導航:首頁 > 廢水污水 > 低COD廢水如何生化

低COD廢水如何生化

發布時間:2022-03-16 08:50:07

㈠ 怎樣去除生化廢水中cod要求100以下,進水cod為300

你這句話好想本身有點問題,生化廢水?指的什麼意思啊?是生化制葯還是??不夠具體,不內過按你說的COD300,不是生化容制葯廢水,符合生活污水的指標,處理不困難,一般生化處理都可以達到要求,即使是落後的生物膜法也能達到要去,現在比較流行的奧貝爾氧化溝不錯

㈡ cod中沒有可生化性的部分在廢水處理中是怎麼被除去的

1催化氧化法 在催化劑作用下,廢水中的有機物可以被強氧化劑氧化分解,有機物結構中的雙鍵斷裂,由大分子氧化成小分子,小分子進一步氧化成二氧化碳和水,使COD大幅度下降,BOD/COD值提高,增加了廢水的可生化性,經深度處理後可達標排放。用催化氧化法處理醫葯工業廢水,可以克服傳統生化處理醫葯廢水效果不明顯的不足,有效地破壞有機物分子的共軛體系,達到去除COD、提高可生化性的目的。催化氧化法中,選擇催化劑和氧化劑是關鍵。選擇合適的催化劑和氧化劑,在適宜的工藝條件下處理的廢水再經過二次處理後可達標排放。如在活性炭載帶過渡金屬氧化物催化劑的催化作用下,採用Cl02作氧化劑處理醫葯廢水,不但處理成本低,氧化性遠高於次氯酸鈉,而且不會生成三鹵甲烷等致癌物質[3]。 2.內電解法內電解法的原理是利用鐵屑中鐵與石墨組分構成微電解的負極和正極,以充入的污水為電解質溶液,在偏酸性介質中,正極產生具有強還原性的新生態氫,能還原重金屬離子和有機污染物。負極生成具有還原性的亞鐵離子。生成的鐵離子、亞鐵離子經水解、聚合形成的氫氧化物聚合體以膠體形式存在,它具有沉澱、絮凝吸附作用,能與污染物一起形成絮體、產生沉澱。應用內電解法可去除廢水中部分色度、部分有機物,並且提高廢水的生化處理性能,增加生物處理對有機物的去除效果。其反應機理為:陽極(Fe): Fe=Fe2++2eE=-0.44V陰極(C): 2H++2e=H2 E=0.00V當有氧時: O2+4H++4e=2H2O E=1.23VO2+2H2O+4e=4OH- E=0.40V 實驗證明,在內電解後,廢水的可生化性能明顯提高,這主要是由於在內電解的過程中產生的新生態氫和亞鐵離子具有較強的還原性,能與廢水中的難降解的有機物發生氧化還原反應,破壞其化學結構,從而提高了生物降解性能。此外。在電極氧化和還原的同時,廢水中某些有色物質也由於參加氧化還原反應而被降解,從而使廢水的色度降低。 3.吸附法吸附法處理廢水是通過活性炭、磺化煤等吸附劑和吸附質(溶質)間的物理吸附、化學吸附以及交換吸附的綜合作用來達到除去污染物的目的。其具有以下特點[4]:(1)活性炭對水中有機物吸附性強;(2)活性炭對水質、水溫及水量的變化有較強的適應能力。對同一種有機污染物的污水,活

㈢ 表面處理廢水COD怎麼去除

表面處理廢水的COD去除
(1) 常見的是生化法。
生化法常用SBR法,A/O之類的,根據不同情況選擇。經過版生化法處理之後,基本權上COD的濃度可以降至中低濃度。
(2) 物理法
常用的可以用格柵,篩網之類的,根據情況不同來選擇。
(3) 化學法
可以選擇合適的COD降解劑,這種COD降解劑葯劑是針對於生物法處理過後的中低濃度的COD而研發的。

㈣ 如何處理化工生產污水COD達標排放

水量倒不是很大,但COD很高,用你所說的處理工藝可行性不高。
砂濾主要去除廢水中的SS,而對SCOD去除不明顯,一般要求進水SS小於100mg/l。如果你要處理的廢水中SS較高,佔COD的比例高,則砂濾很容易形成板結,除非處理前對廢水進行稀釋;同樣活性碳吸附、超濾、RO法等對SS也是有要求的。
另外,如果廢水中SS不高,那麼你所說的這些深度處理方法對如此高的COD負荷,其去除效果很值得懷疑,更重要的是,處理和維護成本也很高。建議你向專業的生產廠家作相關詢問,看這些處理方法適合於怎樣的水質條件。
根據你提供的信息,建議你再測一下原水中的SS、BOD和電導率,如果BOD/COD>0.3,完全可以先上一個小型的厭氧反應器或延時曝氣系統,將BOD降低後再根據出水要求考慮深度處理,處理難度和成本可大大降低。

1、你所要處理的化工生產廢水主要成分是哪些?可生化性如何?
2、處理的來水COD有多高?水量是多少?前端是否有厭氧或好氧生物處理工藝?
3、你所說的COD達標排放是國家一級排放標准還是二級排放標准?是排至市政污水管網還是直排入河,還是生產回用
4、砂濾主要去除SS;活性碳、超濾、膜過濾能去除一部分COD,可作為深度處理工藝的選擇,但COD負荷畢竟有限,且需考慮到成本的問題;如來水COD高的話,前端需要生化處理工藝;就我所知,PTA化工生產廢水經過厭氧和好氧生物處理,其COD是能夠降至100mg/l以下的,甚至可以達到60mg/l以下!

㈤ 如何降低廢水的cod

農葯企業在生產過程中排放的廢水通常含有機氮、有機磷、硫化物、苯環、酚鹽等多種無機物和有機物, 其特徵是污染物成分復雜、濃度高、毒性大、可生化性差, 屬難處理工業廢水, 單純用傳統的物化、生化法處理手段難以使廢水處理後達標排放. 農葯污染面廣,持續時間長,殘留農葯對人體健康影響大。研究表明,通過大氣和飲用水進入人體的農葯僅佔10% ,有90%是通過食物鏈進入人體。殘留在蔬菜、水果等食品上的低劑量農葯對人可產生慢性毒性,並誘導多種神經性疾病。農葯污染水的排放已嚴重破壞了生態環境,農葯的殘留毒性問題越來越受到人們的關注。

農業環境科學學報2007, 26 (增刊) : 256- 260
Journal of Agro- Environm ent Science
農葯廢水處理方法研究進展
肖維林, 董瑞斌
(南昌大學環境科學與工程學院, 鄱陽湖湖泊生態與生物資源利用教育部重點實驗室, 江西南昌330029)
摘要:農葯廢水因毒性大、濃度高、組分復雜,成為工業廢水治理難題之一。根據當前國內外學者在農葯廢水處理方面的研究報道,分別對農葯廢水的主要處理方法(光催化法、超聲波技術、生物法、電解法、氧化法)的研究進展進行了綜述,並在此基礎上介紹了適宜的工藝方法組合。

1 幾種主要的農葯廢水處理方法
1. 1 光催化法
銳鈦型的TiO2 在紫外光的照射下能產生氧化性極強的羥基自由基,能夠氧化降解有機物,使其轉化為CO2、H2O以及無機物,降解速度快,無二次污染,為降解處理農葯廢水提供了新思路[ 2 ] 。對於光催化降解有機物目前關注的問題,一方面是降解過程中的影響因素和降解過程的轉化問題[ 3~5 ] ,對納米TiO2 的固載化和反應分離一體化成為光催化領域中具有挑戰性的課題之一,另一方面是提高制備催化劑催化效率的問題[ 6 ] 。
陳士夫等[ 5 ]在玻璃纖維、玻璃珠、玻璃片上負載TiO2 薄膜光催化劑,並用於有機磷農葯的降解,取得了滿意的結果。梁喜珍[ 7 ]通過研究TiO2 光催化降解有機磷農葯樂果廢水的影響因素,獲得了適宜的工藝
條件。潘健民[ 8 ]通過對納米TiO2 及其復合材料光催化降解有機磷農葯進行的研究,分析了在不同催化劑、不同濃度AgNO3 浸漬、不同實驗裝置條件下的光催化降解效果,說明TiO2 表面擔載微量的Ag後,不僅能提高納米TiO2 催化活性,而且有較好的絮凝作用,使TiO2 與處理後的水易分離,後處理更方便。葛湘鋒[ 2 ]研究發現光催化降解在一定條件下符合零級動力學反應模式,而且反應速率常數和反應物起始濃度也呈線形關系,當反應物濃度增長過快達到一定值時,其反應速率常數明顯下降,反應物濃度過高時,則降解反應不再符合零級反應。
目前採用的光催化體系多為高壓燈、高壓氙燈、黑光燈、紫外線殺菌燈等光源,能量消耗大。若能對納米TiO2 進行有效、穩定地敏化,擴展其吸收光譜范圍,能以太陽光直接作為光源, 則將大大降低成本[ 9、10 ] 。
1. 2 超聲波技術
超聲波是頻率大於20 kHz的聲波,超聲波誘導降解有機物的原理是在超聲波的作用下液體產生空化作用[ 11 ] ,即在超聲波負壓相作用下,產生一些極端條件使有機物發生化學鍵斷裂、水相燃燒、高溫分解
或自由基反應。
鍾愛國等[ 12、13 ]研究表明,在甲胺磷濃度為1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、溫度30 ℃、Fe2 + >50 mg·L - 1、充O2 至飽和的條件下,用低頻超聲波(80W·cm- 2 )連續輻照120 min,甲胺磷去除率達到99. 3% ,乙醯甲胺磷的去除率達到99. 9%。孫紅傑等[ 14 ]研究了各種因素超聲波頻率、功率、聲強、變幅桿直徑和溶液初始pH等對超聲降解甲胺磷農葯廢水的影響。Kotronarou等[ 15 ]得出對硫磷在超聲條件下可以被完全降解為PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反應溫度為20 ℃、pH為7. 4時,對硫磷無催化水解半衰期為108 d,其有毒代謝產物對氧磷水解半衰期為144 d。Cristina等[ 16 ]對馬拉磷農葯在超聲波輻射下, 82μmol·L - 1的馬拉磷溶液30 min內pH從6下降到4, 2 h內所有的馬拉磷全部降解,產物均為無機小分子。
蔣永生、傅敏等[ 17、18 ]報道了用超聲波降解模擬廢水中低濃度樂果的試驗表明,輻射時間延長,降解率增加,加入H2O2 可明顯提高樂果的降解率,在溶液初始濃度較低的范圍內,降解速率隨濃度增大而加快,
濃度增大到一定值後,降解速率變化不明顯,超聲降解時溶液溫度控制在15~60 ℃為宜。謝冰等[ 19 ]對久效磷和亞磷酸三甲酯生產過程中產生的廢水進行了超聲氣浮預處理,可降低其COD和毒性,提高其可生化性,再經以光合細菌為主的生化處理,可使其COD降至200 mg·L - 1。
王宏青等[ 20 ] 研究表明: 滅多威經超聲作用35min,可被完全轉換為無機物,其降解過程為假一級反應;濃度增加時,降解減慢; Fe2 +和H2O2 對降解有促進作用,且Fe2 +促進作用比H2O2 的大;採用不同氣體飽和溶液時,降解率的大小順序為Ar >O2 >Air >N2。紅外光譜表明降解產物為SO4
2 - 、NO3- 和CO2。
目前有關超聲輻射降解有機污染物的研究,大多屬於實驗室研究,還缺乏系統的研究,更缺少中試數據[ 21 ] 。
1. 3 生物法
在國內,農葯廠家大多建有生化處理裝置,但目前幾乎沒有一家能夠獲得理想的處理效果。因此,對這類廢水的生化處理研究是十分必要的。已有大量研究表明真菌、細菌、藻類等微生物對有農葯有很好的降解作用。
程潔紅[ 22 ]從土壤中分離得到以多菌靈生產農葯廢水為惟一碳源生長的13株菌,經鑒定為假單胞菌屬( Pseudom onas sp. ) ,研究了SBR 工藝運行的最佳條件,所篩選的菌株對多菌靈農葯廢水的COD去除率為52. 3%。張德詠,譚新球[ 23 ]從生產甲胺磷農葯的廢水中篩選具有促生活性及可降解甲胺磷的光合細菌菌株, 培養後第7 d, 該菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,樂果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,該菌株也能夠以三唑磷、辛硫磷作為惟一碳源生長。
生物膜法將微生物細胞固定在填料上,微生物附著於填料生長、繁殖,在其上形成膜狀生物污泥。與常規的活性污泥法相比,生物膜具有生物體積濃度大、存活世代長、微生物種類繁多等優點,尤其適宜於特種菌在廢水體系中的應用[ 24~26 ] 。王軍、劉寶章[ 27 ]利用半軟性填料進行掛膜,處理菊酯類、雜環類綜合農葯廢水。當進水CODCr為6 810、3 130、1 890mg·L - 1時,經過24 h的作用,細菌膜對CODCr的降解率分別達到24. 8%、43. 5%、53. 4%。
1. 4 電解法
鐵炭微電解法是絮凝、吸附、架橋、卷掃、共沉、電沉積、電化學還原等多種作用綜合效應的結果[ 28 ] ,能有效地去除污染物提高廢水的可生化性。新產生的鐵表面及反應中產生的大量初生態的Fe2 +和原子H具有高化學活性,能改變廢水中許多有機物的結構和特性,使有機物發生斷鏈、開環[ 29 ] ;微電池電極周圍的電場效應也能使溶液中的帶電離子和膠體附集並沉積在電極上而除去;另外反應產生的Fe2 + 、Fe3 +及
其水合物具有強烈的吸附絮凝活性,能進一步提高處理效果。
雍文彬[ 30 ]採用鐵屑微電解法能有效去除農葯生產廢水中的COD、色度、As、氨氮、有機磷和總磷,去除率分別可達76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。張樹艷[ 31 ]採用鐵炭微電解法對幾種農葯配水進行處理,試驗結果表明,最佳反應條件下,廢水的CODC r 去除率都可達67%以上;最佳反應條件:鐵/水比為(0. 25~0. 375) ∶1,鐵/炭比為( 1~3) ∶1, pH3~4,反應時間1~1. 5 h。廢水經微電解處理,然後進行Fenton試劑氧化,則微電解出水中Fe2 + 可作為Fenton的鐵源,且微電
解時有機污染物的初級降解也有利於後續Fenton反應的進行。吳慧芳[ 32 ]採用微電解和Fenton試劑氧化兩種物化手段對菊酯、氯苯BOD5 /CODCr = 0. 03)和對鄰硝氯苯(BOD5 /CODCr = 0. 05) 3種廢水按比例配製而成的綜合農葯廢水進行預處理,結果表明:在廢水pH為2~2. 5時,經微電解處理後,BOD5 /CODCr比值達0. 45以上,可生化性提高; Fenton試劑對綜合農葯廢水CODCr去除率為60%左右,色度去除率接近
100%。劉占孟[ 33 ]以活性炭-納米二氧化鈦為電催化劑,對甲胺磷溶液的電催化氧化降解規律進行研究表明,該工藝能有效去除廢水中的有機物,納米二氧化鈦催化劑的催化效果顯著。電解效果隨著電解時間的延
長、催化劑的增加而升高,低pH有利於電催化氧化過程中H2O2 和·OH 的生成。王永廣[ 34 ] 採用電解/UASB /SBR工藝處理生化性差、氯離子濃度高的氟磺胺草醚農葯廢水。設計電流密度取30. 0 A·m- 2 ,該工程的電費為2. 30 元·m- 3 ,葯劑費為0. 30 元·m- 3 ,人工費為1. 50元·m- 3 ,運行成本為4. 10元·m- 3 , COD去除率> 97%。
1. 5 氧化法
深度氧化技術(AOPs)可通過氧化劑的組合產生具有高度氧化活性的·OH,被認為是處理難降解有機污染物的最佳技術。
引入紫外線、雙氧水聯合作用和調控反應體系pH,可進一步提高臭氧深度氧化法的效率。陳愛因[ 35 ]研究表明,紫外光催化臭氧化降解農葯2, 4-二氯苯氧乙酸(2, 4- D)廢水成效顯著,臭氧/紫外(UV)深度氧化法(比較單獨臭氧化、臭氧/紫外、臭氧/雙氧水、臭氧/雙氧水/紫外4種臭氧化過程)是最好的臭氧化處理方法。2, 4- D 200 mg·L - 1的水樣,反應30min, 2, 4- D降解完全, 75 min時礦化率達75%以上。鹼性反應氛圍有利於臭氧化反應進行。雙氧水的引入對2, 4- D降解無明顯促進作用,這是因為雙氧水分解消耗OH- ,沒有緩沖的反應體系pH降低,限制了雙氧水的分解和·OH自由基鏈反應。文獻[ 36 ]表明添加H2O2 對光解效果有一定改善作用,投加量達到75 mg·L - 1時,水樣的COD去除率由零投加時
的20%提高到40% ,但過量投加對處理效果沒有進一步促進作用。曝氣能促進光解效果,特別對UV /Fenton工藝作用更為顯著,光解水樣2 h後,曝氣條件下的COD 去除率可從不曝氣條件下的30%提高到80%。
催化濕式氧化能實現有機污染物的高效降解,同時可以大大降低反應的溫度和壓力,為高濃度難生物降解的有機廢水的處理提供了一種高效的新型技術。催化劑是催化濕式氧化的核心,諸多學者致力於研究開發新型高效的催化劑。韓利華等[ 37 ]以Cu和Ce為活性組分,制備了Cu /Ce復合金屬氧化物,比較了均相-多相催化劑的催化性能。韓玉英[ 38 ]在催化濕式氧化法處理吡蟲啉農葯廢水中,分別用硝酸亞鈰和硝酸銅作催化劑,反應一定時間後COD去除率分別達到80%和95. 5%。用硝酸銅作催化劑處理吡蟲啉農葯廢水具有較高的活性,但Cu2 + 有較高的溶出量。張翼、馬軍[ 39 ]在廢水中加入2種自製的催化劑,結果表明,只用臭氧處理的情況下7 d後有機磷的去除率為78. 03%; 在催化劑A 存在下, 去除率可達93. 85%;在催化劑B存在下,去除率可達為88. 35%。在室溫和中性介質中均屬於一級反應。
ClO2 是一種強氧化劑,鹼性條件下氰根(CN- )先被氧化為氯酸鹽,氯酸鹽進一步被氧化為碳酸鹽和氮氣,從而徹底消除氰化物毒性。陳莉榮[ 4 0 ]將含氰農葯廢水空氣吹脫除氨後,採用ClO2 作為氰化物的氧化劑,氰化物濃度為60~80 mg·L - 1 , pH為11. 5左右時,按ClO2 ∶CN- ≥3. 5 (質量比)投葯,氰化物的去除率達97%以上,氧化後廢水經生物處理系統進一步處理後各項指標都能達排放標准要求。
2 農葯廢水處理工藝方法組合
在處理實際廢水時,由於水中的有機污染物呈現出復雜多樣的特點,僅採用單一的處理工藝往往達不到預期目的。在處理實際廢水時,可以綜合考慮技術特點與具體廢水水質情況來選擇適宜的工藝組合形式。
文獻[ 41 ]研究表明,難降解有機磷農葯廢水經80 min光催化氧化後,在生物段的COD去除率可達85%以上。李耀中[ 4 2 ]設計了一種流化床光催化反應器與過濾預處理相組合的中試系統,制備了一種以30~40目耐火磚顆粒為載體的負載型TiO2 光催化劑,以高壓汞燈為光源,結果表明,光照150 min後該系統對配製的農葯廢水的COD 去除率≥70%, BOD5 /
COD值可提高至0. 4以上。張仲燕[ 4 3 ]以一個生產多種染料和農葯中間體的化工廠為研究對象,採用中和- 混凝- 催化氧化的組合工藝並嚴格控制良好的處理條件, 對CODCr含量為7 000~14 000 mg·L - 1的高
濃度廢水可以降至CODCr為300~500 mg·L - 1 , pH、SS和色度均達到排放標准。文獻[ 44 ]研究發現,光電結合工藝存在一定的協同效應,遠大於光催化和電催化單獨處理效率的簡單加和。加入少量Na2 SO4 或
NaCl提高電解質質量濃度後, COD去除率迅速提高到80%以上,且加入NaCl電解質比加入Na2 SO4 能更好地降低廢水的COD,電流越高, COD 去除速率越大。文獻[ 45 ]研究發現將臭氧氧化與生物處理聯用治理含4種農葯的有機廢水,可將其中的阿特拉津、氨基吡啶、米吐爾和對草快分別去除96%、99%、98%和80%。

㈥ 如何降低工業廢水COD

吸附法:
大孔吸附樹脂是一類具有大孔結構且不含交換基團的高分子樹脂,在樹脂內部存在三維空間立體孔結構,其孔徑、孔容和比表面積都較高,對於酸、鹼和有機溶劑表現出不溶性,對熱、氧以及化學試劑則表現出惰性。根據樹脂的表面性質,大孔吸附樹脂可以分為非極性、中極性和極性三類。非極性吸附樹脂是由偶極距很小的單體聚合而得,不含任何功能基團,孔表的疏水性較強,可通過與小分子內的疏水部分的作用吸附溶液中的有機物,最適用於從極性溶劑(如水)中吸附非極性物質。極性樹脂含有醯胺基、氰基、酚羥基等含N、O、S極性功能基,它們通過靜電相互作用吸附極性物質。中極性吸附樹脂含有酯基,其表面兼有疏水和親水部分,既可由極性溶劑中吸附非極性物質,也可以從非極性溶劑中吸附極性物質。在操作中,需要依實際的情況和要求進行選擇。
氣浮法:
氣泡吸附分離(adsorptionbubbleseparation)簡稱為氣浮分離(flotation),即溶液中的固體、沉澱、膠體等吸附在上升氣流上而與母液分離。該技術是利用水中各種原有溶解、懸浮物質表面活性的差異。或通過投加葯劑而產生的表面活性的差異而進行分離的方法。
化學混凝法:
所謂化學混凝法是指通過向廢水中投加絮凝劑,利用絮凝劑的吸附架橋,壓縮雙電層及網捕作用,使水中膠體及懸浮物失穩、相互碰撞和凝聚轉而形成絮凝體,再用沉澱或氣浮工藝使顆粒從水中分離出來以達到凈化水體的方法。
電化學法:
電化學法處理廢水的實質,就是直接或間接的利用電解作用,把水中污染物去除,或把有毒物質變成無毒或低毒物質。用電解法或電化學法處理廢水,按照去除對象以及產生的電化學作用來區分,又可分為電化學氧化,電化學還原,電氣浮等法。
臭氧氧化法:
臭氧的分子式O3,是氧的一種同素異形體,與氧具有無色、無臭、無味及無毒等特性不同,它是淡藍色的,且具有特殊的「新鮮」氣味,在濃度稍高時具有毒性。近年來,光催化氧化技術在煮練廢水處理領域的應用具有良好的市場前景和經濟效益,但該領域的研究還存在諸多問題,如尋求更高效的催化劑,催化劑分離與回收等。
生物法:
①好氧生物法
好氧生物處理法是在好氧狀態下將有機物氧化成二氧化碳、硝酸鹽、水、硫酸根等穩定物質,常見的好氧法有活性污泥法和生物膜法。
活性污泥法的原理是通過對廢水中的有機物進行吸附、生理代謝和絮凝作用從而對有機物進行降解。活性污泥法在分解大量有機物的同時,又可以運轉效率高,小量調節pH值,出水水質較好,因而被廣泛採用。生物法處理煮練廢水中,活性污泥法的使用最為普遍。但活性污泥法剩餘污泥的處理一直是個難題,據資料報道,在國外一般污泥處理或處理費用占整個污泥處理廠運行費用50%~70%,國內也佔到40%左右。
②厭氧生物法
廢水的厭氧生物處理是指在沒有游離氧的情況下,微生物進行無氧呼吸,將大分子有機物分解成穩定、簡單的小分子有機物的處理方法。對於濃度不高而其中有機物結構復雜、難以生化的煮練廢水,處理的目的主要不是降低COD,而是提高可生化性,通常利用厭氧過程的第一、第二階段的水解酸化反應,來完成廢水的初步處理,是煮練廢水目前常用的厭氧處理技術之一。相對於好氧法,厭氧法處理廢水的應用范圍更廣,既可用於高濃度有機廢水處理,又可用於低濃度的有機廢水處理,污泥量少,僅為好氧法的1/6~1/10。

㈦ 酸性廢水中cod值化驗偏低怎麼辦是因為有干擾嗎

摘要 印染行業是工業廢水排放大戶,印染廢水具有水量大、有機污染物含量高、懸浮物含量高、色度深、鹼性大、水質變化大等特點,屬難處理的工業廢水。近年來由於化學纖維織物的發展,模擬絲的興起和印染後整理技術的進步,使化學漿料、人造絲鹼解物(主要是鄰苯二甲酸類物質)、新型助劑等難生化降解的有機物大量進入印染廢水,其化學好氧量(ChemicalOxygen Demand,COD)濃度也由原來的數百mg/L上升到2000—3000 mg/L,而生化好氧量(Bio—chemical Oxygen Demand,BOD)的增加幅度沒有COD增幅大,從而使原有傳統的生物處理系統對COD去除率從70% 下降到5O% 左右,甚至更低。傳統的生物處理工藝已受到嚴重挑戰;同時傳統的化學沉澱和氣浮法對這類印染廢水的COD去除率也僅為30%左右。因此開發經濟有效的印染廢水處理技術或水處理葯劑日益成為當今環保行業關注的課題

㈧ 如何處理可生化性差的廢水BOD5/ COD=0.25 應選用什麼工藝

提高污水可生抄化性有如襲下方法:
1、在處理工藝前段增設水解酸化池,將大分子難降解的有機物通過厭氧酸化反應分解成小分子的物質,從而提高可生化性;
2、在生化處理後面加臭氧氧化工藝,利用臭氧的強氧化性氧化分解生化處理階段難降解的有機物,提高出水水質。
3、在生化處理階段投加營養物質,如葡萄糖,澱粉等,提高BOD值,從而提高可生化性,改善出水水質。
4、微電解方法,但是隨著使用效果會逐漸下降,主要是鐵屑表面出現金屬氧化物和氫氧化物膜,效果就越來越差了。

樓主提到B/C已經為0.25,已經具備活性污泥法的可生化性指標,常規指標為B/C大於0.2即可。因此樓主如果選擇污水處理工藝,選用傳統的活性污泥法處理工藝即可,如果對出水有特殊要求,如回用的話,可以在傳統活性污泥法工藝後段加深度處理工藝,如多介質過濾器,砂率、膜處理工藝等。但是選擇何種處理工藝與現場的可用地面積,實際處理水量,進水水質,產水水質指標息息相關,因此只能簡單建議使用「旋流沉砂池+水解酸化池+CAST+平流沉澱池+深度處理工藝」

希望對你有所幫助!

㈨ 請問用什麼方法能快點降低廢水中的cod

A/O工藝,化學法處理直接投加cod降解劑是比較快的,化學的反應時間較快。
COD降解回劑是針對電鍍、線路板等廢水中答COD的可生化性低而特別開發的一種新型葯劑。該葯劑具有反應速度快、適應范圍廣、無需改變處理工藝,只需要增加投加裝置的特點。特別適用於中、低濃度的COD廢水。

㈩ 低COD廢水處理

學術研討南肛稃技2006年第2稠油廢水COD處理.T.藝研究劉軍紅鄧雲成譚磊張紅霞陳敏(河南石油勘探局第二採油廠)摘要本研究通過對多種絮凝荊的篩選,挑選出一種適合處理稠油廢水的絮凝劑,並在此基礎上採用膜SBR法對絮凝出水做進一步處理,出水完全達到國家規定的c0D<100mg/L的要求。關鍵詞稠油污水coD絮凝。BSBR採油污水達標排放是當前油田開發面臨的主要問題,而COD的達標排放又是採油污水全面達標排放的關鍵。SBR法是一種間歇運行的廢水處理工藝,具有均化水質、無需污泥迴流、耐沖擊、污泥活性高、沉降性能好、結構簡單、操作靈活、佔地少、投資省、運行穩定等諸多優點,而膜法SBR(BSBR)結合了生物接觸氧化法和SBR法的優點。本文將目前應用研究較多的SBR法作為生物處理手段,對某油田採油廢水處理工藝進行了研究。1實驗部分1.1廢水水質廢水取自某油田聯合站,其COD。一般為400mg/l。~500mg/l_.,油含量一般為60mg/l_。~70mg/I。,BODs/COD。<O.25,說明該廢水的可生化性很差,不宜直接採用生化處理。「實驗材料及方法1.2.1混凝試驗①葯品。無機混凝刺類:uP-ll、30HC一805(XN一2llHc)、PY—J、uP_12;有機高分子類混凝劑:AN923SH、F04190SH。以上葯品除uP-ll外,其餘均為固體。uP—ll為黑褐色透明液體,密度(20~C。)1.15~1.30,有效含量≥lo。⑦試驗裝置與方法。本試驗以六聯攪拌機作為試驗裝置,試驗方法如下:將採油污水放入500mt兢杯內,開動攪拌機,從投入混凝劑開始記時,以.16(1r/min快速攪拌2min,然後以20r/min一40r/min攪拌lOmin,停止攪拌後沉澱lh。最後測定沉澱出水COD。1.2.2膜法SBR(BSBR)①試驗裝置(見圖1)。反應器由圓柱型有機玻璃製成,總容積13L,有效容積10I。,反應器內採用聚丙烯毛線做為填料(BSBR),填料上下固定,反應器底部設置多個微孔曝氣頭,用空壓機經轉子流量計供氣,反應器上設置多個排水口,下部設置排泥口,進水由恆流泵控制,出水由電磁閥控制。進水、曝氣、沉澱、排水等運行程序用智能程序控制器自動控制。溫度通過加熱棒m穩控儀恆定在30%:左右。②生物膜的培養。污泥取自遼河油田石化總廠曝氣池,以沉澱污泥作為種泥投入反應器,投加營養液並逐步提高廢水在營養液中的比例對污泥進行培養馴化,一周後,生物膜掛在填料上,未掛膜污泥沉澱性能良好。2試驗結果2.1混凝試驗混凝是油田經常採用的處理含油污水的方法,即向水中投加混凝劑進行破乳,消除膠體的穩定因圖lBSBR~置示意圖l砬應囂2填料3加熱棒4空壓機5轉子流量計6排泥口7曝氣頭8水閥q電磁閥l(】自動控制儀素,再利用微粒之間的吸引力及布『『進水泵n配水箱朗運動,使已破乳的微粒不斷擴大形成礬花沉澱,以達到除油、有機物和懸浮物的目的。本試驗對多種混凝劑進行了試驗,試驗結果見表l。表1混凝劑的篩選試驗結果l敉加(|2lg,n『』1i【lllH』I5f』3fMl2』I』,t¨I『『一H_lsI」b(_1。s,L)714qlQ2^tH4Hl#',lH53IH「」lt、帥(nlM/1)47f,H^I57~H¨2…』J3n1…47I扭加(1t1E,l,(『)~111Imtsf,2fH·2jnI卟l}油¨g「),,R!^_Iu228R11H731^…794。一、…一_L!!!型!型—!L一生生一曼:業…一!型二薴———!坐生¨_!坐點一—i塑。L_l拉加(_1「、lJf』1l21f·2ll2428uPlII油tmq/I)3H519O#b7「52225ll,』————————L—C—C)—1)—(n堅壘L——』衛生——三塑上———羔2&———上叢童———坐蘭量———』二一!拉加(一)n(『』2{^*lnm23s卜If油訕Igou!I·19/』/「。,一,』{c()t)(…1.,3』2t.,,『,『,,_f牧加f_11B)『l(『),『681ll1·『)…_ls|I}曲(Ⅲg/L)1109,『,『『,,『}l£Q肫{璺!《!土一——塑生C.一.一£一—:—£—£★:原水/。:因未出現礬花,未測定。由表l可見,在眾多混凝劑中,UP—ll的處理效果最佳,其在用量為2.4ml/l_,時,處理效果最好。在此基礎上,我們又對其進行了多次反復試驗,結果見表2。表2uP一11重復試驗結果!區蘭簋到竺:=127171q824224.,n1792432{093,9:4i油tmg,L由表2可見,經混凝劑uP—ll處理後,出水COD在[00mg/I。左右,但尚未全部達到國家規定排放標准。為此,決定採用BSBR法對其出水做進一步處理。2.2PH調節試驗經uP一1l處理後,其出水PH降低到5.3,而一般好氧生物處理PH要求在6.5~8.5之間,為此需投JJⅡPH調整劑。選擇UP—12作為PH調整劑,試驗結果見表3及表4。表3uP一12投加量試驗結果簍竺蘭!!:!竺!I型!I!竺l型:I!竺l!!pH5963727988表4uP—l!投加時間試驗H{8825j4666「6b7,油(mg/L)156721191268272l2tHCoD(mg/L)2{45¨3nlH261555Js041嘶5①未加UP一12;②uP—ll和uP—12同時投入;③lmin後投加uP一12;@,32min~雪投加uP—12;⑤沉澱30min後取上清液投加uP—12。由表3可見,uP—12投加量為.300mg/l_肘,pH—uir調節到7.2,滿足BSBR入水對PH的要求。表4為uP—12投加時問的選擇試驗,山結果可見,污水經uP—ll處理沉澱30min後,取上清液再投lJJu300mg/l_.uP—12,處理效果最佳。其出水.BOD。/COD。達到0.4左右,適合生物處理。2.3BSBR試驗2.3.1BSBR運行參數的確定歡四聯採油污水經uP—ll處理,再經uP—12調節PH後,作為BSBR入水。下面對曝氣時間及沉澱時間進行考察,以確定BSBR工藝參數。①曝氣時間。BSBR~綦氣時間的選擇見圖2。由圖2可n見,由於廢水經uP一1l和uP—12處理後,COD已經不高,在開始曝氣2h內,COD顯著.F降,其值小於.100mg/l。,而在隨後數小時內,COD降解緩慢。因此,曝氣時間以4h為宜。②沉澱時間。曝氣結束後,取出水樣,測其污泥沉降比。結果見圖3。山圖3可見,』:30minl~l污泥沉降比明顯下降,::::在隨後的時間內,變化不大。為61安全起見,沉澱時間以lh為好。、:2.3.2UP—l1UP—l2BSBR處理工藝試驗根據以上試驗結果,選取BSBlL運行時序為:進水0.5h、曝氣4h、沉澱lh、排水O.5h,遼河油田歡四聯採油廢水經uP_lluP_12BSBR處理,運行結果見表4、5。i匪二原水((1DlBsBK^水(0j)IBsBn出水(:oD—塵堡壘土—一_L——j!蘭坐土———L———二竺《三上一24HQ1【】17H39221J9R768s!Z3:878521Si8211S87S9=43781H579S'7^1I』9887H表5迭標處理試驗結果f轉封三)

閱讀全文

與低COD廢水如何生化相關的資料

熱點內容
污水處理工必讀微盤 瀏覽:632
小店區有多少個污水站 瀏覽:885
污水管道工程施工為什麼要曬白灰 瀏覽:637
空氣濾芯葉片有什麼作用 瀏覽:892
edi拋光混床 瀏覽:425
污水泵口徑變小 瀏覽:723
污水提升裝置的污水提升器 瀏覽:87
陽離子交換樹脂色譜柱平衡多長時間 瀏覽:384
制葯廠有機廢水處理設備 瀏覽:782
那裡出售鋁壺除垢劑 瀏覽:44
3m765s凈水器怎麼樣 瀏覽:101
換雅閣汽油濾芯多少錢 瀏覽:219
萬和如何清理熱水器里的水垢 瀏覽:315
樹脂酯化水工程案例 瀏覽:965
凈化器濾網壽命怎麼復位 瀏覽:158
凈水器保鮮顯示什麼意思 瀏覽:770
蘇州噴房過濾棉批發 瀏覽:986
污水管屬壓力管道嗎 瀏覽:971
口腔診所污水處理方式 瀏覽:711
爽一家凈水壺多少錢 瀏覽:479