❶ 處理1噸工業污水,成本需要多少
朋友,這個來就算是你源要個大概值,也是需要看什麼類型的工業污水了,水質不同,處理成本差異很大的,工業類那麼多種類,電鍍,皮革,造紙,石油類等等;太多了,我知道的從十多塊到兩百多的處理成本都是有的,你要是需要准確點的,先告訴是什麼類型的水。這樣才能有個大概的估計,要不完全是沒譜的,總不能告訴你10~200多吧~~~~
❷ 實驗室怎麼進行乙二醇的廢液處理
乙二醇廢液供應商是可以回收的,你直接找他們就行了。
PS:附一些廢液處理方法
有機類實驗廢液的處理方法
注意事項
1).盡量回收溶劑,在對實驗沒有妨礙的情況下,把它反復使用。
2).為了方便處理,其收集分類往往分為:a)可燃性物質;b)難燃性物質;c)含水廢液;d)固體物質等。
3).可溶於水的物質,容易成為水溶液流失。因此,回收時要加以注意。但是,對甲醇、乙醇及醋酸之類溶劑,能被細菌作用而易於分解。故對這類溶劑的稀溶液,經用大量水稀釋後,即可排放。
4).含重金屬等的廢液,將其有機質分解後,作無機類廢液進行處理。
處理方法
1).焚燒法
①將可燃性物質的廢液,置於燃燒爐中燃燒。如果數量很少,可把它裝入鐵制或瓷製容器,選擇室外安全的地方把它燃燒。點火時,取一長棒,在其一端紮上沾有油類的破布,或用木片等東西,站在上風方向進行點火燃燒。並且,必須監視至燒完為止。
②對難於燃燒的物質,可把它與可燃性物質混合燃燒,或者把它噴入配備有助燃器的焚燒爐中燃燒。對多氯聯苯之類難於燃燒的物質,往往會排出一部份還未焚燒的物質,要加以注意。對含水的高濃度有機類廢液,此法亦能進行焚燒。
③對由於燃燒而產生NO2、SO2或HCl之類有害氣體的廢液,必須用配備有洗滌器的焚燒爐燃燒。此時,必須用鹼液洗滌燃燒廢氣,除去其中的有害氣體。
④對固體物質,亦可將其溶解於可燃性溶劑中,然後使之燃燒。
2).溶劑萃取法
①對含水的低濃度廢液,用與水不相混合的正己烷之類揮發性溶劑進行萃取,分離出溶劑層後,把它進行焚燒。再用吹入空氣的方法,將水層中的溶劑吹出。
②對形成乳濁液之類的廢液,不能用此法處理。要用焚燒法處理。
3).吸附法
用活性炭、硅藻土、礬土、層片狀織物、聚丙烯、聚酯片、氨基甲酸乙酯泡沫塑料、稻草屑及鋸末之類能良好吸附溶劑的物質,使其充分吸附後,與吸附劑一起焚燒。
4).氧化分解法(參照含重金屬有機類廢液的處理方法)
在含水的低濃度有機類廢液中,對其易氧化分解的廢液,用H2O2、KMnO4、NaOCl、H2SO4+HNO3、HNO3+HClO4、H2SO4+HClO4及廢鉻酸混合液等物質,將其氧化分解。然後,按上述無機類實驗廢液的處理方法加以處理。
5).水解法
對有機酸或無機酸的酯類,以及一部份有機磷化合物等容易發生水解的物質,可加入NaOH或Ca(OH)2,在室溫或加熱下進行水解。水解後,若廢液無毒害時,把它中和、稀釋後,即可排放。如果含有有害物質時,用吸附等適當的方法加以處理。
6).生物化學處理法
用活性污泥之類東西並吹入空氣進行處理。例如,對含有乙醇、乙酸、動植物性油脂、蛋白質及澱粉等的稀溶液,可用此法進行處理。
5.1 含一般有機溶劑的廢液
一般有機溶劑是指醇類、酯類、有機酸、酮及醚等由C、H、O元素構成的物質。
對此類物質的廢液中的可燃性物質,用焚燒法處理。對難於燃燒的物質及可燃性物質的低濃度廢液,則用溶劑萃取法、吸附法及氧化分解法處理。再者,廢液中含有重金屬時,要保管好焚燒殘渣。但是,對其易被生物分解的物質(即通過微生物的作用而容易分解的物質),其稀溶液經用水稀釋後,即可排放。
5.2 含石油、動植物性油脂的廢液
此類廢液包括:苯、已烷、二甲苯、甲苯、煤油、輕油、重油、潤滑油、切削油、機器油、動植物性油脂及液體和固體脂肪酸等物質的廢液。
對其可燃性物質,用焚燒法處理。對其難於燃燒的物質及低濃度的廢液,則用溶劑萃取法或吸附法處理。對含機油之類的廢液,含有重金屬時,要保管好焚燒殘渣。
5.3 含N、S及鹵素類的有機廢液
此類廢液包含的物質:吡啶、喹啉、甲基吡啶、氨基酸、醯胺、二甲基甲醯胺、二硫化碳、硫醇、烷基硫、硫脲、硫醯胺、噻吩、二甲亞碸、氯仿、四氯化碳、氯乙烯類、氯苯類、醯鹵化物和含N、S、鹵素的染料、農葯、顏料及其中間體等等。
對其可燃性物質,用焚燒法處理。但必須採取措施除去由燃燒而產生的有害氣體(如SO2、HCl、NO2等)。對多氯聯苯之類物質,因難以燃燒而有一部分直接被排出,要加以注意。
對難於燃燒的物質及低濃度的廢液,用溶劑萃取法、吸附法及水解法進行處理。但對氨基酸等易被微生物分解的物質,經用水稀釋後,即可排放。
5.4 含酚類物質的廢液
此類廢液包含的物質:苯酚、甲酚、萘酚等。
對其濃度大的可燃性物質,可用焚燒法處理。而濃度低的廢液,則用吸附法、溶劑萃取法或氧化分解法處理。
5.5 含有酸、鹼、氧化劑、還原劑及無機鹽類的有機類廢液
此類廢液包括:含有硫酸、鹽酸、硝酸等酸類和氫氧化鈉、碳酸鈉、氨等鹼類,以及過氧化氫、過氧化物等氧化劑與硫化物、聯氨等還原劑的有機類廢液。
首先,按無機類廢液的處理方法,把它分別加以中和。然後,若有機類物質濃度大時,用焚燒法處理(保管好殘渣)。能分離出有機層和水層時,將有機層焚燒,對水層或其濃度低的廢液,則用吸附法、溶劑萃取法或氧化分解法進行處理。但是,對其易被微生物分解的物質,用水稀釋後,即可排放。
5.6 含有機磷的廢液
此類廢液包括:含磷酸、亞磷酸、硫代磷酸及膦酸酯類,磷化氫類以及磷系農葯等物質的廢液。
對其濃度高的廢液進行焚燒處理(因含難於燃燒的物質多,故可與可燃性物質混合進行焚燒)。對濃度低的廢液,經水解或溶劑萃取後,用吸附法進行處理。
5.7 含有天然及合成高分子化合物的廢液
此類廢液包括:含有聚乙烯、聚乙烯醇、聚苯乙烯、聚二醇等合成高分子化合物,以及蛋白質、木質素、纖維素、澱粉、橡膠等天然高分子化合物的廢液。
對其含有可燃性物質的廢液,用焚燒法處理。而對難以焚燒的物質及含水的低濃度廢液,經濃縮後,將其焚燒。但對蛋白質、澱粉等易被微生物分解的物質,其稀溶液可不經處理即可排放
❸ 污水處理廢水中含有乙二醇,濃度不知,COD為1000,經氣浮後進生化池處理,對菌種是否有影響
不會有影響的,乙二醇是一種很容易被細菌分解的有機物,不經過氣浮進入生化池都是沒問題的,菌種只是對重金屬比較敏感,所以放心排進去就好了。
❹ 急求一篇關於塗裝廢水處理的英文文獻及相應翻譯,請幫忙!!!
典型汽車塗裝廢水處理工藝
摘 要:本文針對汽車塗裝廢水中含有樹脂、表面活性劑、重金屬離子,Oil、顏料等污染物,特別是其中的電泳廢水、噴漆廢水成份復雜,濃度高,可生化性差的實際情況,採用分質處理、混凝沉澱、混凝氣浮、砂濾等工藝對塗裝廢水進行處理,取得了良好效果:CODCr去除率大於80%。實際運行表明,該工藝在技術和經濟上均是合理可行的。
Treatment technics of representative coating wastewater of automobile manufacturing
Abstract:In this article, in allusion to the contamination of coating wastewater of automobile manufacturing which contains resin, surface active agent, heavy metal ion, oil, paint, dyestuff etc, especially the ELPO wastewater and painting wastewater which is complex, and has high concentration. we use separated pre-treatment, coagulating sedimentation, air flotation and sand filtration to treat coating wastewater and obtains good results: the removal rate of CODCr could be higher than 80%. The operate of the set proved that under this condition, it would be practicable both in technology and economy.
關鍵詞:塗裝廢水;分質處理;混凝沉澱;混凝氣浮;砂濾;Fenton試劑
Keywords:coating wastewater;separated pre-treatment;coagulating sedimentation;air flotation;sand filtration;Fenton reagent
http://203.208.33.132/search?q=cache:1mMFbNqlHpAJ:www1.eere.energy.gov/instry/chemicals/pdfs/ppgind.pdf+Treatment+Technology+for+WasteWater+from+Automobile+Painting&cd=10&hl=zh-CN&ct=clnk&gl=cn&st_usg=
翻譯
汽車及其零部件的塗裝是汽車製造過程中產生廢水排放最多的環節之一。塗裝廢水含有樹脂、表面活性劑、重金屬離子,Oil、PO43-、油漆、顏料、有機溶劑等污染物,CODCr值高,若不妥善處理,會對環境產生嚴重污染。對此類廢水,傳統的方法是直接對混合廢水進行混凝處理,治理效果不理想,出水水質不穩定,較難達到排放標准。特別是其中的噴漆廢水,含大量溶於水的有機溶劑,直接採用混凝法處理效果很差。我們在上海某汽車廠經過實地勘查、大量分析調研和小試,針對塗裝廢水的特點,採用分質預處理再進行後續處理的二步處理的方法,並選擇芬頓氧化—混凝沉澱,氣浮物化工藝進行處理,達到了排放標准,CODCr去除率達到80%以上。
1廢水的來源和主要污染物
1.1 塗裝廢水的來源及有害物質
塗裝廢水主要來自於預脫脂、脫脂、表調、磷化、鈍化等車身前處理工序;陰極電泳工序和中塗、噴面漆工序。
廢水中含有的主要有毒、有害物質如下:
塗裝前處理:亞硝酸鹽、磷酸鹽、乳化油、表面活性劑、Ni2+、Zn2+。
底塗:低溶劑陰極電泳漆膜、無鉛陰極電泳漆膜、顏料、粉劑、環氧樹脂、丁醇、乙二醇單丁醚、異丙醇、二甲基乙醇胺、聚丁二烯樹脂、二甲基乙醇、油漆等。
中塗、面塗:二甲苯、香蕉水等有機溶劑、漆膜、顏料、粉劑。
1.2 廢水水質、水量
本工程設計處理水量60m3/h。
油漆車間排放的廢水分為間歇排放的廢槽液和連續排放的清洗水。
間歇排放廢水主要來源於前處理槽的倒槽廢液、噴漆工段排放的廢液等,廢水濃度高,一次排放量大,水質如表1所示。
表1 間歇排放廢水的水質
污
染
物
源
來
水
廢
CODCr
mg/L
Oil
mg/L
PO43-
mg/L
Zn2+
mg/L
Ni2+
mg/L
Cd2+
mg/L
碳黑
mg/L
pH 其它
預脫脂槽、脫脂槽廢槽液、後噴淋、浸漬槽廢槽液 2500~
4000
300~
950
250~400 9.5~11
表調槽廢槽液 15~30 8.5~10.5
磷化槽廢槽液、後噴淋、浸漬槽廢槽液 400~600 100~150 20~30 6
鈍化槽廢槽液、後噴淋、浸漬槽廢槽液 50~100 1~3 4~5
電泳廢槽液 3000~
20000
81 7~9
中塗、面漆噴漆室水槽廢液 3000 5~6 漆渣
連續排放廢水主要來自於前處理工序的後噴淋、浸漬槽的溢流廢水等,相對間歇排放廢水,其濃度低、總排放水量大,其水質如表2所示。
表2 連續排放廢水的水質
源
來
水
廢
污
染
物
CODCr
mg/L
Oil
mg/L
PO43-
mg/L
Zn2+
mg/L
Ni2+
mg/L
Cd2+
mg/L
碳黑
mg/L
pH
脫脂後沖洗廢水 300 25 10~20 7~8
磷化後沖洗廢水 20~30 12 8 6
鈍化後沖洗廢水 10~15 0.1 5~6
DI水噴淋槽噴淋廢水 3900 1~3 4
循環去離子清洗廢水 400 6
自泳後水洗溢流廢水 100~1000 8 7~9
2.塗裝廢水處理工藝設計
汽車塗裝廢水處理工藝的關鍵之一在於合理的清濁分質。對部分難處理或影響後續處理的廢水,根據其性質和排放規律,先進行間歇的預處理,再和其它廢水集中連續處理,這樣不僅可以取得較好的和穩定的處理效果,而且在經濟上也合理可行。
2.1 塗裝廢水處理工藝流程
塗裝廢水處理工藝流程如圖1所示。
圖1某汽車廠塗裝廢水處理站處理流程
2.2 間歇預處理
2.2.1 脫脂廢液
對脫脂廢液採用酸化法進行破乳預處理,向脫脂廢液中投加無機酸將pH調至2~3,使乳化劑中的高級脂肪酸皂析出脂肪酸,這些高級脂肪酸不溶於水而溶於油,從而使脫脂廢液破乳析油。
另外,加酸後使脫脂廢液中的陰離子表面活性劑在酸性溶液中易分解而失去穩定性,失去了原有的親油和親水的平衡,從而達到破乳。經預處理後CODCr從2500~4000mg/L降低到1500~2400mg/L,去除率在40%左右;而含油量從300~950 mg/L降至50~70 mg/L,去除率高達90%~95%。
2.2.2 電泳廢液
在陰極電泳廢水中含有大量高分子有機物,CODCr最高可達20000mg/L,還含大量電泳渣,這些物質在水中呈細小懸浮物或呈負電性的膠體狀。處理中加入適當的陽離子型聚丙烯醯胺(PAM)和聚合氯化鋁(PAC)作混凝劑,利用絮凝劑的吸附架橋作用來快速去除廢水中的污染物。電泳廢液在預處理時要求pH值在11~12之間,有較好的沉澱效果。反應後的出水CODCr在2000 mg/L左右。
2.2.3 噴漆廢水
對噴漆廢水先採用Fenton試劑(H2O2+FeSO4)對其進行預處理,使其中的有機物氧化分解,CODCr去除效率約在30%左右,再加入PAC和PAM對其進行混凝沉澱,經過此兩步處理,CODCr的總去除率可達到60%~80%,由3000~20000mg/L降至1200~4000mg/L。出水排入混合廢水調節池。
Fenton試劑具有很強的氧化能力,當pH值較低時(控制在3左右),H2O2被Fe2+催化分解生成羥基自由基(·OH),並引發更多的其他自由基,從而引發一系列的鏈反應[1]。通過具有極強的氧化能力的·OH與有機物的反應,使廢水中的難降解有機物發生部分氧化、使廢水中的有機物C—C鍵斷裂,最終分解成H2O、CO2等,使CODCr降低。或者發生偶合或氧化,改變其電子雲密度和結構,形成分子量不太大的中間產物,從而改變它們的溶解性和混凝沉澱性。同時,Fe2+被氧化生成Fe(OH)3在一定酸度下以膠體形態存在,具有凝聚、吸附性能,還可除去水中部分懸浮物和雜質。出水通過後續的混凝沉澱進一步去除污染物,以達到凈化的目的[2]。
2.3 連續處理
經預處理的各類廢水排入均和調節池中,與其它廢水混合後進入連續處理流程。混合後的廢水CODCr約為700~900mg/L。連續處理分為二級:混凝沉澱和混凝氣浮。
在塗裝廢水中,油、高分子樹脂(環氧樹脂)、顏料(碳黑)、粉劑、磷酸鹽等在表面活性劑、溶劑及各種助劑的作用下,以膠體的形式穩定地分散在水溶液中。可以靠投加化學葯劑來破壞膠體的細微懸浮顆粒在水中形成的穩定體系,使其聚集成有明顯沉澱性能的絮凝體,然後形成沉澱或浮渣加以除去[3]。
在廢水中加入一定量的無機絮凝劑後,它們可中和乳化油或高分子樹脂的電位,壓縮雙電層,膠粒碰撞促進凝集,完成脫穩過程,形成細小密實的絮凝物。這樣可使塗裝廢水中的金屬離子和磷酸根離子在鹼性條件下生成的固體小顆粒形成沉澱物[4]。所以混凝處理可有效地去除汽車塗裝廢水中的油、高分子樹脂、顏料和粉劑[5]。
重金屬離子和磷酸鹽中,由於Ni2+生成Ni(OH)2沉澱以及PO43-生成Ca3 (PO4) 2沉澱的最佳pH值是10以上;而Zn2+生成氫氧化物沉澱的最佳pH值范圍是8.5~9.5,pH過高會形成ZnO22-而溶解。所以要分二級混凝反應以分別去除Ni2+,PO43-和Zn2+ 。同時,混凝反應後的固液分離分別採用的是斜板沉澱池和氣浮池,這樣既可以用斜板沉澱池來去除比重較大的重金屬化合物沉澱,又可以用氣浮池來去除比重較輕的有機物等。
2.3.1 混凝沉澱
第一級為混凝沉澱調節pH值為10~10.5。
反應槽採用推流式反應槽,分為三格。第一格加鹼將pH調高至10~10.5,加入CaCl2,第二格加FeSO4,第三格加混凝劑PAM,反應後進入斜板沉澱池進行固液分離。三格停留時間分別為15min、15min、7.5min。斜板沉澱池表面負荷按2m3/m2·h設計。一級反應CODCr去除率為50%~60%。圖2為一級反應槽示意圖。
圖2 一級反應槽示意圖
2.3.2 混凝氣浮
二級反應的反應槽,也採用推流式反應槽,分為三格。第一格加酸將pH回調至8.5~9,第二格加PAC,第三格加PAM,反應後進入氣浮池進行固液分離。二級反應槽三格停留時間分別為10min、10min、5min。氣浮池的溶氣水按處理水量的30%設計。二級反應CODCr去除率為20%~25%,同時氣浮也去除了Zn2+和一部分的表面活性劑。
2.4 深度處理
深度處理採用砂濾和活性炭過濾。從運行情況看,經砂濾後的出水即能達到排放標准(CODCr≤300mg/L)。砂濾裝置的過濾速度控制在10~12m3/(m2·h)。反沖洗水由監測水箱中的水加壓後提供,反沖洗強度控制在16~18L/(m2·s)。
砂濾後的出水已能達到排放要求,因此,活性炭過濾只是一個應急保證措施,一般情況下較少使用。
2.5 污泥處理
污泥處理的好壞,直接影響廢水處理站的運行。由於污泥含油量高,直接進行壓濾效果較差,在污泥濃縮槽中加入Ca(OH)2,pH調整至10左右,能達到較好的壓濾效果。污泥含水率經板框壓濾機後可由99%下降至75%~80%。
2.6 連續處理去除率分析
連續處理過程去除率如表3所示。
表3 連續處理效率
出水位置 CODCr去除率
斜板沉澱池出口 50%~60%
氣浮池出口 20%~25%
砂濾出口 15%
3處理效果分析
該工程自2002年運行至今,處理效果穩定,表4為上海市環境監測中心2004年對該廠的監測分析報告數據匯總。監測時間為3天,每天取樣12次(1小時取樣一次,包括廢水處理裝置進口和出口)。
表4 廢水處理設施總排口監測數據
監測
項目
廢水處理裝置進口* 廢水處理裝置出口 上海市《污水綜合排放標准》(DB31/199–1997)
濃度最小值(mg/L) 濃度最大值(mg/L) 濃度平均值(mg/L) 濃度最小值(mg/L) 濃度最大值(mg/L) 濃度平均值(mg/L)
pH 6.94 8.96 8.32 7.57 8.85 7.8 6~9
CODCr 434 759 625 73 132 115.6 300 三級標准
SS 93 351 204 21 145 29 350 三級標准
BOD5 36 145 87 4 83 16.9 150 三級標准
Oil 2.6 11.5 5.1 0.1 0.9 0.6 10 二級標准
Zn2+** - - - 0.02 1.6 0.09 4.0 二級標准
Mn2+** - - - 0.05 0.26 0.16 5.0 二級標准
Ni2+** - - - ND 0.18 0.09 1.0 第一類污染物排放標准
苯 ND ND ND ND ND ND 0.2 二級標准
甲苯 ND ND ND ND ND ND 0.2 二級標准
二甲苯 ND ND ND ND ND ND 0.6 二級標准
*廢水處理裝置進口指連續處理裝置進口。
** Zn2+、Mn2+、Ni2+本次監測未分析,表中所列為該廠廢水處理站日常分析數據。
由上表可以看出,經處理後的廢水以上海市《污水綜合排放標准》(DB31/199—1997)進行評價,其中CODCr、BOD5、SS按三級標准評價(廢水處理後排入安亭水質凈化廠),其餘採用二級標准及第一類污染物最高允許排放濃度,均能達到工程設計指標。
目前,處理裝置運行穩定,出水均能達標。
4.技術經濟分析
工程造價和運行費用是人們在選用處理方法時所必須考慮和關心的問題。本工程採用分質處理後,與一般的集中物化處理比較,節省了加葯量,污泥產量也有所減少,在一定程度上減少了運行費用,更重要的是保證了出水水質的穩定達標。本項目的技術經濟指標見表5。
表5 本處理工程技術經濟指標
總投資/萬元 單位體積污水投資/萬元 年運行費用/萬元 單位體積污水處理費/元/m3
800 1.11 30 1.67
*年工作日按250天計,日處理水量為720 m3。
5.結論
1、本工程採用分質處理、混凝沉澱、混凝氣浮、砂濾等工藝對汽車塗裝廢水進行處理在技術和經濟上是合理可行的。實際運行結果證明,此工藝對重金屬、SS、Oil的去除效率超過90%,對CODCr的去除率大於80%。
2、汽車塗裝廢水水量和水質變化大,要特別的重視廢水水量、水質均衡和分質預處理。根據工程實踐證明,對脫脂廢液,電泳廢水、廢液和噴漆廢水這三股廢水分別進行間歇預處理,這不僅有利於後續處理效率的提高,體現出技術和經濟的統一,而且對整個系統的穩定運行和出水的穩定達標至關重要。
參考文獻:
熊忠,林衍等 Fenton氧化法在廢水處理中的應用[J] 新疆環境保護,2002,24(2):35~39
張林生,魏峰等 物理化學法處理汽車工業電泳塗裝工藝中的超濾液廢水[J] 給水排水,1999,25(10):33~36
劉紹根,汽車塗裝廢水處理技術[J] 工業用水與廢水,2001,32(2):11~13
劉紹根,黃顯懷 物化—生化法處理汽車生產廢水[J] 給水排水,2001,27(12):53~56
廖亮,吳一飛等 磷化-噴漆線的廢水處理工藝研究[J] 環境技術,2000,18,(4):18~21
❺ 化工企業廢水必須零排放嗎零排放的噸水投資成本是多少呢有沒有比較靠譜的廢水零排放工藝
工業廢水問題的破解迫在眉睫,工業廢水零排放是指化工廠生產產品過程專中所產生的廢水,如生產乙屬烯、聚乙烯、橡膠、聚酯、甲醇、乙二醇、油品罐區、空壓站等裝置的含油廢水,經過生化處理後,一般可達到國家二級排放標准,現由於水資源的短缺,需達到排放標準的水再經過進一步深度處理後,達到工業補水的要求並回用。
現代化工業廢水按照含鹽量可分為兩類
1、是高濃度有機廢水。主要來源於煤氣化工藝廢水等,其特點是含鹽量低、污染物以COD為主。
2、是含鹽廢水。主要來源於生產過程中煤氣洗滌廢水、循環水系統排水、除鹽水系統排水、回用系統濃水等,其特點是含鹽量高。
工業廢水零處理工藝介紹
1、由多元金屬熔合多種催化劑,通過高溫熔煉形成一體化合金,保證「原電池」效應持續高效。不會像物理混合那樣出現陰陽極分離,影響原電池反應。
2、架構式微孔結構形式,提供了極大的表面積和均勻的水氣流通道,對廢水處理提供了更大的電流密度和更好的催化反應效果。
3、活性強,比重輕,不鈍化、不板結,反應速率快,長期運行穩定有效。
4、針對不同廢水調整不同比例的催化成份,提高了反應效率,擴大了對廢水處理的應用范圍。
❻ 如何降低廢水的cod
農葯企業在生產過程中排放的廢水通常含有機氮、有機磷、硫化物、苯環、酚鹽等多種無機物和有機物, 其特徵是污染物成分復雜、濃度高、毒性大、可生化性差, 屬難處理工業廢水, 單純用傳統的物化、生化法處理手段難以使廢水處理後達標排放. 農葯污染面廣,持續時間長,殘留農葯對人體健康影響大。研究表明,通過大氣和飲用水進入人體的農葯僅佔10% ,有90%是通過食物鏈進入人體。殘留在蔬菜、水果等食品上的低劑量農葯對人可產生慢性毒性,並誘導多種神經性疾病。農葯污染水的排放已嚴重破壞了生態環境,農葯的殘留毒性問題越來越受到人們的關注。
農業環境科學學報2007, 26 (增刊) : 256- 260
Journal of Agro- Environm ent Science
農葯廢水處理方法研究進展
肖維林, 董瑞斌
(南昌大學環境科學與工程學院, 鄱陽湖湖泊生態與生物資源利用教育部重點實驗室, 江西南昌330029)
摘要:農葯廢水因毒性大、濃度高、組分復雜,成為工業廢水治理難題之一。根據當前國內外學者在農葯廢水處理方面的研究報道,分別對農葯廢水的主要處理方法(光催化法、超聲波技術、生物法、電解法、氧化法)的研究進展進行了綜述,並在此基礎上介紹了適宜的工藝方法組合。
1 幾種主要的農葯廢水處理方法
1. 1 光催化法
銳鈦型的TiO2 在紫外光的照射下能產生氧化性極強的羥基自由基,能夠氧化降解有機物,使其轉化為CO2、H2O以及無機物,降解速度快,無二次污染,為降解處理農葯廢水提供了新思路[ 2 ] 。對於光催化降解有機物目前關注的問題,一方面是降解過程中的影響因素和降解過程的轉化問題[ 3~5 ] ,對納米TiO2 的固載化和反應分離一體化成為光催化領域中具有挑戰性的課題之一,另一方面是提高制備催化劑催化效率的問題[ 6 ] 。
陳士夫等[ 5 ]在玻璃纖維、玻璃珠、玻璃片上負載TiO2 薄膜光催化劑,並用於有機磷農葯的降解,取得了滿意的結果。梁喜珍[ 7 ]通過研究TiO2 光催化降解有機磷農葯樂果廢水的影響因素,獲得了適宜的工藝
條件。潘健民[ 8 ]通過對納米TiO2 及其復合材料光催化降解有機磷農葯進行的研究,分析了在不同催化劑、不同濃度AgNO3 浸漬、不同實驗裝置條件下的光催化降解效果,說明TiO2 表面擔載微量的Ag後,不僅能提高納米TiO2 催化活性,而且有較好的絮凝作用,使TiO2 與處理後的水易分離,後處理更方便。葛湘鋒[ 2 ]研究發現光催化降解在一定條件下符合零級動力學反應模式,而且反應速率常數和反應物起始濃度也呈線形關系,當反應物濃度增長過快達到一定值時,其反應速率常數明顯下降,反應物濃度過高時,則降解反應不再符合零級反應。
目前採用的光催化體系多為高壓燈、高壓氙燈、黑光燈、紫外線殺菌燈等光源,能量消耗大。若能對納米TiO2 進行有效、穩定地敏化,擴展其吸收光譜范圍,能以太陽光直接作為光源, 則將大大降低成本[ 9、10 ] 。
1. 2 超聲波技術
超聲波是頻率大於20 kHz的聲波,超聲波誘導降解有機物的原理是在超聲波的作用下液體產生空化作用[ 11 ] ,即在超聲波負壓相作用下,產生一些極端條件使有機物發生化學鍵斷裂、水相燃燒、高溫分解
或自由基反應。
鍾愛國等[ 12、13 ]研究表明,在甲胺磷濃度為1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、溫度30 ℃、Fe2 + >50 mg·L - 1、充O2 至飽和的條件下,用低頻超聲波(80W·cm- 2 )連續輻照120 min,甲胺磷去除率達到99. 3% ,乙醯甲胺磷的去除率達到99. 9%。孫紅傑等[ 14 ]研究了各種因素超聲波頻率、功率、聲強、變幅桿直徑和溶液初始pH等對超聲降解甲胺磷農葯廢水的影響。Kotronarou等[ 15 ]得出對硫磷在超聲條件下可以被完全降解為PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反應溫度為20 ℃、pH為7. 4時,對硫磷無催化水解半衰期為108 d,其有毒代謝產物對氧磷水解半衰期為144 d。Cristina等[ 16 ]對馬拉磷農葯在超聲波輻射下, 82μmol·L - 1的馬拉磷溶液30 min內pH從6下降到4, 2 h內所有的馬拉磷全部降解,產物均為無機小分子。
蔣永生、傅敏等[ 17、18 ]報道了用超聲波降解模擬廢水中低濃度樂果的試驗表明,輻射時間延長,降解率增加,加入H2O2 可明顯提高樂果的降解率,在溶液初始濃度較低的范圍內,降解速率隨濃度增大而加快,
濃度增大到一定值後,降解速率變化不明顯,超聲降解時溶液溫度控制在15~60 ℃為宜。謝冰等[ 19 ]對久效磷和亞磷酸三甲酯生產過程中產生的廢水進行了超聲氣浮預處理,可降低其COD和毒性,提高其可生化性,再經以光合細菌為主的生化處理,可使其COD降至200 mg·L - 1。
王宏青等[ 20 ] 研究表明: 滅多威經超聲作用35min,可被完全轉換為無機物,其降解過程為假一級反應;濃度增加時,降解減慢; Fe2 +和H2O2 對降解有促進作用,且Fe2 +促進作用比H2O2 的大;採用不同氣體飽和溶液時,降解率的大小順序為Ar >O2 >Air >N2。紅外光譜表明降解產物為SO4
2 - 、NO3- 和CO2。
目前有關超聲輻射降解有機污染物的研究,大多屬於實驗室研究,還缺乏系統的研究,更缺少中試數據[ 21 ] 。
1. 3 生物法
在國內,農葯廠家大多建有生化處理裝置,但目前幾乎沒有一家能夠獲得理想的處理效果。因此,對這類廢水的生化處理研究是十分必要的。已有大量研究表明真菌、細菌、藻類等微生物對有農葯有很好的降解作用。
程潔紅[ 22 ]從土壤中分離得到以多菌靈生產農葯廢水為惟一碳源生長的13株菌,經鑒定為假單胞菌屬( Pseudom onas sp. ) ,研究了SBR 工藝運行的最佳條件,所篩選的菌株對多菌靈農葯廢水的COD去除率為52. 3%。張德詠,譚新球[ 23 ]從生產甲胺磷農葯的廢水中篩選具有促生活性及可降解甲胺磷的光合細菌菌株, 培養後第7 d, 該菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,樂果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,該菌株也能夠以三唑磷、辛硫磷作為惟一碳源生長。
生物膜法將微生物細胞固定在填料上,微生物附著於填料生長、繁殖,在其上形成膜狀生物污泥。與常規的活性污泥法相比,生物膜具有生物體積濃度大、存活世代長、微生物種類繁多等優點,尤其適宜於特種菌在廢水體系中的應用[ 24~26 ] 。王軍、劉寶章[ 27 ]利用半軟性填料進行掛膜,處理菊酯類、雜環類綜合農葯廢水。當進水CODCr為6 810、3 130、1 890mg·L - 1時,經過24 h的作用,細菌膜對CODCr的降解率分別達到24. 8%、43. 5%、53. 4%。
1. 4 電解法
鐵炭微電解法是絮凝、吸附、架橋、卷掃、共沉、電沉積、電化學還原等多種作用綜合效應的結果[ 28 ] ,能有效地去除污染物提高廢水的可生化性。新產生的鐵表面及反應中產生的大量初生態的Fe2 +和原子H具有高化學活性,能改變廢水中許多有機物的結構和特性,使有機物發生斷鏈、開環[ 29 ] ;微電池電極周圍的電場效應也能使溶液中的帶電離子和膠體附集並沉積在電極上而除去;另外反應產生的Fe2 + 、Fe3 +及
其水合物具有強烈的吸附絮凝活性,能進一步提高處理效果。
雍文彬[ 30 ]採用鐵屑微電解法能有效去除農葯生產廢水中的COD、色度、As、氨氮、有機磷和總磷,去除率分別可達76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。張樹艷[ 31 ]採用鐵炭微電解法對幾種農葯配水進行處理,試驗結果表明,最佳反應條件下,廢水的CODC r 去除率都可達67%以上;最佳反應條件:鐵/水比為(0. 25~0. 375) ∶1,鐵/炭比為( 1~3) ∶1, pH3~4,反應時間1~1. 5 h。廢水經微電解處理,然後進行Fenton試劑氧化,則微電解出水中Fe2 + 可作為Fenton的鐵源,且微電
解時有機污染物的初級降解也有利於後續Fenton反應的進行。吳慧芳[ 32 ]採用微電解和Fenton試劑氧化兩種物化手段對菊酯、氯苯BOD5 /CODCr = 0. 03)和對鄰硝氯苯(BOD5 /CODCr = 0. 05) 3種廢水按比例配製而成的綜合農葯廢水進行預處理,結果表明:在廢水pH為2~2. 5時,經微電解處理後,BOD5 /CODCr比值達0. 45以上,可生化性提高; Fenton試劑對綜合農葯廢水CODCr去除率為60%左右,色度去除率接近
100%。劉占孟[ 33 ]以活性炭-納米二氧化鈦為電催化劑,對甲胺磷溶液的電催化氧化降解規律進行研究表明,該工藝能有效去除廢水中的有機物,納米二氧化鈦催化劑的催化效果顯著。電解效果隨著電解時間的延
長、催化劑的增加而升高,低pH有利於電催化氧化過程中H2O2 和·OH 的生成。王永廣[ 34 ] 採用電解/UASB /SBR工藝處理生化性差、氯離子濃度高的氟磺胺草醚農葯廢水。設計電流密度取30. 0 A·m- 2 ,該工程的電費為2. 30 元·m- 3 ,葯劑費為0. 30 元·m- 3 ,人工費為1. 50元·m- 3 ,運行成本為4. 10元·m- 3 , COD去除率> 97%。
1. 5 氧化法
深度氧化技術(AOPs)可通過氧化劑的組合產生具有高度氧化活性的·OH,被認為是處理難降解有機污染物的最佳技術。
引入紫外線、雙氧水聯合作用和調控反應體系pH,可進一步提高臭氧深度氧化法的效率。陳愛因[ 35 ]研究表明,紫外光催化臭氧化降解農葯2, 4-二氯苯氧乙酸(2, 4- D)廢水成效顯著,臭氧/紫外(UV)深度氧化法(比較單獨臭氧化、臭氧/紫外、臭氧/雙氧水、臭氧/雙氧水/紫外4種臭氧化過程)是最好的臭氧化處理方法。2, 4- D 200 mg·L - 1的水樣,反應30min, 2, 4- D降解完全, 75 min時礦化率達75%以上。鹼性反應氛圍有利於臭氧化反應進行。雙氧水的引入對2, 4- D降解無明顯促進作用,這是因為雙氧水分解消耗OH- ,沒有緩沖的反應體系pH降低,限制了雙氧水的分解和·OH自由基鏈反應。文獻[ 36 ]表明添加H2O2 對光解效果有一定改善作用,投加量達到75 mg·L - 1時,水樣的COD去除率由零投加時
的20%提高到40% ,但過量投加對處理效果沒有進一步促進作用。曝氣能促進光解效果,特別對UV /Fenton工藝作用更為顯著,光解水樣2 h後,曝氣條件下的COD 去除率可從不曝氣條件下的30%提高到80%。
催化濕式氧化能實現有機污染物的高效降解,同時可以大大降低反應的溫度和壓力,為高濃度難生物降解的有機廢水的處理提供了一種高效的新型技術。催化劑是催化濕式氧化的核心,諸多學者致力於研究開發新型高效的催化劑。韓利華等[ 37 ]以Cu和Ce為活性組分,制備了Cu /Ce復合金屬氧化物,比較了均相-多相催化劑的催化性能。韓玉英[ 38 ]在催化濕式氧化法處理吡蟲啉農葯廢水中,分別用硝酸亞鈰和硝酸銅作催化劑,反應一定時間後COD去除率分別達到80%和95. 5%。用硝酸銅作催化劑處理吡蟲啉農葯廢水具有較高的活性,但Cu2 + 有較高的溶出量。張翼、馬軍[ 39 ]在廢水中加入2種自製的催化劑,結果表明,只用臭氧處理的情況下7 d後有機磷的去除率為78. 03%; 在催化劑A 存在下, 去除率可達93. 85%;在催化劑B存在下,去除率可達為88. 35%。在室溫和中性介質中均屬於一級反應。
ClO2 是一種強氧化劑,鹼性條件下氰根(CN- )先被氧化為氯酸鹽,氯酸鹽進一步被氧化為碳酸鹽和氮氣,從而徹底消除氰化物毒性。陳莉榮[ 4 0 ]將含氰農葯廢水空氣吹脫除氨後,採用ClO2 作為氰化物的氧化劑,氰化物濃度為60~80 mg·L - 1 , pH為11. 5左右時,按ClO2 ∶CN- ≥3. 5 (質量比)投葯,氰化物的去除率達97%以上,氧化後廢水經生物處理系統進一步處理後各項指標都能達排放標准要求。
2 農葯廢水處理工藝方法組合
在處理實際廢水時,由於水中的有機污染物呈現出復雜多樣的特點,僅採用單一的處理工藝往往達不到預期目的。在處理實際廢水時,可以綜合考慮技術特點與具體廢水水質情況來選擇適宜的工藝組合形式。
文獻[ 41 ]研究表明,難降解有機磷農葯廢水經80 min光催化氧化後,在生物段的COD去除率可達85%以上。李耀中[ 4 2 ]設計了一種流化床光催化反應器與過濾預處理相組合的中試系統,制備了一種以30~40目耐火磚顆粒為載體的負載型TiO2 光催化劑,以高壓汞燈為光源,結果表明,光照150 min後該系統對配製的農葯廢水的COD 去除率≥70%, BOD5 /
COD值可提高至0. 4以上。張仲燕[ 4 3 ]以一個生產多種染料和農葯中間體的化工廠為研究對象,採用中和- 混凝- 催化氧化的組合工藝並嚴格控制良好的處理條件, 對CODCr含量為7 000~14 000 mg·L - 1的高
濃度廢水可以降至CODCr為300~500 mg·L - 1 , pH、SS和色度均達到排放標准。文獻[ 44 ]研究發現,光電結合工藝存在一定的協同效應,遠大於光催化和電催化單獨處理效率的簡單加和。加入少量Na2 SO4 或
NaCl提高電解質質量濃度後, COD去除率迅速提高到80%以上,且加入NaCl電解質比加入Na2 SO4 能更好地降低廢水的COD,電流越高, COD 去除速率越大。文獻[ 45 ]研究發現將臭氧氧化與生物處理聯用治理含4種農葯的有機廢水,可將其中的阿特拉津、氨基吡啶、米吐爾和對草快分別去除96%、99%、98%和80%。
❼ 聚乙二醇廢水達標處理技術求助聚乙二醇廢水,每
你好,我來在一家聚乙二醇污源水處理廠工作四年。工作期間該污水處理廠達標排放,符合國家一級A排放標准。
聚乙二醇經厭氧處理後B/C較高,易生化處理。
具體工藝如下:物化沉澱+AOAO工藝。
運營時需注意:
1、控制好系統進水負荷、污泥負荷穩定,防止因進水波動造成二沉池漂泥。
2、調節好系統進水pH值,保證厭氧出水pH6.8~7.5之間。
3、冬季對系統進水加溫,控制溫度在30~35度之間。
4、根據廢水水質、溫度情況適當排泥調控污泥齡,保證活性污泥量,防止好氧池起泡、二沉池漂泥。
如有其它問題可私信我。
❽ 怎樣從廢水乙二醇中提取乙二醇
乙二醇水溶液可以通過精餾塔濃縮得純度大於98%的乙二醇
也可以加熱。水的沸點低。
❾ 乙二醇廢水怎麼處理
乙二醇廢水盡量回收溶劑,在對實驗沒有妨礙的情況下,把它反復使用。回收時要加以注意對甲醇、乙醇及醋酸之類溶劑,能被細菌作用而易於分解。故對這類溶劑的稀溶液,經用大量水稀釋後,即可排放。
❿ 含有這些物質二甘醇、乙二醇、苯酐、對苯二甲酸、己二酸和丙烯酸乳液的廢水怎麼處理
您這屬於典型的化工廢水,開封海源科技專業處理化工廢水,比如含有苯,甲苯,二甲苯,乙醇,甲醇,醋酸丁酯等溶媒,吡啶,羧酸,酯類。對苯二甲酸,己二酸,乙二醇等,酚類,苯酚,甲酚,磺酸類等廢水。