㈠ 厭氧處理優缺點
優點:
厭氧處理技術具有投資少效率高,運行費用低,高產出的特點;
缺點:
厭氧處理受到低濃度廢水Ks的限制,所以厭氧在處理低濃度廢水方面沒有太大的空間,
現有厭氧處理技術的局限性
厭氧處理是廢水生物處理技術的一種方法,要提高厭氧處理速率和效率,除了要提供給微生物一個良好的生長環境外,保持反應器內高的污泥濃度和良好的傳質效果也是2個關鍵性舉措。 http://www.sunlight-ep.com/tech.php?id=112
㈡ 厭氧生物處理化學工業污水的規范標準是什麼
SICOLAB整理厭氧生物處理化學工業污水
氧化溝容積宜採用污泥負荷法計算。主要設計參數宜根據試驗或類似污水的運行數據確定,當無數據時,延時曝氣氧化溝主要設計參數可按下列數據取值:
1 污泥負荷宜取0.05kg[BOD5]/(kg[MLSS]·d)~0.10kg[BOD5]/(kg[MLSS]·d);
2 混合液懸浮固體平均濃度宜取2.5[MLSS]/L~4.5g[MLSS]/L;
3 污泥齡不宜小於15d;
4 污泥迴流比宜取50%~150%;
5 污泥產率宜取0.3kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。
二、當氧化溝工藝用於脫氮除磷時,其設計計算宜符合脫氮除磷的有關規定。
三、氧化溝溝內平均水平流速不應小於0.25m/s,當流速不能滿足要求時,宜設潛水推進器。
四、氧化溝可採用曝氣轉碟、曝氣轉刷、表面曝氣葉輪或鼓風曝氣等充氧方式。
五、氧化溝有效水深應根據曝氣設備性能確定。採用轉刷曝氣機時,有效水深不宜大於3.5m;採用轉碟曝氣機時,有效水深不宜大於4.0m,採用豎軸表面曝氣機時,有效水深不宜大於5.0m;採用鼓風曝氣時,有效水深宜為4m~6m。反應池的超高應符合本規范第6條的規定。
六、氧化溝內宜設導流設施,出水應設可調節出水堰板。
㈢ 簡述好氧和厭氧生物處理有機污水的原理和適用條件。
好氧生物處理:在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
這些高能位的有機物質經過一系列的生化反應,逐級釋放能量,最終以低能位的無機物質穩定下來,達到無害化的要求,以便返回自然環境或進一步處置。適用於中、低濃度的有機廢水,或者說BOD5濃度小於500mgL的有機廢水。
厭氧生物處理:在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。適用於有機污泥和高濃度有機廢水(一般BOD5≥2000mg/L)
(3)厭氧處理對廢水原料有什麼要求擴展閱讀:
在生活污水、食品加工和造紙等工業廢水中,含有碳水化合物、蛋白質、油脂、木質素等有機物質。
這些物質以懸浮或溶解狀態存在於污水中,可通過微生物的生物化學作用而分解。在其分解過程中需要消耗氧氣,因而被稱為耗氧污染物。這種污染物可造成水中溶解氧減少,影響魚類和其他水生生物的生長。
水中溶解氧耗盡後,有機物進行厭氧分解,產生硫化氫、氨和硫醇等難聞氣味使水質惡化。水體中有機物成分非常復雜,耗氧有機物濃度常用單位體積水中耗氧物質生化分解過程中所消耗的氧量表示。
㈣ 廢水的厭氧生物處理方法有哪些厭氧處理的原理是什麼
厭氧消化具有下列優點:無需攪拌和供氧,動力消耗少;能產生大量含甲烷的沼氣,是很好的能源物質,可用於發電和家庭燃氣;可高濃度進水,保持高污泥濃度,所以其溶劑有機負荷達到國家標准仍需要進一步處理;初次啟動時間長;對溫度要求較高;對毒物影響較敏感;遭破壞後,恢復期較長。污水厭氧生物處理工藝按微生物的凝聚形態可分為厭氧活性污泥法和厭氧生物膜法。厭氧活性污泥法包括普通消化池、厭氧接觸消化池、升流式厭氧污泥床(upflow anaerobic sludge blanket,UASB)、厭氧顆粒污泥膨脹床(EGSB)等;厭氧生物膜法包括厭氧生物濾池、厭氧流化床和厭氧生物轉盤。
一般來說,廢水中復雜有機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子有機物由於其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中典型的有機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,澱粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解後的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。答案來自環保通。
(2)酸化階段:上述的小分子有機物進入到細胞體內轉化成更為簡單的化合物並被分配到細胞外,這一階段的主要產物為揮發性脂肪酸(VFA),同時還有部分的醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等產物產生。
(3)產乙酸階段:在此階段,上一步的產物進一步被轉化成乙酸、碳酸、氫氣以及新的細胞物質。
(4)產甲烷階段:在這一階段,乙酸、氫氣、碳酸、甲酸和甲醇都被轉化成甲烷、二氧化碳和新的細胞物質。這一階段也是整個厭氧過程最為重要的階段和整個厭氧反應過程的限速階段。
㈤ 厭氧污水處理的原理
在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。 水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L);
ρo———非溶解性底物的初始濃度(g/L);
Kh——水解常數(d^-1);
T——停留時間(d) 發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。 在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL 這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。
最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合成為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
㈥ 比較廢水厭氧生物處理與廢水好氧生物處理的原理,特點及適用條件
好氧生物處理
好氧生物處理是在有游離氧(分子氧)存在的條件下,好氧微生物降解有機物,使其穩定、無害化的處理方法。微生物利用廢水中存在的有機污染物(以溶解狀與膠體狀的為主),作為營養源進行好氧代謝。
過程:有機物被微生物攝取後,通過代謝活動,約有三分之一被分解、穩定,並提供其生理活動所需的能量;約有三分之二被轉化,合成為新的原生質(細胞質),即進行微生物自身生長繁殖。後者就是廢水生物處理中的活性污泥或生物膜的增長部分,通常稱其剩餘活性污泥或生物膜,又稱生物污泥。在廢水生物處理過程中,生物污泥經固—液分離後,需進行進一步處理和處置。
優點:好氧生物處理的反應速度較快,所需的反應時間較短,故處理構築物容積較小。且處理過程中散發的臭氣較少。所以,目前對中、低濃度的有機廢水,或者說BOD濃度小於500mg/L的有機廢水,基本上採用好氧生物處理法。
在廢水處理工程中,好氧生物處理法有活性污泥法和生物膜法兩大類。
厭氧生物處理是在沒有游離氧存在的條件下,兼性細菌與厭氧細菌降解和穩定有機物的生物處理方法。在厭氧生物處理過程中,復雜的有機化合物被降解、轉化為簡單的化合物,同時釋放能量。在這個過程中,有機物的轉化分為三部分進行:部分轉化為CH4,這是一種可燃氣體,可回收利用;還有部分被分解為 CO2、H20、NH3、H2S等無機物,並為細胞合成提供能量;少量有機物被轉化、合成為新的原生質的組成部分。由於僅少量有機物用於合成,故相對於好氧生物處理法,其污泥增長率小得多。
廢水厭氧生物處理
廢水厭氧生物處理過程不需另加氧源,故運行費用低。此外,它還具有剩餘污泥量少,可回收能量(CH4)等優點。其主要缺點是反應速度較慢,反應時間較長,處理構築物容積大等。但通過對新型構築物的研究開發,其容積可縮小。此外,為維持較高的反應速度,需維持較高的反應溫度,就要消耗能源。
對於有機污泥和高濃度有機廢水(一般B005≥2 000mg/L)可採用厭氧生物處理法。
㈦ 關於污水處理厭氧方面的問題!!高手專家請進!!!!
厭氧消化的生化階段
第Ⅰ階段——水解產酸階段
污水中不溶性大分子有機物,如多糖、澱粉、纖維素、烴類(烷、烯、炔等)水解,主要產物為甲、乙、丙、丁酸、乳酸;緊接著氨基酸、蛋白質、脂肪水解生成氨和胺,多肽等(所以有的書又把水解產酸分為二個階段)。
第Ⅱ階段——厭氧發酵產氣階段
第Ⅰ階段產物甲酸、乙酸、甲胺、甲醇和CO2+H2等小分子有機物在產甲烷菌的作用下,通過甲烷菌的發酵過程將這些小分子有機物轉化為甲烷。所以在水解酸化階段COD、BOD值變化不很大,僅在產氣階段由於構成COD或BOD的有機物多以CO2和H2的形式逸出,才使廢水中COD、BOD明顯下降。
在酸化階段,發酵細菌將有機物水解轉化為能被甲烷菌直接利用的第1類小分子有機物,如乙酸、甲酸、甲醇和甲胺等;第2類為不能被甲烷菌直接利用的有機物,如丙酸、丁酸、乳酸、乙醇等,不完全厭氧消化或發酵到此結束。如果繼續全厭氧過程,則產氫、產乙酸菌將第2類有機物進一步轉化為氫氣和乙酸。
第Ⅱ階段生化過程是產甲烷細菌把甲酸、乙酸、甲胺、甲醇等基質通過不同途徑轉化為甲烷,其中最主要的基質為乙酸。
http://www.chinacitywater.org/rdzt/gyf/download/1170761630656.pdf
㈧ 畜禽污水厭氧處理技術條件和工藝參數是什麼
目前在國內畜禽養殖污水處理中應用最多的厭氧反應器主要有CSTR、UASB和USR,其處理內技術適用條件和工藝參數容見下表。
CSTR UASB USR原料含固率(%) 8 3~5 5~6投料方式 連續或半連續 連續 連續機械攪拌 需要 不需要 不需要布水器 不需要 需要 需要特殊裝置 無 三相分離器 頂部噴淋管溫度條件 中溫 中、高溫 中溫HRT(天) 20~30 10~15 20~30有機負荷[以COD計,千克/(米3?天)] — 10 —適用 大中型養殖場污水處理 大型養殖場污水處理 大中型養殖場污水處理
㈨ 污水處理中厭氧處理是什麼原理和過程,需要什麼設備
A/O工藝法,也叫厭氧好氧工藝法,主要用於水處理方面。
A就是厭氧段,主要用於脫氮除磷;O就是好氧版段,主要用於去除水中權的有機物。它除了可去除廢水中的有機污染物外,還可同時去除氮、磷,對於高濃度有機廢水及難降解廢水,在好氧段前設置水解酸化段,可顯著提高廢水可生化性。
㈩ 污水處理厭氧生物處理的影響因素有哪些
⑴ 能耗較低:因為厭氧生物處理不需要供氧,能源消耗約為好氧活性污泥法專的1/10,還能產生具屬有較高熱值的甲烷氣(CH4)。每去除1gCODcr可以產生0.35標准升甲烷或0.7標准升沼氣。沼氣的熱值為22.7KJ/L,甲烷的熱值為39300KJ/m3,一般天然氣的熱值為34300KJ/m3 。
⑵ 污泥產量低:因為厭氧微生物的增殖速率比好氧微生物低得多,好氧生物處理系統每處理1kgCODcr產生的污泥量為0.25~0.6kg,而厭氧生物處理系統每處理1kgCODcr產生的污泥量只有0.02~0.18kg。
⑶可對好氧生物處理系統不能降解的一些大分子有機物進行徹底降解或部分降解。
⑷ 厭氧微生物對溫度、PH等環境因素的變化更為敏感,運行管理好厭氧生物處理系統的難度較大。
⑸ 水溫適應廣:好氧處理水溫在10~35℃之間,當高溫時就需採取降溫措施;而厭氧處理水溫適應廣泛,分低溫厭氧(10~30℃)、中溫厭氧(30~40℃)和高溫厭氧(50~60℃)。