麼意思

發布時間:2022-04-26 06:38:31

1. 污水氨氮什麼意思

水中的氨氮是指以游離氨和離子氨形式存在的氮,主要來源於生活污水中含氮有機物的分解,焦化、合成氨等工業廢水,以及農田排水等。
消化污泥脫水液、垃圾滲濾液、催化劑生產廠廢水、肉類加工廢水和合成氨化工廢水等含有極高濃度的氨氮(500mg/L以上,甚至達到幾千mg/L)。

2. 含氨廢水如何處理

目前常用的是進吹脫塔里吹脫

3. 廢水中氨含量0.02%什麼意思

質量分數,100克就是0.02克,相當於每升0.002克,換算成標准表述就是廢水含氨2ppm

4. 焦化廢水是什麼

焦化廢水是一種典型的有毒難降解有機廢水。
焦化廢水主要來自焦爐煤氣初專冷和焦化生產屬過程中的生產用水以及蒸汽冷凝廢水。
特徵:焦化廢水中污染物濃度高,難於降解,由於焦化廢水中氮的存在,致使生物凈化所需的氮源過剩,給處理達標帶來較大困難;
廢水排放量大,每噸焦用水量大於2.5t;
廢水危害大,焦化廢水中多環芳烴不但難以降解,而且通常還是強致癌物質,對環境造成嚴重污染的同時也直接威脅到人類健康。

5. 什麼是廢水指標中的COD和NH3

廢水分析中為什麼經常使用COD和BOD這二個污染指標
水中有許多有機物質,含有十幾種、幾十種,甚至上百種有機物質的廢水也是能經常遇到的,如果對廢水中的有機物質一一進行定性定量的分析,既耗時間,又耗葯品。那麼能不能只用一個污染指標來表示廢水中所有的有機物質及其它們的數量呢?環境科學工作者經過研究發現,所有的有機物質都有二個共性:一是它們至少都由碳氫組成;二是絕大多數的有機物質能夠化學氧化或被微生物氧化,它們的碳和氫分別與氧形成無毒無害的二氧化碳和水。廢水中的有機物質不論是在化學氧化過程中還是在生物氧化過程中都要消耗氧,廢水中的有機物質愈多,則消耗的氧量也愈多,二者之間是呈正比例關系的。於是環境科學工作者們將廢水用化學葯劑氧化時所消耗的氧量稱為化學需氧量,即COD;而將廢水用微生物氧化所消耗的氧量稱為生物需氧量,即BOD。由於COD和BOD能夠綜合性地反映廢水中所有有機物質的數量,且分析比較簡單,因此被廣泛地應用於廢水分析和環境工程上。
實際上,COD並不是單單表示水中的有機物質的,它還能表示水中具有還原性質的無機物質,如:硫化物、亞鐵離子、亞硫酸鈉,甚至氯根離子等。譬如講,如果鐵炭池出水中的亞鐵離子在中和池中沒能完全被去除掉的話,則生化處理出水中由於有亞鐵離子的存在,出水COD可能會超標。
二、什麼叫COD(化學需氧量)?
化學需氧量(COD)是指廢水中能被氧化的物質在被化學氧化劑氧化時,所需要的氧量,以氧的毫克/升作為單位。它是目前用來測定廢水中有機物含量的一種最常用的手段。COD分析中常用的氧化劑有高錳酸鉀(錳法CODMn)和重鉻酸鉀(鉻法CODCr),現在常用重鉻酸鉀法。廢水在強酸加熱沸騰迴流條件下對有機物實行氧化,用硫酸銀作催化劑時可以使大多數的有機物的氧化率提高到85-95%。如果廢水中含有較高濃度的氯根離子,應該用硫酸汞將氯離子屏蔽掉,以減少對COD的測定干擾。
三、什麼叫BOD5(生化需氧量)?
生化需氧量也可以表徵廢水被有機物污染的程度,最常用的為五日生化需氧量,以BOD5表示,它表示廢水在微生物存在下進行生化降解五日內所需要的氧的數量。今後我們將經常使用五日生化需氧量。
四、COD和BOD5之間有什麼關系?
有的有機物是可以被生物氧化降解的(如葡萄糖和乙醇),有的有機物只能部分被生物氧化降解(如甲醇),而有的有機物是不能被生物氧化降解的而且還具有毒性(如銀杏酚、銀杏酸、某些表面活性劑)。因此,我們可以把水中的有機物分成二個部分,即可以生化降解的有機物和不可生化降解的有機物。 通常認為COD基本上可表示水中的所有的有機物。而BOD為水中可以生物降解的有機物,因此COD與BOD的差值可以表示廢水中生物不可降解部分的有機物。
五、什麼叫B/C?B/C表示什麼意義?
B/C是BOD5與COD比值的縮寫,該比值可以表示廢水的可生化降解特性。如果CODNB表示COD中的不可生物降解部分,則廢水中不可為微生物生物降解的有機物所佔的比例可用CODNB/COD表示。
BOD5/COD與CODNB/COD之間有如下表所示的關系:
CODNB/COD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
BOD5/COD 0.52 0.46 0.41 0.35 0.29 0.23 0.17 0.12
當BOD5/COD≥0.45時,不可生物降解的有機物僅僅佔全部有機物的20%以下,而當BOD5/COD≤0.2時,不可生物降解的有機物已佔全部有機物的60%以上。
因此,BOD5/COD值常常被作為有機物生物降解性的評價指標。
BOD5/COD0.45易生物降解
BOD5/COD0.30可生物降解
BOD5/COD0.30較難生物降解
BOD5/COD0.20較以難生物降解
B/C在環境工程上有著非常重要而實用的意義。
六、什麼叫pH?
pH實際上是水溶液中酸鹼度的一種表示方法。平時我們經常習慣於用百分濃度來表示水溶液的酸鹼度,如1%的硫酸溶液或1%的鹼溶液,但是當水溶液的酸鹼度很小很小時,如果再用百分濃度來表示則太麻煩了,這時可用pH來表示。pH的應用范圍在0-14之間,當pH=7時水呈中性;pH<7時水呈酸性,pH愈小,水的酸性愈大;當pH>7時水呈鹼性,pH愈大,水的鹼性愈大。 世界上所有的生物是離不開水的,但是適宜於生物生存的pH值的范圍往往是非常狹小的,因此國家環保局將處理出水的pH值嚴格地規定在6-9之間。 水中pH值的檢測經常使用pH試紙,也有用儀器測定的,如pH測定儀。
七、廢水分析中為什麼要經常使用毫克/升(mg/L)這個濃度單位?
一般來說,廢水中的有機物質和無機物質的含量是很小很小的,如果用百分濃度或其它濃度來表示則太麻煩太不方便了,譬如一噸廢水中往往只有幾克、幾十克、幾百克甚至幾千克污染物質,其單位即為克/噸(g/T),如將噸換算成升即為毫克/升(mg/L)。計算時可參考下表換算:
1毫克/升百萬分之一
1000毫克/升千分之一
10000毫克/升百分之一
八、什麼叫廢水的生化處理?
廢水的生物化學處理是廢水處理系統中最重要的過程之一,簡稱生化處理。生化處理是利用微生物的生命活動過程將廢水中的可溶性的有機物及部分不溶性的有機物有效地去除,使水得到凈化。事實上,我們對生化處理並不是很陌生的,天然的水體中存在著一條食物鏈,即大魚吃小魚,小魚吃蝦米,蝦米吃小蟲,小蟲吃微生物,微生物吃污水,如果沒有這條食物鏈,自然界就要亂套了。在天然的河流中,有著大量的、依靠有機物生活的微生物,它們日日夜夜地將人們排入河流中的有機物(如工業廢水、農葯化肥、糞便等等有機物質)氧化或還原,最終轉化為無機物質,如果沒有微生物的存在,我們周圍的河流,少則幾個月,多則一、二年,就會成為臭河了,只是由於微生物太微小太分散,以致人們的肉眼看不見罷了。而廢水的生化處理工程則是在人工條件下對這一過程的強化。人們將無以計數的微生物全部集中在一個池子內,創造一個非常適合微生物繁殖、生長的環境(如溫度、pH值、氧氣、氮磷等營養物質),使微生物大量增殖,以提高其分解有機物的速度和效率。然後再往池內泵入廢水,使廢水中的有機物質在微生物的生命活動過程中得到氧化降解,使廢水得到凈化和處理。與其他處理方法相比,生化法具有能耗低、不加葯、處理效果好、處理費用低等特點。
九、微生物是通過何種方式將廢水中的有機污染物分解去除掉的?
由於廢水中存在碳水化合物、脂肪、蛋白質等有機物,這些無生命的有機物是微生物的食料,一部分降解、合成為細胞物質(組合代謝產物),另一部分降解氧化為水份,二氧化碳等(分解代謝產物),在此過程中廢水中的有機污染物被微生物降解去除。
十、微生物與哪些因素有關?
微生物除了需要營養,還需要合適的環境因素,如溫度、pH值、溶解氧、滲透壓等才能生存。如果環境條件不正常,會影響微生物的生命活動,甚至發生變異或死亡。
十一、微生物最適宜在什麼溫度范圍內生長繁殖?
在廢水生物處理中,微生物最適宜的溫度范圍一般為16-30℃,最高溫度在37-43℃,當溫度低於10℃時,微生物將不再生長。
在適宜的溫度范圍內,溫度每提高10℃,微生物的代謝速率會相應提高,COD的去除率也會提高10%左右;相反,溫度每降低10℃,COD的去除率會降低10%,因此在冬季時,COD的生化去除率會明顯低於其它季節。
十二、微生物最適宜的pH條件應在什麼范圍?
微生物的生命活動、物質代謝與pH值有密切關系。大多數微生物對pH的適應范圍在4.5-9,而最適宜的pH值的范圍在6.5-7.5。當pH低於6.5時,真菌開始與細菌競爭,pH到4.5時,真菌在生化池內將占完全的優勢,其結果是嚴重影響污泥的沉降結果;當pH超過9時,微生物的代謝速度將受到阻礙。
不同的微生物對pH值的適應范圍要求是不一樣的。在好氧生物處理中,pH可在6.5-8.5之間變化;厭氧生物處理中,微生物以pH的要求比較嚴格,pH應在6.7-7.4之間。
十三、什麼叫溶解氧?溶解氧與微生物的關系如何?
溶解在水體中的氧被稱溶解氧。水體中的生物與好氧微生物,它們所賴以生存的氧氣就是溶解氧。不同的微生物對溶解氧的要求是不一樣的。好氧微生物需要供給充足的溶解氧,一般來說,溶解氧應維持在3mg/L為宜,最低不應低於2mg/L;兼氧微生物要求溶解氧的范圍在0.2-2.0mg/L之間;而厭氧微生物要求溶解氧的范圍在0.2mg/L以下。
十四、什麼叫好氧生化處理?什麼叫兼氧生化處理?二者有何區別?
生化處理根據微生物生長對氧環境的要求的不同,可分為好氧生化處理與缺氧生化處理兩大類,缺氧生化處理又可分為兼氧生化處理和厭氧生化處理。在好氧生化處理過程中,好氧微生物必須在大量氧的存在下生長繁殖,並降低廢水中的有機物質;而兼氧生化處理過程中,兼氧微生物只需要少量氧即可生長繁殖並對廢水中的有機物質進行降解處理,如果水中氧太多,兼氧微生物反而生長不好從而影響它對有機物質的處理效率。
兼氧微生物可適應COD濃度較高的廢水,進水COD濃度可提高到6000mg/L以上,COD去除率一般在50-80%;而好氧微生物只能適應於COD濃度較低的廢水,進水COD濃度一般控制在1000-1500mg/L以下,COD去除率一般在50-80%,兼氧生化處理和好氧生化處理的時間都不太長,一般都在18-24小時。我公司利用兼氧生化和好氧生化之間的差別和相同之長,將兼氧生化處理和好氧生化處理組合起來,讓COD濃度較高的廢水先進行兼氧生化處理,再讓兼氧池的處理出水作為好氧池的進水,這樣的組合處理可以減少生化池的容積,既節省了環保投資又減少了日常的運行費用。 厭氧生化處理與兼氧生化處理的原理和作用是一樣的。厭氧生化處理與兼氧生化處理的不同之處是:厭氧微生物繁殖生長及其對有機物質降解處理的過程中不需要任何氧,而且厭氧微生物可適應更高COD濃度的廢水(10000-30000mg/L)。厭氧生化處理的缺點是生化處理時間很長,廢水在厭氧生化池內的停留時間一般需要45小時以上。
十五、什麼是氨氮
氨氮無機營養鹽的一種,是指水中以游離氨(NH3)和銨離子(NH4)形式存在的氮。 一般以NH4-N表示
游離態,都是無機的,可以由有機物種氨基酸或動物性有機物的含氮生成。或者由一般較植物性有機物為高。人畜糞便中含氮有機物很不穩定,容易分解成氨。
化肥中的氯化銨即可以認為是一種氨氮
濃度過高,水中植物瘋長,需求的氧過高,易導致水體腐敗。
水中氮磷過高,易發生 水華、藍藻事件。

6. 什麼是氨氮廢水處理

氨氮廢水主要是污染物主要以氨態氮為主,污染物的COD含量比較高,水中專有機物含屬量比較少 可生化性比較差。
在咱們現實生活中氨氮污水主要是工業上的污水,像焦化廠的焦化廢水、尿素生產廢水等等。
該種廢水處理一直是水處理的難點,氨氮廢水不僅面臨的處理比較困難的問題 還有氨氮回收的問題,氨氮本來就是資源。
焦化廢水處理近些年發展還不錯 生物處理比較成功

7. 我公司的廢水含有有機氨,經過生化池,由於氨化作用,氨氮就會上升,請問有什麼好的解決方法么

該考慮化學生物聯用
本文作者: 陳昭考

隨著工農業生產的發展和人民生活水平的提高,含氮化合物的排放量急劇增加,已成為環境的主要污染源,並引起各界的關注。經濟有效地控制氨氮廢水污染已經成為當今環境工作者所面臨的重大課題。

1 氨氮廢水的來源
含氮物質進入水環境的途徑主要包括自然過程和人類活動兩個方面。含氮物質進入水環境的自然來源和過程主要包括降水降塵、非市區徑流和生物固氮等。人類的活動也是水環境中氮的重要來源,主要包括未處理或處理過的城市生活和工業廢水、各種浸濾液和地表徑流等。人工合成的化學肥料是水體中氮營養元素的主要來源,大量未被農作物利用的氮化合物絕大部分被農田排水和地表徑流帶入地下水和地表水中。隨著石油、化工、食品和制葯等工業的發展,以及人民生活水平的不斷提高,城市生活污水和垃圾滲濾液中氨氮的含量急劇上升。近年來,隨著經濟的發展,越來越多含氮污染物的任意排放給環境造成了極大的危害。氮在廢水中以有機態氮、氨態氮(NH4+-N)、硝態氮(NO3--N)以及亞硝態氮(NO2--N)等多種形式存在,而氨態氮是最主要的存在形式之一。廢水中的氨氮是指以游離氨和離子銨形式存在的氮,主要來源於生活污水中含氮有機物的分解,焦化、合成氨等工業廢水,以及農田排水等。氨氮污染源多,排放量大,並且排放的濃度變化大。
2 氨氮廢水的危害
水環境中存在過量的氨氮會造成多方面的有害影響:
(1)由於NH4+-N的氧化,會造成水體中溶解氧濃度降低,導致水體發黑發臭,水質下降,對水生動植物的生存造成影響。在有利的環境條件下,廢水中所含的有機氮將會轉化成NH4+-N,NH4+-N是還原力最強的無機氮形態,會進一步轉化成NO2--N和NO3
--N。根據生化反應計量關系,1gNH4+-N氧化成NO2--N消耗氧氣3.43 g,氧化成NO3--N耗氧4.57g。
(2)水中氮素含量太多會導致水體富營養化,進而造成一系列的嚴重後果。由於氮的存在,致使光合微生物(大多數為藻類)的數量增加,即水體發生富營養化現象,結果造成:堵塞濾池,造成濾池運轉周期縮短,從而增加了水處理的費用;妨礙水上運動;藻類代謝的最終產物可產生引起有色度和味道的化合物;由於藍-綠藻類產生的毒素,家畜損傷,魚類死亡;由於藻類的腐爛,使水體中出現氧虧現象。
(3)水中的NO2--N和NO3--N對人和水生生物有較大的危害作用。長期飲用NO3--N含量超過10mg/L的水,會發生高鐵血紅蛋白症,當血液中高鐵血紅蛋白含量達到70mg/L,即發生窒息。水中的NO2--N和胺作用會生成亞硝胺,而亞硝胺是「三致」物質。NH4+-N和氯反應會生成氯胺,氯胺的消毒作用比自由氯小,因此當有NH4+-N存在時,水處理廠將需要更大的加氯量,從而
增加處理成本。近年來,含氨氮廢水隨意排放造成的人畜飲水困難甚至中毒事件時有發生,我國長江、淮河、錢塘江、四川沱江等流域都有過相關報道,相應地區曾出現過諸如藍藻污染導致數百萬居民生活飲水困難,以及相關水域受到了「牽連」等重大事件,因此去除廢水中的氨氮已成為環境工作者研究的熱點之一。

3 氨氮廢水處理的主要技術
目前,國內外氨氮廢水處理有折點氯化法、化學沉澱法、離子交換法、吹脫法和生物脫氨法等多種方法,這些技術可分為物理化學法和生物脫氮技術兩大類。

3.1 生物脫氮法
微生物去除氨氮過程需經兩個階段。第一階段為硝化過程,亞硝化菌和硝化菌在有氧條件下將氨態氮轉化為亞硝態氮和硝態氮的過程。第二階段為反硝化過程,污水中的硝態氮和亞硝態氮在無氧或低氧條件下,被反硝化菌(異養、自養微生物均有發現且種類很多)還原轉化為氮氣。在此過程中,有機物(甲醇、乙酸、葡萄糖等)作為電子供體被氧化而提供能量。常見的生物脫氮流程可以分為3類,分別是多級污泥系統、單級污泥系統和生物膜系統。

工業氨氮去除大全

根據廢水中氨氮濃度的不同,可將廢水分為3類:高濃度氨氮廢水(NH3-N>500mg/l),中等濃度氨氮廢水(NH3-N:50-500mg/l),低濃度氨氮廢水(NH3-N<50mg/l)。然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。故本工程的關鍵之一在於氨氮的去除,去除氨氮的主要方法有:物理法、化學法、生物法。物理法含反滲透蒸餾、土壤灌溉等處理技術;化學法含離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法含藻類養殖、生物硝化、固定化生物技術等處理技術。目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。1. 折點氯化法去除氨氮折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。2. 選擇性離子交換化去除氨氮離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類矽質的陽離子交換劑,成本低,對NH4+有很強的選擇性。O.Lahav等用沸石作為離子交換材料,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行。在吸附階段,沸石柱作為典型的離子交換柱;而在生物再生階段,附在沸石上的細菌把脫附的氨氮氧化成硝態氮。研究結果表明,該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。3. 空氣吹脫法與汽提法去除氨氮空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至堿性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純堿生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。4. 生物法去除氨氮生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下: 亞硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3-硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLSS•d);泥齡在3~5天以上。在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。常見的生物脫氮流程可以分為3類:⑴多級污泥系統多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;⑵單級污泥系統單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在去碳源,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;⑶生物膜系統將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。由於常規生物處理高濃度氨氮廢水還存在以下:為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。5. 化學沉澱法去除氨氮化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。化學沉澱法處理NH3-N是始於20世紀60年代,在90年代興起的一種新的處理方法,其主要原理就是NH4+、Mg2+、PO43-在堿性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強堿性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

8. 跪求氨水是啥 在線等 !!

氨水(Ammonium Hydroxide; Ammonia Water)又稱氫氧化銨、阿摩尼亞水,是氨氣的水溶液,無色透明且具有刺激性氣味。易揮發,具有部分鹼的通性,由氨氣通入水中製得,主要用作化肥。

中文名: 氨水
外文名: Ammonia water
別名: 氫氧化銨
化學式: NH3·H2O
相對分子質量: 35.05
化學品類別: 無機物--氣態氫化物水溶液
管制類型: 不管制
儲存: 密封陰涼保存

目錄

物理性質
質量指標揮發性
腐蝕性
弱鹼性
不穩定性
沉澱性
絡合性
還原性
作用與用途
使用注意事項危險性概述
急救措施
消防措施
泄漏應急處理
操作處置與儲存
制備物理性質
質量指標 揮發性
腐蝕性
弱鹼性
不穩定性
沉澱性
絡合性
還原性
作用與用途
使用注意事項 危險性概述
急救措施
消防措施
泄漏應急處理
操作處置與儲存
制備
展開 編輯本段物理性質
外觀與性狀:無色透明液體,有強烈的刺激性臭味。 相對密度(水=1):0.91 分子式:NH3·H2O 分子量:35.05 飽和蒸氣壓(kPa):1.59(20℃) 爆炸上限%(V/V):25.0 爆炸下限%(V/V):16.0 溶解性:溶於水,醇。 含氨28%~29%,密度0.9g/cm3。含氨越多,密度越小,最濃的氨水含氨35.28%,密度0.88g/cm3。 工業氨水是含氨25%~28%的水溶液,氨水中僅有一小部分氨分子與水反應形成銨離子和氫氧根離子,即氫氧化銨,是僅存在於氨水中的弱鹼。氨水凝固點一77℃。 與酸中和反應產生熱。有燃燒爆炸危險。 有毒,對眼、鼻、皮膚有刺激性和腐蝕性,能使人窒息,空氣中最高容許濃度30mg/m3。 比熱容為4.3×10³J/kg·℃﹙10%的氨水)
編輯本段質量指標
指標名稱優等品 一等品 外觀 無色透明或微帶黃色液體 色度/號≤ 80 80 氨(NH3)的質量分數/%≥ 25 20 殘渣含量/(g/L)≤ 0.3 0.3
揮發性
氨水易揮發出氨氣,隨溫度升高和放置時間延長而增加揮發率,且濃度的增大揮發量增加。
腐蝕性
氨水有一定的腐蝕作用,碳化氨水的腐蝕性更加嚴重。對銅的腐蝕比較強,鋼鐵比較差,對水泥腐蝕不大。對木材也有一定腐蝕作用。
弱鹼性
氨水中存在以下化學平衡: NH3+H2O=(可逆)=NH3·H2O NH3·H2O=(可逆)=NH4+ +OH- 因此僅有一小部分氨分子與水反應而成銨離子NH4+和氫氧根離子OH-,故呈弱鹼性。 氨水具有鹼的通性: ①能使無色酚酞試液變紅色,能使紫色石蕊試液變藍色,能使濕潤紅色石蕊試紙變藍。實驗室中常用此法檢驗NH3的存在。 ②能與酸反應,生成銨鹽。濃氨水與揮發性酸(如濃鹽酸和濃硝酸)相遇會產生白煙。 NH3+HCl=NH4Cl (白煙) NH3+HNO3=NH4NO3 (白煙) 而遇不揮發性酸(如硫酸、磷酸)無此現象。實驗室中可用此法檢驗NH3或氨水的存在。 工業上,利用氨水的弱鹼性來吸收硫酸工業尾氣,防止污染環境。 SO2+2NH3·H2O=(NH4)2SO3+H2O (NH4)2SO3+SO2+H2O=2NH4HSO3
不穩定性
一水合氨不穩定,見光受熱易分解而生成氨和水。 NH3·H2O=NH3↑+H2O 實驗室中,可用加熱濃氨水制氨,或常溫下用濃氨水與固體燒鹼混合的方法制氨,其裝置與操作簡便,且所得到的氨氣濃度較大,做「噴泉」實驗效果更佳。 由於氨水具有揮發性和不穩定性,故氨水應密封保存在棕色或深色試劑瓶中,放在冷暗處。
沉澱性
氨水是很好的沉澱劑,它能與多種金屬離子反應,生成難溶性弱鹼或兩性氫氧化物。例如: Al3++3NH3·H2O==Al(OH)3↓+3NH4+ 生成的Al(OH)3沉澱不溶於過量氨水。 Fe2++2NH3·H2O==Fe(OH)2↓+2NH4+ 生成的白色沉澱易被氧化生成紅褐色沉澱 4Fe(OH)2+O2+2H2O=4Fe(OH)3(紅褐色) 利用此性質,實驗中可製取Al(OH)3、Fe(OH)3、Fe(OH)2等。
絡合性
氨水與Ag+、Cu2+、Cr3+、Zn2+等離子能發生絡合反應,當氨水少量時,產生不溶性弱鹼,當氨水過量時,不溶性物質又轉化成絡離子而溶解。 Ag2O+4NH3·H2O=2[Ag(NH3)2]++2OH-+3H2O 實驗室中用此反應配製銀氨溶液。 Zn(OH)2+4NH3·H2O=[Zn(NH3)4]2++2OH-+4H2O 可用此反應來鑒別兩性氫氧化物氫氧化鋁和氫氧化鋅。 Cu(OH)2+4NH3·H2O=[Cu(NH3)4]2+(深藍色) +2OH-+4H2O
還原性
氨水表現出弱的還原性,可被強氧化劑氧化。如氨水可與氯水發生反應: 3Cl2+8NH3·H2O=6NH4Cl+N2+8H2O 也可與KMnO4反應。
編輯本段作用與用途
農業上經稀釋後可用作化肥。無機工業用於制選各種鐵鹽。毛紡、絲綢、印染等工業用於洗滌羊毛、呢絨、坯布,溶解和調整酸鹼度,並作為助染劑等。有機工業用作胺化劑,生產熱固性酚醛樹脂的催化劑。醫葯上用稀氨水對呼吸和循環起反射性刺激,醫治暈倒和昏厥,並作皮膚刺激葯和消毒葯。也用作洗滌劑、中和劑、生物鹼浸出劑。 氨水是實驗室重要的試劑,主要用法見「主要性質」一段。 1. 軍事上作為一種鹼性消毒劑,用於消毒沙林類毒劑。常用的是10%濃度的稀氨水(密度0.960),冬季使用濃度則為20%。 2. 無機工業用於制選各種鐵鹽。 3.毛紡、絲綢、印染等工業用於洗滌羊毛、呢絨、坯布,溶解和調整酸鹼度,並作為助染劑等。 有機工業用作胺化劑,生產熱固性酚醛樹脂的催化劑。 4. 醫葯上用稀氨水對呼吸和循環起反射性刺激,醫治暈倒和昏厥,並作皮膚刺激葯和消毒葯。 5. 作洗滌劑、中和劑、生物鹼浸出劑。還用於制葯工業,紗罩業,曬圖等。
編輯本段使用注意事項
危險性概述
侵入途徑:吸入、食入 健康危害:吸入後對鼻、喉和肺有刺激性,引起咳嗽、氣短和哮喘等;可因喉頭水腫而窒息死亡;可發生肺水腫,引起死亡。氨水濺入眼內,可造成嚴重損害,甚至導致失明,皮膚接觸可致灼傷。慢性影響:反復低濃度接觸,可引起支氣管炎。皮膚反復接觸,可致皮炎,表現為皮膚乾燥、癢、發紅。
急救措施
皮膚接觸:立即用水沖洗至少15分鍾。若有灼傷,就醫治療。對少量皮膚接觸,避免將物質播散面積擴大。注意患者保暖並且保持安靜。 眼睛接觸:立即提起眼瞼,用流動清水或生理鹽水沖洗至少15分鍾。或用3%硼酸溶液沖洗。立即就醫。 吸入:迅速脫離現場至空氣新鮮處。保持呼吸道通暢。呼吸困難時給輸氧。呼吸停止時,立即進行人工呼吸。就醫。如果患者食入或吸入該物質不要用口對口進行人工呼吸,可用單向閥小型呼吸器或其他適當的醫療呼吸器。脫去並隔離被污染的衣服和鞋。 食入:誤服者立即漱口,口服稀釋的醋或檸檬汁,就醫。吸入、食入或皮膚接觸該物質可引起遲發反應。確保醫務人員了解該物質相關的個體防護知識,注意自身防護。
消防措施
危險特性:易分解放出氨氣,溫度越高,分解速度越快,可形成爆炸性氣氛。若遇高熱,容器內壓增大,有開裂和爆炸的危險。與強氧化劑和酸劇烈反應。與鹵素、氧化汞、氧化銀接觸會形成對震動敏感的化合物。接觸下列物質能引發燃燒和爆炸:三甲胺、氨基化合物、1-氯-2,4-二硝基苯、鄰—氯代硝基苯、鉑、二氟化三氧、二氧二氟化銫、鹵代硼、汞、碘、溴、次氯酸鹽、氯漂、有機酸酐、異氰酸酯、乙酸乙烯酯、烯基氧化物、環氧氯丙烷、醛類。腐蝕某些塗料、塑料和橡膠。腐蝕銅、黃銅、青銅、鋁、鋼、錫、鋅及其合金。 滅火方法:霧狀水、二氧化碳、砂土。
泄漏應急處理
應急處理:疏散泄漏污染區人員至安全區,禁止無關人員進入污染區,建議應急處理人員戴自給式呼吸器,穿化學防護服。不要直接接觸泄漏物,在確保安全情況下堵漏。用大量水沖洗,經稀釋的洗水放入廢水系統。也可以用沙土、蛭石或其它惰性材料吸收,然後以少量加入大量水中,調節至中性,再放入廢水系統。如大量泄漏,利用圍堤收容,然後收集、轉移、回收或無害處理後廢棄。
操作處置與儲存
儲存注意事項:儲存於陰涼、乾燥、通風處。遠離火種、熱源。防止陽光直射。保持容器密封。應與酸類、金屬粉末等分開存放。露天貯罐夏季要有降溫措施。分裝和搬運作業要注意個人防護。搬運時要輕裝輕卸,防止包裝及容器損壞。運輸按規定路線行駛,勿在居民區和人口稠密區停留。
編輯本段制備
將氨氣通入水中製得。

9. 氨氮含量為什麼作為廢水指標

水質中測定氨氮含量的原因如下:

  1. 水中的氨氮可以在一定條件下轉化成亞硝酸鹽,如果長期飲用,水中的亞硝酸鹽將和蛋白質結合形成亞硝胺,這是一種強致癌物質,對人體健康極為不利。

  2. 氨氮對水生物起危害作用的主要是游離氨,其毒性比銨鹽大幾十倍,並隨鹼性的增強而增大。氨氮毒性與池水的pH值及水溫有密切關系,一般情況,pH值及水溫愈高,毒性愈強,對魚的危害類似於亞硝酸鹽。

    氨氮對水生物的危害有急性和慢性之分。慢性氨氮中毒危害為:攝食降低,生長減慢,組織損傷,降低氧在組織間的輸送。魚類對水中氨氮比較敏感,當氨氮含量高時會導致魚類死亡。急性氨氮中毒危害為:水生物表現亢奮、在水中喪失平衡、抽搐,嚴重者甚至死亡。


氨氮介紹:

氨氮是指水中以游離氨(NH3)和銨離子(NH4+)形式存在的氮。 動物性有機物的含氮量一般較植物性有機物為高。同時,人畜糞便中含氮有機物很不穩定,容易分解成氨。因此,水中氨氮含量增高時指以氨或銨離子形式存在的化合氮。


測定氨氮的含量原理:

碘化汞和碘化鉀的鹼性溶液與氨反映生成淡紅棕色膠態化合物,其色度與氨氮含量成正比,通常可在波長410—425nm范圍內測其吸光度,計算其含量.
本法最低檢出濃度為0.025mg/L(光度法),測定上限為2mg/L.採用目視比色法,最低檢出濃度為0.02mg/L.水樣做適當的預處理後,本法可用於地面水,地下水,工業廢水和生活污水中氨氮的測定.

10. 污水水質指標有哪些

污水水質指標可分為三大類:物理性指標、化學性指標和生物性指標。

其中:
(1) 物理性指標
① 固體物質(TS)
水中固體物質是指在一定溫度下將水樣蒸發至干時所殘余的固體物質總量,也稱蒸發殘余物。按水中固體的溶解性可分為溶解固體(DS)和懸浮固體(SS)。溶解固體也稱「總可濾殘渣」,是指溶於水的各種無機物質和有機物質的總和。在水質分析中,對水樣進行過濾操作,濾液在103~105℃溫度下蒸干後所得到的固體物質即為溶解固體。懸浮固體也稱作「總不可濾殘渣」,在水質分析中,將水樣經0.45微米濾膜過濾,凡不能通過濾器的固體顆粒物即為懸浮固體。
② 渾濁度
含有泥砂、纖維、有機物、浮游生物等會呈現渾濁現象。水體渾濁的程度可用渾濁度的大小來表示。所謂渾濁度是指水中的不溶物質對光線透過時所產生的阻礙程度。在水質分析中規定,l L水中含有1gSiO2所構成的濁度為一個標准濁度單位,簡稱1度。目前濁度採用NTU單位。
③ 顏色
水的顏色有真色和表色之分。真色是由於水中所含溶解物質或肢體物質所致,即除去水中懸浮物質後所呈現的顏色。表色則是由溶解物質、膠體物質和懸浮物質共同引起的顏色。異常顏色的出現是水體受污染的一個標志。
水的物理性水質指標還有嗅、味、溫度、電導率等。

(2)化學指標
① 化學需氧量(COD)
② 生化需氧量(BOD)
③ 總有機碳(TOC)
④ 有機氮
⑤ pH值
⑥ 有毒物質指標
(3) 生物指標
生物指標主要有細菌總數、大腸菌數及病原菌等。細菌總數是指1mg水中所含有的各種細菌的總數;大腸菌數是指每L水中所含的大腸菌個數。

希望採納!!!

閱讀全文

與含氨碳化廢水什麼意思相關的資料

熱點內容
污水泵怎麼用萬用表量好壞 瀏覽:651
污水中余氯和細菌的相關性 瀏覽:461
廢鹼液污水調節罐亞鐵離子 瀏覽:485
Ro膜淡水無壓力 瀏覽:568
水箱里水垢用什麼清洗 瀏覽:913
blueair空氣凈化器怎麼樣mbaiducom 瀏覽:886
家用凈水器的水熬粥不好喝怎麼辦 瀏覽:696
廢水檢測查詢 瀏覽:640
逃離污水洞穴怎麼過 瀏覽:49
辣椒油樹脂是什麼味道 瀏覽:410
重慶蒸餾水生產廠家 瀏覽:204
生活污水能灌溉什麼作物 瀏覽:926
佛山pp膜折疊過濾芯哪裡有 瀏覽:611
反滲透膜流導布 瀏覽:697
蒸餾殘液那裡處理 瀏覽:441
反滲透膜清洗招標采購 瀏覽:499
養殖廢水陽離子加多少 瀏覽:12
社區污水管道動工 瀏覽:949
哪些生產環節產生污水 瀏覽:885
洗衣廢水回用標准 瀏覽:704