導航:首頁 > 廢水污水 > 污水厭氧菌怎麼治療

污水厭氧菌怎麼治療

發布時間:2022-04-16 19:04:09

㈠ 印染工業廢水處理,厭氧菌怎麼培養,沒有活性污泥怎麼辦。用調節池的污泥可以代替嗎。厭氧池的塑料片樣的

厭氧菌是微生物,調節池污泥不可以。可以從別的污水廠拉一些污泥過來。
厭氧池塑料片叫生物填料,一般5年以上要換。

㈡ 厭氧菌在污水處理中的具體作用

厭氧生物處理技術即為在厭氧狀態下,污水中的有機物被厭氧細菌分解、代謝、消化,使得污水中的有機物含量大幅減少,同時產生沼氣的一種高效的污水處理方式。

但是很多污水企業不知道在什麼條件下使用厭氧菌種,什麼條件下使用好氧菌種,胡亂瞎搞,結果沒有起到治理污水的作用,反而白白浪費的資源。

我之前有個朋友也不懂這些,買了好多微生物菌種來自己瞎投,也沒有明顯的效果,浪費了好多錢。直到有個做污水處理的朋友向他推薦了「甘度環境」,說這家有專業的技術人員可以提供技術支持,甚至可以親自到現場來看具體情況,做出優化建議。

結果來了個很專業的技術人員看了之後,給出解決方案,不到一個星期出水就達標了。
所以說,微生物菌種也好,厭氧菌種也好,還是得向專業的人員了解怎麼使用才行。希望能幫到你,有什麼不同的建議或者想法,歡迎大家探討。

㈢ 廢水厭氧生物處理的原理

在厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。在此過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。對高分子有機物的厭氧過程的敘述,有助於我們了解這一過程的基本內容。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
(1)水解階段
水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)
ρ ——可降解的非溶解性底物濃度(g/L);
ρo———非溶解性底物的初始濃度(g/L);
Kh——水解常數(d^-1);
T——停留時間(d)
(2)發酵(或酸化)階段
發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
在這一階段,上述小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。
在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。
(3)產乙酸階段
在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
其某些反應式如下:
CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL
CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL
CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL
CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL
4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL
2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL
(4)甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。
最主要的產甲烷過程反應有:
CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL
HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL
4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL
4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL
在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。
需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合成為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
上述四個階段的反應速度依廢水的性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般蛋白質均能被微生物迅速分解,對含這類有機物的廢水,產甲烷易成為限速階段。雖然厭氧消化過程可分為以上四個過程,但是在厭氧反應器中,四個階段是同時進行的,並保持某種程度的動態平衡。該平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,甚至導致整個消化過程停滯。

㈣ 如何處理生活污水裡的厭氧生物

小分子的化合物發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。

㈤ 廢水厭氧生物處理技術有哪些

優點:復
1、高效對污水進行制處理
2、簡單易行
3、靈活適用於大小規模
4、容積負荷率的提高使得對空間的需求降低
5、能耗低
6、剩餘污泥量少
7、污泥穩定性良好,具有良好的脫水性能,有利於污泥的最重處置
8、厭氧污泥可以在不嚴重影響其活性和其他重要特性的情況下被保持很長時間
9、低營養需求(對N、P等需求很低)
缺點:1、厭氧微生物對pH、溫度和毒性等環境條件極其敏感
2、厭氧反應器的初次啟動期很長
3、處理過程會產生惡臭味氣體但這些缺點可以被逐漸的克服,厭氧處理過程非常穩定;只有在處理工業廢水的時候可能需要控制pH;厭氧處理微生物容易適應低溫環境,也能夠忍耐很多種毒性物質;而在一定情況下,恰當的設計、建設以及適當的運行反應器能夠完全除去惡臭氣體。總體來說,廢水的厭氧生物處理比較適應當前的環境情況,有利於可持續發展的進行。

㈥ 污水凈化處理厭氧生物處理的三個階段是怎樣的

理論研究認為三個階段,即厭氧消化過程分為水解發酵階段、產內乙酸產氫階段、容產甲烷階段三部分。
水解發酵階段和產乙酸產氫階段又可合稱為酸性發酵階段。在這個階段,污水中的復雜有機物,在酸性腐化菌或產酸菌的作用下,分解成簡單的有機物,如有機酸,醇類等,以及CO2、NH3和H2S等無機物。由於有機酸的積累,污水的pH值下降到6以下。此後,由於有機酸和含氮化合物的分解,產生碳酸鹽和氨等使酸性減退,pH值回升到6.6~6.8左右。
⑴ 水解酸化階段。污水中復雜的大分子、不溶性的有機物在細胞外酶的作用下水解為小分子、溶解性有機物,然後滲入細胞體內,水解產生揮發性有機酸、醇類及醛類等。
⑵ 產氫產乙酸階段。在產氫產酸菌的作用下,各種有機酸分解轉化為乙酸、氫和二氧化碳。
⑶ 產甲烷階段。產甲烷菌將乙酸、氫及二氧化碳轉化為甲烷。

㈦ 污水處理中厭氧菌失去作用,怎樣恢復

你的問題和我曾經一個回答的一個問題類似。失去作用不要緊,我們可以通過專再啟動培養來解決該問題屬。你可以按照厭氧菌培養對營養元素的需求:COD:N:P=800:5:1重新培養,幾個周期下來就會顯示出效果來。你可以參照我對上個問題的回答。

㈧ 污水厭氧菌處理缶什麼熱源加熱好

污水處理的時候
很少會用到厭氧菌
這樣的污水處理方法
只是某些人的想像中的前景
所以
現在還沒有實現
也說不上用什麼加熱
會相對來說比較好

㈨ 污水厭氧生物處理的機理

三階段理論:
1、水解發酵階段。 復雜的有機物在厭氧菌胞外酶的作用下,首先被回分解成簡單的有機物,答如纖維素經水解轉化成較簡單的糖類;蛋白質轉化成較簡單的氨基酸;脂類轉化成脂肪酸和甘油等。繼而這些簡單的有機物在產酸菌的作用下經過厭氧發酵和氧化轉化成乙酸、丙酸、丁酸等脂肪酸和醇類。
2、產氫產乙酸階段。產氫產乙酸菌把除乙酸、甲烷、甲醇以外的第一階段產生的中間產物,如丙酸、丁酸等脂肪酸和醇類等轉化成乙酸和氫,並有二氧化碳產生。
3、產甲烷階段。 在該階段中,產甲烷菌把第一階段和第二階段產生的乙酸、氫氣和二氧化碳等轉化為甲烷。

㈩ 廢水的厭氧生物處理方法有哪些厭氧處理的原理是什麼

厭氧消化具有下列優點:無需攪拌和供氧,動力消耗少;能產生大量含甲烷的沼氣,是很好的能源物質,可用於發電和家庭燃氣;可高濃度進水,保持高污泥濃度,所以其溶劑有機負荷達到國家標准仍需要進一步處理;初次啟動時間長;對溫度要求較高;對毒物影響較敏感;遭破壞後,恢復期較長。污水厭氧生物處理工藝按微生物的凝聚形態可分為厭氧活性污泥法和厭氧生物膜法。厭氧活性污泥法包括普通消化池、厭氧接觸消化池、升流式厭氧污泥床(upflow anaerobic sludge blanket,UASB)、厭氧顆粒污泥膨脹床(EGSB)等;厭氧生物膜法包括厭氧生物濾池、厭氧流化床和厭氧生物轉盤。
一般來說,廢水中復雜有機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子有機物由於其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中典型的有機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,澱粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解後的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。答案來自環保通。
(2)酸化階段:上述的小分子有機物進入到細胞體內轉化成更為簡單的化合物並被分配到細胞外,這一階段的主要產物為揮發性脂肪酸(VFA),同時還有部分的醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等產物產生。
(3)產乙酸階段:在此階段,上一步的產物進一步被轉化成乙酸、碳酸、氫氣以及新的細胞物質。
(4)產甲烷階段:在這一階段,乙酸、氫氣、碳酸、甲酸和甲醇都被轉化成甲烷、二氧化碳和新的細胞物質。這一階段也是整個厭氧過程最為重要的階段和整個厭氧反應過程的限速階段。

閱讀全文

與污水厭氧菌怎麼治療相關的資料

熱點內容
飲水機的燒水的地方怎麼替換 瀏覽:741
馭菱車空氣濾芯在哪裡 瀏覽:844
10年道奇酷威空調濾芯怎麼更換 瀏覽:268
車下面裝樹脂板防什麼 瀏覽:684
入口鹽濃度100gl反滲透膜選擇 瀏覽:120
藕粉為什麼不能用飲水機的水沖泡 瀏覽:413
河南凈水器代理加盟哪裡好 瀏覽:609
超濾濃水排放閥沒開會怎樣 瀏覽:314
環氧樹脂和大白 瀏覽:113
機油濾芯裂開會怎麼樣 瀏覽:582
神經專科醫院污水 瀏覽:652
機油濾芯是上在哪裡的 瀏覽:860
純水蛭素是什麼顏色 瀏覽:430
洗菜凈化器什麼原理 瀏覽:185
冰櫃濾芯有水怎麼處理 瀏覽:146
沙漏凈化器效果怎麼樣 瀏覽:39
光固化樹脂粘性 瀏覽:96
中水回用的安全距離 瀏覽:997
生態污水怎麼消除 瀏覽:709
飲水機為什麼要放在陽台 瀏覽:284