導航:首頁 > 廢水污水 > 如何去除污水氨氮和總氮

如何去除污水氨氮和總氮

發布時間:2022-02-26 06:20:26

污水中氨氮去除的最好方法是什麼

您好,很高興為您解答:
廢水中氨氮的去除的方法
吹脫法
氨汽提技版術將水的pH值提高到權10.5~11.5的范圍,在汽提塔內反復形成水滴。通過塔內大量空氣循環,氣體與水接觸,氨逸出。該方法廣泛應用於處理中高濃度氨氮廢水,經常需要加入石灰,吹走後可以回收氨。
離子交換
離子交換實際上是不溶離子化合物(離子交換劑)上的可交換離子與溶液中其他同性離子之間的交換反應。用離子交換法去除氨氮時,常用離子交換劑沸石、活性炭等,也研究採用合成樹脂
生物處理法
目前,生物生物方法是目前在實際應用中應用最廣泛的方法,在處理低濃氨氨氮廢水的低濃氨氮廢水的實際應用中應用最廣泛的方法。生物脫氮是在微生物的作用下,將有機氮和氨氮轉化為N2和NxO氣體的過程,包括硝化和反硝化。
膜處理法
膜分析是用膜分離水溶液中某些物質的總稱。隨著膜技術的成熟,膜吸收法、液膜法和膜生物法處理氨氮廢水的研究不斷取得進展。
化學法
在污水處理過程中,直接添加氨氮去除劑,這種去除劑是一種具有特殊骨架結構的大分子無機化合物,能去除90%以上的氨氮,不會造成二次污染。

㈡ 什麼是污水總氮,總氮高如何解決

污水總氮所指的主要意思是,污水整體的氮含總量比較高,超出了標準的范圍和要求,所以這個時候一定要採用,專業的技術和方式對它進行合理的處理,才可以達到更環保的程度。

㈢ 污泥處理污水中如何去除氨氮

根據廢水中氨氮濃度的不同,可將廢水分為3類:

高濃度氨氮廢水(NH3-N>500mg/l);

中等濃度氨氮廢水(NH3-N:50-500mg/l);

低濃度氨氮廢水(NH3-N<50mg/l)。

然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。

去除氨氮的主要方法有:物理法、化學法、生物法。物理法有反滲透蒸餾、土壤灌溉等處理技術;化學法有離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法有藻類養殖、生物硝化、固定化生物技術等處理技術。

目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。

1.折點氯化法除氨氮

折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。

折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:

Cl2+H2O→HOCl+H++Cl-

NH4++HOCl→NH2Cl+H++H2O

NHCl2+H2O→NOH+2H++2Cl-

NHCl2+NaOH→N2+HOCl+H++Cl-

折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。

2.選擇性離子交換化除氨氮

離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性,能成功地去除原水和二級出水中的氨氮。

沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。

3.空氣吹脫法與汽提法除氨氮

空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。

汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。

吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。

4.生物法除氨氮

生物法去除氨氮是指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。

硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:

亞硝化:2NH4++3O2→2NO2-+2H2O+4H+

硝化:2NO2-+O2→2NO3-

硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLS•d);泥齡在3~5天以上。

在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:

6NO3-+2CH3OH→6NO2-+2CO2+4H2O

6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-

反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。

常見的生物脫氮流程可以分為3類:

⑴多級污泥系統

多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;

⑵單級污泥系統

單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在缺氧池,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;

⑶生物膜系統

將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。

常規生物處理高濃度氨氮廢水是要存在以下條件:

為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;

硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。

5.化學沉澱法除氨氮

化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。

化學沉澱法處理NH3-N主要原理是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

㈣ 快速去除COD、氨氮、總氮的方法有哪些

你好,請問是什麼類型廢水?日處理多少噸?是什麼處理工藝呢?等等,因為你提供信息很少,我簡單分享一下我的想法。

氨氮超標原因之一,說明好氧池硝化系統出現問題,這時候需要檢測溶氧值、停留時間、PH值、水溫是否合理,如果你投加是污泥培養微生物,污泥是否老化,投加微生物菌種搭配填料培養檢查是否培養成功等等,總之一句話就是硝化菌群出現問題。

甘度菌

總氮超標原因之一,說明厭氧池或者缺氧池反硝化系統出現問題,反硝化作用原理反硝化系統反應中迅速產生硝酸還原酶和亞硝酸還原酶將硝酸鹽和亞硝酸鹽還原成氮氣(N2)或一氧化二氮(N2O),達到凈化污水的目的。 出現問題:前端預處理不理想、硝化系統處理能力降低、有機氮非常穩定等因素。

COD超標現象之一:cod(生化需氧量)超標,一是自身cod含量高,處理比較困難,二是供氧環境不足、水溫影響、工藝缺陷、人員操作不當等外因導致微生處理率低。

污水處理變化萬千,需要具體情況具體分析,甘度-提供。

㈤ 污水排放怎樣降低總氮至達標

總氮的去除包括氨氮的去除、有機氮的去除、硝態氮的去除等。
1、氨氮去除
一般通過以下幾種辦法去除。
(1)折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。
(2)利用微生物硝化和反硝化去除污水(廢水)中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。
2、有機氮去除
常用如下方法:
生物法,氮化合物在生物作用下可實現向氮氣的轉化;
化學法,通過氧化使氮化合物直接從有機氮、氨氮直接轉化為氮氣。
生物法成本較低,效果穩定,但工藝復雜,操作困難,且佔地面積較大,運行時間較長;化學法省去中間轉化步驟,更快速直接,但成本較高,折點加氯法控制難度大,效果不穩定。
3、硝態氮超標怎麼去除呢?
硝態氮主要是指硝酸根離子,目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。其中離子交換法、膜滲透法以及吸附法都只是硝酸根離子的濃縮與轉移,無法真正去除總氮,濃縮以後的硝酸根廢液需要進一步處理。
在生物脫氮中,主要是指硝酸根離子通過反硝化細菌降解轉化為氮氣的過程。

㈥ 污水中總氮中的有機氮如何去除

污水中總氮中的有機氮去除方法如下:
污水先經過序批式生物膜法處理,在厭氧、缺氧、好氧條件共存的環境下,將大分子有機氮分解成小分子有機氮,再利用微生物的降解作用去除小分子有機氮,同時通過微生物的短程硝化反硝化和厭氧氨氧化作用去除氨氮和硝氮。然後再經過混凝-微濾法處理,通過加入混凝劑,將細菌、SS等含氮物質沉澱去除,再經中空纖維微濾膜的過濾作用去除腐殖酸、富里酸等難降解的大分子有機氮,降低污水中有機氮總量。

㈦ 廢水中的總氮該怎麼去除

首先,要先了解總氮的構成,總氮包括有機氮、氨氮、硝態氮,組成成分不同版,處理方式也不同,總體分為物化法權和生化法。

對於不同種類的廢水,通常會應用不同的物化法,例如氨氮廢水,通常會採用氨氮去除劑,折點加氯,將氨氮以氮氣的形式脫離出廢水;有機氮廢水,則需通過高級氧化法。但是,大多數物化方法是不能完全將總氮處理到較低的標准。

生化法多以活性污泥為主,適用性也較強,可以處理低濃度廢水。生物脫氮主要包括氨化、硝化和反硝化三個主要的生化過程。這種方法水力停留時間短,運行成本低。但是由於大部分使用此工藝的系統反硝化環節受限,導致出水氨氮雖然下降,硝氮卻提高了,最終總氮依舊超標。

如上所述,活性污泥法不能將廢水中的總氮完全去除,主要是因為廢水中硝態氮的超標,由於迴流比數值偏離、缺氧段溶解氧含量較高等因素導致。那麼在反硝化過程即可採用強化HDN高效脫氮設備,通過對填料、結構、布水的優化,提高了負荷,一步消耗硝態氮,同時還能降低COD,是出水水質達標,實現廢水中總氮的去除。

㈧ 氨氮總氮超標有什麼處理方法

氨氮超標處理方法常分為兩類:化學法處理和生物法處理
方法一:
硝化細菌和亞硝化細菌的硝化反應,所以硝化細菌利用自身分泌的酶進行硝化反應,是降解氨氮的成本較低的一種方法。就是把氨氮降解成為亞硝態氮和硝態氮。但是該方法不能把去除總氮,所以是治標不治本。
方法二:
厭氧氨氧化,該方法是利用亞硝態氮和氨氮開展氨氧化反應,從而形成氮氣到空氣中。該方法成本更低,主要因為不需要曝氣,剩餘污泥產生量少。缺點是菌種適應條件苛刻,同時氨氮和亞硝態氮必須形成一定的比例,或者說都存在的情況下才能反應,污水系統中亞硝態氮是一個中間環節,所以難以控制。

閱讀全文

與如何去除污水氨氮和總氮相關的資料

熱點內容
蒸餾制白酒的原理 瀏覽:617
蒸餾石油裝置圖 瀏覽:701
充電過濾煙筆 瀏覽:533
海爾凈水器都有什麼牌 瀏覽:525
什麼叫ro反滲透膜 瀏覽:951
衢州反滲透設備什麼牌子好 瀏覽:683
茶吧飲水機怎麼自動加熱 瀏覽:116
污水處理篩網去污 瀏覽:847
環氧樹脂ab膠危害 瀏覽:267
淘寶上凈水器哪個牌子好 瀏覽:494
純水機怎麼測ph值 瀏覽:873
30小魚缸如何更換過濾棉 瀏覽:201
蔡甸污水檢測多少錢 瀏覽:513
4千瓦2極污水泵接線圖 瀏覽:842
粗苯180蒸餾實驗 瀏覽:791
關於調整污水處理收費標準的 瀏覽:152
洗煤污水處理劑多少錢 瀏覽:517
飲水機放出來的水為什麼臟 瀏覽:20
中央凈水水麗百諾肯哪個好 瀏覽:641
常州純水設備大概多少錢 瀏覽:507