1. 污水中氨氮是怎樣產生的
在很多工業廢水中的氨氮是本來就有的。市政生活廢水中則主要是由蛋白質降解過程中的氨基轉化而來。
2. 氟化氫氨和氟化銨溶液廢水,一月大概30噸,怎麼可以降低廢水中氟的含量,目前通過添加氫氧化鈣調試!
對於高濃度含氟工業廢水,一般採用鈣鹽沉澱法,即向廢水中投加石灰,使氟離子與鈣離子生成CaF2沉澱而除去。該工藝具有方法簡單、處理方便、費用低等優點,但存在處理後出水很難達標、泥渣沉降緩慢且脫水困難等缺點。
氟化鈣在18℃時於水中的溶解度為16.3mg/L,按氟離子計為7.9mg/L,在此溶解度的氟化鈣會形成沉澱物。氟的殘留量為10~20 mg/L時形成沉澱物的速度會減慢。當水中含有一定數量的鹽類,如氯化鈉、硫酸鈉、氯化銨時,將會增大氟化鈣的溶解度。因此用石灰處理後的廢水中氟含量一般不會低於20~30 mg/L。石灰的價格便宜,但溶解度低,只能以乳狀液投加,由於生產的CaF2沉澱包裹在Ca(OH)2顆粒的表面,使之不能被充分利用,因而用量大。投加石灰乳時,即使其用量使廢水pH達到12,也只能使廢水中氟離子濃度下降到15 mg/L左右,且水中懸浮物含量很高。當水中含有氯化鈣、硫酸鈣等可溶性的鈣鹽時,由於同離子效應而降低氟化鈣的溶解度。含氟廢水中加入石灰與氯化鈣的混合物,經中和澄清和過濾後,pH為7~8時,廢水中的總氟含量可降到10 mg/L左右。
為使生成的沉澱物快速聚凝沉澱,可在廢水中單獨或並用添加常用的無機鹽混凝劑(如三氯化鐵)或高分子混凝劑(如聚丙烯醯胺)。為不破壞這種已形成的絮凝物,攪拌操作宜緩慢進行,生成的沉澱物可用靜止分離法進行固液分離。在任何pH下,氟離子的濃度隨鈣離子濃度的增大而減小。在鈣離子過剩量小於40 mg/L時,氟離子濃度隨鈣離子濃度的增大而迅速降低,而鈣離子濃度大於100 mg/L時氟離子濃度隨鈣離子濃度變化緩慢。因此,在用石灰沉澱法處理含氟廢水時不能用單純提高石灰過剩量的方法來提高除氟效果,而應在除氟效率與經濟性二者之間進行協調考慮,使之既有較好的除氟效果又盡可能少地投加石灰。這也有利於減少處理後排放的污泥量。
3. 產生氨氮廢水的行業有哪些
生化污水、煤化工、甲醇 合成氨 化肥行業 清潔能源(二甲醚)、煤制油、焦化行業
4. 廢水氨氮超標是什麼原因導致
氨氮是指水中以游離氨(NH3)和銨離子(NH4+)形式存在的氮。污水氨氮超標常見的原因:
1)自身生成原因:氨氮的產生是不可避免且持續性的;如污水處理廠、食品廠、化工廠、電鍍廠、造紙廠、印染廠、養豬場........由於自身的生產或還原性物質等原因都會導致氨氮超標。
2)污水處理工藝缺陷:
a)生化處理(水溫過低):當溫度過低時,菌種的活性也跟著低,從而降低對氨氮的分解;b)廢水突然(水量加大):原有的工藝處理不過來,對工藝系統造成滿負荷,容易導致出水超標;
c)廢水中的(濃度增高):在高濃度廢水沖擊下,現場處理如果沒有改變,出水濃度就會容易超標。
投加您所提的硝化細菌,其功效分析:
1.高效將氨氮先氧化成亞硝酸氮再氧化成硝酸氮;
2.加速污水中的污泥沉降,增大污泥絮體顆粒,調整污泥絮體結構;
3.選擇性篩選出合適的特異性強的硝化細菌,從而縮短馴化時間,增加硝化效率。
4.可與反硝化系統聯動,形成共生互補作用,提高系統脫氮能力;
5.有效抑制病毒、病菌與寄生蟲;
6.針對藻類過度繁殖的水體,能夠大量消耗氮素營養,切斷藻類氮素營養,抑制藻類繁殖,有效凈化水體與良好水色;
7. 大自然中篩選出的菌種結合頂尖馴化技術,繁殖迅速,應激能力強,能因應惡劣環境自然進化;
8.在好氧及缺氧條件下均可進行硝化反應,其中缺氧硝化效果較弱。
5. 氨氮超標主要原因有哪些因素
氨氮超標:就是(甘度)環保常說的:工業廢水或者生活污水含氮有機物分解等產生的。
氨氮超標因素:
1、廢水氨氮超標的原因有各種各樣原因,主要生化系統中沒有硝化菌的存在,例如停留時間不足、鹼度不足、曝氣量不足、操作失誤等。
2、硝化菌是降解氨氮的關鍵菌群,硝化菌的有效繁殖,決定氨氮降解的效果。
3、硝化菌存在不足,可能是負荷不足。
4、停留時間充足,曝氣量不足,也是不能降解氨氮,因為1個單位的氨氮需要4.5個單位的氧氣,耗氧量非常大。
5、生化池硝化菌,停留時間、曝氣充足,鹼度不足等等,導致硝化菌無法去除氨氮。
6、甘度硝化細菌馴化好的活性菌種,直接使用。
6. 高氨氮廢水處理工藝
根據復你給的一些其他制數據,我說點個人看法:
1.生化性不錯,但氨氮進水濃度比較高,出水要求氨氮為15,所以建議使用A/O
2.廢水進入A/O前考慮作預處理,比如吹脫,考慮到不造成2次污染,可以加一尾氣吸收裝置
3.看產品的情況,廢水本身很可能是鹼性的,在此基礎上調節作吹脫,也可以節約部分葯劑成本
4.COD本身生化性比較好,一般情況下問題不大,在吹脫後的情況下,氨氮倒50~100一下不難,後續A/O在正常運行的情況下達到排放標准不難
5.如果不用吹脫,直接500多濃度的氨氮進行生化處理,壓力太大,雖然實際運行中有處理好的案例,但不夠保險,故實際選擇還是看自身情況
7. 高氨氮廢水的最佳處理方式
1 物化法 1.1 吹脫法在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與濕度、PH、氣液比有關。 1.2 沸石脫氨法利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。 1.3 膜分離技術利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。 1.4MAP沉澱法主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4 理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。 1.5 化學氧化法利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。 2 生物脫氮法傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。 2.1A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
8. 高氨氮廢水如何處理
高濃度氨氮廢水對微生物有一定的抑製作用,但N同時又是微生物生長的一種專不可缺少的營養元素屬。
氨氮廢水的處理主要有以下的方法:
如果氨氮超高的話,可先加氫氧化鈉調節水PH11左右,通過氨氮吹脫塔用空氣吹脫,去除率可達80%左右,當然僅僅通過這樣的方法無法處理達標,還需後續處理。剩餘的氨氮可以通過脫氮的污水處理工藝進行去除:比如說A/O、A/AO、SBR等活性污泥法,以及曝氣生物濾池生物轉盤的生物膜法進行處理。
9. 合成氨生產有什麼氣體,廢水,固體污染物產生
合成氨生產主要的污染物有
污水:含氰污水,含氨污水,含硫污水。
廢氣:含硫化氫氣體,造氣吹風氣,一氧化碳氣體,二氧化碳氣體
固體廢物:煤灰,煤渣,銅液渣。
合成氨指由氮和氫在高溫高壓和催化劑存在下直接合成的氨,為一種基本無機化工流程。現代化學工業中,氨是化肥工業和基本有機化工的主要原料。
合成氨工業在20世紀初期形成,開始用氨作火炸葯工業的原料,為戰爭服務,第一次世界大戰結束後,轉向為農業、工業服務。隨著科學技術的發展,對氨的需要量日益增長。
主要用途
氨是重要的無機化工產品之一,在國民經濟中佔有重要地位,其中約有80%氨用來生產化學肥料,20%為其它化工產品的原料。氨主要用於製造氮肥和復合肥料,例如尿素、硝酸銨、磷酸銨、氯化銨以及各種含氮復合肥,都是以氨為原料的。氨作為工業原料和氨化飼料,用量約佔世界產量的1/2。
硝酸、各種含氮的無機鹽及有機中間體、磺胺葯、聚氨酯、聚醯胺纖維和丁腈橡膠等都需直接以氨為原料。
液氨常用作製冷劑,貯運商品氨中有一部分是以液態由製造廠運往外地。
此外,為保證製造廠內合成氨和氨加工車間之間的供需平衡,防止因短期事故而停產,需設置液氨庫。液氨庫根據容量大小不同,有不冷凍、半冷凍和全冷凍三種類型。液氨的運輸方式有海運、駁船運、管道運、槽車運、卡車運。
10. 氨氮高是什麼引起的
您好,很高興為您解答:
有機物導致的氨氮超標
超標原因:我運營過CN比小於的高氨氮污水,因脫氮工藝要求CN比在4~6,所以需要投加碳源來提高反硝化的完全性。當時投加的碳源是甲醇,因為某些原因甲醇儲罐出口閥門脫落,大量甲醇進入A池,導致曝氣池泡沫很多,出水COD,氨氮飆升,系統崩潰。
原因分析:大量碳源進入A池,反硝化利用不了,進入曝氣池,因為底物充足,異養菌有氧代謝,大量消耗氧氣和微量元素,因為硝化細菌是自養菌,代謝能力差,氧氣被爭奪,形成不了優勢菌種,所以硝化反應受限制,氨氮升高。
解決辦法:
1、立即停止進水進行悶爆、內外迴流連續開啟
2、停止壓泥保證污泥濃度
3、如果有機物已經引起非絲狀菌膨脹可以投加PAC來增加污泥絮性、投加消泡劑來消除沖擊泡沫
內迴流導致的氨氮超標
超標原因:目前遇到的內迴流導致的氨氮超標有兩方面原因:內迴流泵有電氣故障(現場跳停扔有運行信號)、機械故障(葉輪脫落)和人為原因(內迴流泵未試正反轉,現場為反轉狀態)。
原因分析:內迴流導致的氨氮超標也可以歸到有機物沖擊中,因為沒有硝化液的迴流,導致A池中只有少量外迴流攜帶的硝態氮,總體成厭氧環境,碳源只會水解酸化而不會完全代謝成二氧化碳逸出。所以大量有機物進入曝氣池,導致了氨氮的升高。
解決辦法:
內迴流的問題很好發現,可以通過數據及趨勢來判斷是否是內迴流導致的問題:初期O池出口硝態氮升高,A池硝態氮降低直至0,PH降低等,所以解決辦法分3種情況:
1、及時發現問題,檢修內迴流泵就可以了
2、內迴流已經導致氨氮升高,檢修內迴流泵,停止或者減少進水進行悶爆
3、硝化系統已經崩潰,停止進水悶爆,如果有條件、情況比較緊迫可以投加相似脫氮系統的生化污泥,加快系統恢復。
PH過低導致的氨氮超標
超標原因:目前遇到的PH過低導致的氨氮超標有三種情況:
1,內迴流太大或者內迴流處曝氣開太大,導致攜帶大量的氧進入A池,破壞缺氧環境,反硝化細菌有氧代謝,部分有機物被有氧代謝掉,嚴重影響了反硝化的完整性。
因為反硝化可以補償硝化反應代謝掉鹼度的一半,所以因為缺氧環境的破壞導致鹼度產生減少,PH降低,低於硝化細菌適宜的PH之後 硝化反應受抑制,氨氮升高。這種情況可能有些同行會遇到,但是從來沒從這方面找原因。
2,進水CN比不足,原因也是反硝化不完整,產生的鹼度少,導致的PH下降。
3,進水鹼度降低導致的PH連續下降。
原因分析:PH降低導致的氨氮超標,實際中發生的概率比較低,因為PH的連續下降是一個過程,一般運營人員在沒找到問題的時候就開始加鹼去調節PH了
解決辦法:
1,PH過低這種問題其實很簡單,就是發現PH連續下降就要開始投加鹼來維持PH,然後再通過分析去查找原因。
2,如果PH過低已經導致了系統的崩潰,目前接觸過PH在5.8~6的時候,硝化系統還沒有崩潰的情況,但是及時將PH補充上來,首先要把系統的PH補充上來,然後悶爆或者投加同類型的污泥。
那麼最後
不同情況、原因大不同,各種污水處理當中會出現有不可控的變數,選擇合適自己的處理方法也很重要哦,