㈠ 廢水氨氮超標是什麼原因導致
氨氮是指水中以游離氨(NH3)和銨離子(NH4+)形式存在的氮。污水氨氮超標常見的原因:
1)自身生成原因:氨氮的產生是不可避免且持續性的;如污水處理廠、食品廠、化工廠、電鍍廠、造紙廠、印染廠、養豬場........由於自身的生產或還原性物質等原因都會導致氨氮超標。
2)污水處理工藝缺陷:
a)生化處理(水溫過低):當溫度過低時,菌種的活性也跟著低,從而降低對氨氮的分解;b)廢水突然(水量加大):原有的工藝處理不過來,對工藝系統造成滿負荷,容易導致出水超標;
c)廢水中的(濃度增高):在高濃度廢水沖擊下,現場處理如果沒有改變,出水濃度就會容易超標。
投加您所提的硝化細菌,其功效分析:
1.高效將氨氮先氧化成亞硝酸氮再氧化成硝酸氮;
2.加速污水中的污泥沉降,增大污泥絮體顆粒,調整污泥絮體結構;
3.選擇性篩選出合適的特異性強的硝化細菌,從而縮短馴化時間,增加硝化效率。
4.可與反硝化系統聯動,形成共生互補作用,提高系統脫氮能力;
5.有效抑制病毒、病菌與寄生蟲;
6.針對藻類過度繁殖的水體,能夠大量消耗氮素營養,切斷藻類氮素營養,抑制藻類繁殖,有效凈化水體與良好水色;
7. 大自然中篩選出的菌種結合頂尖馴化技術,繁殖迅速,應激能力強,能因應惡劣環境自然進化;
8.在好氧及缺氧條件下均可進行硝化反應,其中缺氧硝化效果較弱。
㈡ 廢水氨氮超標怎麼快速解決
一、內迴流導致的廢水氨氮超標
內迴流導致的氨氮超標有兩方面原因:
1、內迴流泵有電氣故障(現場跳停仍有運行信號)、機械故障(葉輪脫落);
2、人為原因(內迴流泵未試正反轉,現場為反轉狀態)。
解決辦法
1、及時發現問題,檢修內迴流泵;
2、內迴流已經導致氨氮升高,檢修內迴流泵,停止或者減少進水進行悶爆;
3、硝化系統已經崩潰,停止進水悶爆,如果有條件、情況比較緊迫可以投加相似脫氮系統的生化污泥,加快系統恢復。
二、pH過低導致的氨氮超標
pH降低導致的氨氮超標,實際中發生的概率比較低,因為pH的連續下降是一個過程,一般運營人員在沒找到問題的時候就開始加鹼去調節pH了。
解決辦法
1、pH過低這種問題其實很簡單,就是發現pH連續下降就要開始投加鹼來維持pH,然後再通過分析去查找原因;
2、如果有硝化系統,需及時把硝化系統的pH值補充上來。
三、溫度過低導致的氨氮超標
這種情況多發生在北方無保溫或加熱的污水處理廠,因為水溫低於硝化細菌的適宜溫度,而且MLSS沒有為了冬季代謝緩慢而提高,導致的氨氮去除率下降。
解決辦法
1、設計階段把池體做成地埋式的(小型的污水處理比較適合)
2、進水加熱,如果有勻質調節池,可以在池內加熱,這樣波動比較小。
3、曝氣加熱,比較小眾,目前還沒遇到過,其實空氣壓縮鼓風時溫度已經升高了,如果曝氣管可以承受,可以考慮加熱壓縮空氣來提高生化池溫度。
㈢ 污水處理氨氮超標怎麼辦
污水處理廠出水氨氮超標通常是由於在氧氣不足時含氮有機物分解而產生,或者是由於氮化合物被反硝化細菌還原而生成。水中的氨氮超標會對魚類呈現毒害作用,對人體也有不同程度的危害。其中氨氮中含有一種叫NO-2的物質,食用NO-2這種物質可以致癌。
氨氮超標的處理方法一改善污泥負荷與污泥齡
污水中的生物硝化反應屬低負荷工藝,負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。F/M一般在0.05~0.15kgBOD/kgMLVSS·d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,即SRT過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。
氨氮超標的處理方法二改善迴流比
生物硝化系統的迴流比一般較傳統活性污泥工藝大,通常迴流比控制在50~100%。主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,污水處理中的活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。
氨氮超標的處理方法三改善水力停留時間
生物硝化曝氣池的水力停留時間也較活性污泥工藝長,因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。至少應在8h以上。
氨氮超標的處理方法四改變BOD5/TKN比
TKN系指水中有機氮與氨氮之和,入流污水中BOD5/TKN是影響硝化效果的一個重要因素。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。BOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。
氨氮超標的處理方法五改變溶解氧
硝化細菌為專性好氧菌,無氧時即停止生命活動,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。
氨氮超標的處理方法六改變溫度
冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯因為硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。
氨氮超標的處理方法七改變pH
盡量控制生物硝化系統的混合液pH大於7.0,因為硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。
以上幾種方法主要是根據氨氮超標的原因給出的解決辦法,由於引起氨氮超標的原因可能不止一個,所以應逐一排除來解決氨氮超標的問題。
㈣ 廢水處理過程中氨氮超標怎麼辦
廢水中氨氮超標:可以增加生化池投加高效菌種,又在排放口處投加化學葯劑,2重功效
㈤ 污水氨氮超標怎麼處理
水體中的氨氮來是自指以氨(NH3)或銨(NH4+)離子形式存在的化合氨。氨氮是各類型氮中危害影響最大的一種形態,是水體受到污染的標志,其對水生態環境的危害表現在多個方面。與COD一樣,氨氮也是水體中的主要耗氧污染物,氨氮氧化分解消耗水中的溶解氧,使水體發黑發臭。
目前去除氨氮的化學方法主要為折點加氯法,即投加漂白水或次氯酸鈉去除廢水中的氨氮。但此類方法去除效率低,氨氮排放標准多為10~30mg/L,因此本文章提供一種深度去除的方法,以達到廢水的處理需求。
實驗步驟:向含氨氮廢水中投加適量的RECY-DNH-01型氨氮去除劑,攪拌反應5分鍾;
實驗數據上可以看出,使用漂白水去除氨氮的效率差,使用氨氮去除劑後氨氮含量穩定降至10mg/L以內,達到排放標準的需求。
註:RECY-DNH-01型氨氮詳細參數信息需要在網上查詢。
㈥ 污水處理氨氮高怎麼辦
含有氨氮污水的處理:
進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法等。
整個過程為通過粗格柵的原污水經過污水提升泵提升後,經過格柵或者篩率器,之後進入沉砂池,經過砂水分離的污水進入初次沉澱池,以上為一級處理(即物理處理),初沉池的出水進入生物處理設備,有活性污泥法和生物膜法。
生物處理設備的出水進入二次沉澱池,二沉池的出水經過消毒排放或者進入三級處理,一級處理結束到此為二級處理,三級處理包括生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法。
二沉池的污泥一部分迴流至初次沉澱池或者生物處理設備,一部分進入污泥濃縮池,之後進入污泥消化池,經過脫水和乾燥設備後,污泥被最後利用。
(6)印花廢水氨氮超標怎麼辦擴展閱讀:
生活污水處理:
1、農村生活污水治理方法
生活污水→化糞池→厭氧池→人工濕地(種植根系發達、喜濕、吸收能力強的美人蕉、水蔥、菖蒲等植物)經「過濾」後排放的方法進行處理,主要適用於農村分散生活污水處理,建成後運行費用基本為零,使用壽命在10年以上。
2、城市生活污水治理方法
將城市生活污水輸送到城市周圍的農村,利用農村廣闊的土地來凈化城市生活污水。將是一勞永逸與一舉多得的好方法。以日供應生活用自來水100W立方的大中型城市為例:普通的污水處理設施造價1000元/立方。
建設成本10億,年運營成本100W立方/天×365×0.5元/立方=1.8億.採用土壤凈化法建設成本1000元/立方,年運營成本100W立方/天×365×0.1元/立方=0.4億.同時年節約農用水資源3.6億立方,節約化肥約1萬噸/年,減少農葯用量5噸/年。
3、生活污水處理新技術:分散式處理
生活污水分散式生物集成處理系統是針對生活污水的一種新型、經濟環保的處理系統。該系統具備設備投資少、運行成本低、安裝簡便等優勢,利用生物強化技術對污染物進行高效降解,可實現對生活污水就地、就近處理,並達到水資源循環再生利用的目的。
分散式污水處理技術具有設備佔地面積小、無須鋪設管網、設備集成度高等特點,因此基礎設施費用及土建費用在整體投資中佔比較小,僅30%左右,而約有70%的投資主要用於對污水處理設備的采購和安裝。
㈦ 污水氨氮高了怎麼處理
污水氨氮高的處理方法:加氫氧化鈉調節水的PH值為11左右,通過氨氮吹脫塔用空氣吹脫,去除率可達80%左右,僅僅通過這樣的方法無法處理達標,還需後續處理。剩餘的氨氮可以通過脫氮的污水處理工藝進行去除:例如採用曝氣生物濾池生物轉盤的生物膜法進行處理。
氨氮是指以氨或銨離子形式存在的化合氮,即水中以游離氨(NH3)和銨離子(NH4+)形式存在的氮。動物性有機物的含氮量一般較植物性有機物為高。同時,人畜糞便中含氮有機物很不穩定,容易分解成氨。
自然地表水體和地下水體中主要以硝酸鹽氮(NO3)為主,以游離氨(NH3)和銨離子(NH4+)形式存在的氮受污染水體的氨氮 叫水合氨,也稱非離子氨。非離子氨是引起水生生物毒害的主要因子,而銨離子相對基本無毒。
國家標准Ⅲ類地面水,非離子氨氮的濃度≤1毫克/升。氨氮是水體中的營養素,可導致水富營養化現象產生,是水體中的主要耗氧污染物,對魚類及某些水生生物有毒害。
(7)印花廢水氨氮超標怎麼辦擴展閱讀:
在城市環境污水的治理中,污水處理廠等設施需要進行合理的統籌安排與規劃布局,一方面,污水處理廠需要進行科學選址,依據城市發展規劃與基礎設施情況,合理配置城市的污水處理管網。例如採用階段性的規劃措施,進行污水輸送的主幹管和收集系統接戶管建設,使二者相互配套。
如果近期內無法確定接戶管與收集支管,污水輸送的主幹管需要預留介面,等區域位置確定後再予以接入,以減少因規劃建設不合理造成的資源浪費。另一方面,城市管理者需要加快污水管網的配套建設。
既要掌握原有污水處理設施的位置與運行情況,保障其可以正常使用,充分發揮其在污水處理中的作用,又要梳理污水的來源途徑,分片建設污水管網的配套設施,並有計劃地改造老舊城區的污水管道,將生活和生產的污水引入污水處理廠,提高污水治理的效率。
㈧ 印染廢水總氮超標怎麼處理
印染廢水總氮超標如何處理
一、印染廢水介紹以及總氮的來源
印染廢水屬於有機性廢水,其所有的污染物和顏色大多數是天然的有機物質以及人工合成的有機物質組成,印染廢水具有以下特徵:(1)色度大,(2)水質水溫以及pH變化大,(3)有機物含量比較高,而且含有比較強的毒性,(4)氨氮濃度高,主要是前面印花工藝中使用了尿素作為印花助劑,以及部分使用含氮染料,增加了印染廢水的處理難度。
其中總氮主要來源於尿素和含氮的有機染料,染料結構中含有硝基和胺基的基團化物質,我國環保部於2012年10月份制定了《紡織染整工業水污染物排放標准》,於2013年1月1日起正式執行,對於總氮的排放標準是,總氮直接排放20(35)mg/L,總氮間接排放是30(50)mg/L。
圖一 印染廢水污染物的來源
二、印染廢水現有的總氮去除辦法和瓶頸
現有大多數印染廢水是通過傳統的硝化反硝化方式去除總氮,是利用異養微生物氧化作用將有機氮類物質轉化為氨氮,氨氮再被自養硝化菌氧化為硝態氮,再通過反硝化細菌將硝態氮還原為氣態氮氣,從而達到脫氮的目的。
從反應方程式可以看出。反硝化細菌是利用有機物中的C作為電子供體,通過分解有機碳提供能量,再以硝酸根作為電子受體,將離子型氮源轉化為氣體的氮氣,由此實現有機物的分解以及氮的去除。
通過以上分析可以看出,在印染廢水總氮的轉化過程中,首先通過氨化將有機氮轉化為氨氮,再通過硝化作用變為硝態氮,最後通過反硝化作用變為氮氣。然而在實際的處理過程中,廢水的總氮往往超標,而氨氮卻是達標的,這是什麼原因導致的呢?
引起這一問題主要是卡在了反硝化脫氮環節,微生物通過厭氧反硝化的方式脫除硝態氮。但是由於實際現場的厭氧池中,微生物密度低,印染廢水的毒性大,以及停留時間過短,導致脫氮負荷急劇降低,從而導致厭氧效率低下,總氮最終都轉化為硝態氮,但是硝態氮難以轉化為氮氣。因此總氮超標。
三、高效反硝化脫氮設備去除印染廢水總氮
從第二段描述可知,需要通過提高厭氧微生物反硝化的效率,才能夠降低總氮,傳統方式通過增加厭氧池的體積來改善,佔地面積過大,而且效果極度不穩定,因此在總氮的提標上不可行。
根據硝態氮的特點,研發推出一款高效脫氮設備,這款設備能夠提升反硝化細菌的密度,增加反硝化細菌降解硝態氮的能力,反應僅需要半小時,就能夠徹底脫氮。其原理圖如下所示:
其中,在脫氮環節有以下核心技術:
第一,專業定製的填料;以天然火山石經過表面處理為填料,填料的比表面積很大,使得單位面積上富集大量的反硝化細菌膜,提升反硝化細菌的密度。
第二,增加氮氣釋放技術;在內部結構增加氮氣釋放模塊,脫氮效率高導致氮氣大量在水體中積累,通過氮氣釋放技術將廢水的氮氣快速脫除,從而有利於微生物繼續將硝態氮轉化為氮氣。
第三,精心培養的反硝化細菌;反硝化細菌經過篩選並經過各種條件的刺激,使得反硝化細菌能夠適應印染廢水高毒性,波動大的特點。
通過以上核心技術的加成,印染廢水只需要在設備中停留15-30分鍾,即可徹底脫氮,並且針對總氮濃度在500以下的廢水,均能夠去除。大大節省了設備的佔地面積。
該技術具有以下特點:
脫氮效率高——正常運行脫氮負荷2kg N/m³·d,出水總氮穩定達標
佔地面積小——10t/h的處理量,降低20mg/L總氮,佔地面積僅3㎡
易操作維護——全自動控制,無需更換填料,反沖洗水量少、頻率低
污泥產量少——反沖洗排出的少量微生物迴流至生化池繼續分解
運行成本低——去除20 mg/L的總氮,噸水成本約0.7元
四、總結
本文主要講述了印染廢水總氮的組成,其中大多數印染廢水氨氮都是達標的,但是硝態氮超標,然而傳統的生化技術對於硝態氮的去除能力有限,導致廢水中仍然殘留100-200mg/L的硝態氮。高效脫氮設備,增加反硝化的能力,佔地面積小,僅需要停留半個小時就可以徹底脫氮,目前在國內屬於行業領先。
㈨ 氨氮超標是什麼原因導致如何快速去除
氨氮超標一般以下幾點因素
1、廢水氨氮超標的原因有各種各樣原因,主要生版化系統中沒權有硝化菌的存在,例如停留時間不足、鹼度不足、曝氣量不足、操作失誤等。
2、硝化菌是降解氨氮的關鍵菌群,硝化菌的有效繁殖,決定氨氮降解的效果。
3、硝化菌存在不足,可能是負荷不足。
4、停留時間充足,曝氣量不足,也是不能降解氨氮,因為1個單位的氨氮需要4.5個單位的氧氣,耗氧量非常大。
5、生化池硝化菌,停留時間、曝氣充足,鹼度不足等等,導致硝化菌無法去除氨氮。
氨氮專家甘度菌為您提供,希望對您有幫助,謝謝
㈩ 污水氨氮超標原因及去除方法有哪些
可能是以下幾種原因
1、供氣量不足或硝化菌不夠;
2、工藝設計的設施規模過小,處理負荷太小;
3、沒有控制好水力停留時間;
4、營養成分比例達不到設計標准,需要外加營養投加系統;
5、曝氣系統設計不負荷規范,偏小;
6、硝化反應沒有控制好,要控制好PH值、溫度、溶解氧、C/N比等條件。
去除方法:採用生物法,新型HNF-MP高效硝化工藝採用高效硝化菌種,接種抗逆性較好的菌種的同時強化反應器內微生物的數量,大大提高了反應速率。