Ⅰ 製冷飲水機都是怎麼製冷的根據的是什麼原理
飲水機裡面有專門的製冷裝置,這個製冷裝置裡面主要是利用了半導體製冷的原理進行製冷的。其實在飲水機裡面一般都有兩個水箱,一個水箱裡面是放熱水的,一個水箱是放冷水的。製冷的裝置就放在冷水水箱裡面,當按下了製冷的開關以後,飲水機裡面的製冷的壓縮機就會開始工作。
所以說如果夏天的時候想要喝涼水的話,其實是用冰塊或者直接把水冰在冰箱裡面的效果會更好一點。而配備了製冷功能的飲水機的價格要比普通的飲水機的價格高很多,如果只是想要多一項製冷功能的話,購買高檔的飲水機是不夠劃算的。
Ⅱ 飲水機的電子製冷是怎麼回事啊
電子製冷也叫半導體製冷,大多數飲水機都是這種製冷方式。
工作原理:半導體製冷片的工作運轉是用直流電流,它既可製冷又可加熱,通過改變直流電流的極性來決定在同一製冷片上實現製冷或加熱,這個效果的產生就是通過熱電的原理,上圖就是一個單片的製冷片,它由兩片陶瓷片組成,其中間有N型和P型的半導體材料(碲化鉍),這個半導體元件在電路上是用串聯形式連接組成.半導體製冷片的工作原理是:當一塊N型半導體材料和一塊P型半導體材料聯結成電偶對時,在這個電路中接通直流電流後,就能產生能量的轉移,電流由N型元件流向P型元件的接頭吸收熱量,成為冷端由P型元件流向N型元件的接頭釋放熱量,成為熱端。吸熱和放熱的大小是通過電流的大小以及半導體材料N、P的元件對數來決定。製冷片內部是由上百對電偶聯成的熱電堆(如下圖),以達到增強製冷(制熱)的效果。
Ⅲ 飲水機的製冷原理是什麼
我們都知道飲水機可以製冷,那麼飲水機為什麼能夠製冷呢,下面我們一起來了解關於飲水機製冷的原理,歡迎大家閱讀。
製冷式的飲水機主要分為了電子製冷和壓縮製冷這兩種,在為大家介紹飲水機製冷原理的時候我就主要從這兩種飲水機製冷原理來為大家製造。
電子製冷飲水機: 電子製冷飲水機製冷原理主要是利用晶元進行製冷。飲水機使用晶元進行製冷具有功耗小、無污染、自動控制的特點,但是電子製冷式飲水機在製冷時它唯一的不足就是它的製冷速度變慢,同時它所供應的冷水量也非常的少,這一種飲水機比較適合人數少的家庭和單位進行使用。
壓縮製冷飲水機: 壓縮式製冷飲水機製冷原理是它在按下了壓縮式製冷飲水機的製冷開關之後,飲水機中的壓縮機會自動進行啟動,把蒸發器中已經吸熱汽化之後的製冷劑吸回,之後將其壓縮成為高溫高壓的氣體送到冷凝器中,之後經過冷凝器向外界的空氣中散熱冷凝成為高壓的液體,經過飲水機的毛細血管後被節流減壓到蒸發器中,吸收了冷膽的熱量進行降溫。
1、在為飲水機消毒室首先需要拔下飲水機的'電源插頭,之後取下飲水機的水桶,將飲水機的開關打開,放出飲水機腔內的剩餘的水分。
2、之後使用鑷子夾住有酒精的棉花,擦洗飲水機的內膽和蓋子的內外側。
3、在清潔飲水機的時候可以使用消毒水進行消毒,這時可以取出300毫升的消毒劑溶解到2升的水中,在留置10-15分鍾之後打開飲水機的開關排出飲水機中的消毒液。
4、然後使用清水清潔飲水機的腔體,打開飲水機的開關把腔體中的水放出,大家不要認為使用清水沖洗一次就能將消毒水清理干凈哦,要多沖洗幾次才行。
5、使用抹布擦洗飲水機的開關和後壁,這時飲水機的消毒工作就算是完成了。
Ⅳ 飲水機的製冷功能的原理是什麼
有電子製冷和壓縮機製冷!!!!壓縮機的就不用說了吧!按製冷方式分類可分為電子製冷型和壓縮機製冷型兩類,而每一類又分為台式和立式飲水機。電子製冷飲水機採用半導體元件製冷,又稱半體製冷飲水機,具有功耗小、運行雜訊低、無污染、自動控制和售價低等特點。不足之處是製冷速度慢,供應冷水量較少,適合飲水人數少的家庭、單位使用。壓縮機製冷飲水機的製冷原理與冰箱相同,不同的是蒸發器繞在不銹鋼水箱壁外,吸收熱量使水降溫,其製冷容量在3L左右,製冷功率在75-110W之間,具有整機可靠性高、製冷效率高、製冷速度快、冷水供應量大等特點,其製冷性能明顯優於電子製冷飲水機,但售價較貴,適合飲水人數較多的家庭、單位使用。
當按下壓縮式製冷飲水機製冷開關,製冷綠色指示燈亮,壓縮機啟動運行,將蒸發器中已吸熱氣化的製冷劑蒸汽吸回,並隨之壓縮成高溫、高壓氣體,送至冷凝器,經冷凝器向外界空氣中散熱冷凝成高壓液體,再經毛細管節流降壓流入蒸發器內,吸收冷膽熱量而使水溫下降,然後被壓縮機吸回。如此循環,達到降溫的目的。當水溫隨時間降到設定溫度時,製冷溫控器觸點斷開,製冷綠色指示燈熄滅,壓縮機停轉,轉入保溫工況。斷電後水溫逐漸回升,當升到設定溫度時,製冷溫控器觸點動作閉合,接通電源綠色指示燈亮,壓縮機運行。如此循環,將水溫控制在4-12℃之間。
熱電製冷又稱為溫差電製冷或半導體製冷,是利用熱電效應的一種製冷的方法。
目前採用半導體材料銻化鉍做成N型和P型熱電偶,用模塊的方法組成半導體製冷器件.N型材料有多餘的電子,有負溫差電勢.P型材料電子不足,有正溫差電勢;當電子從P型穿過結點至N型時,其能量必然增加,而且增加的能量相當於結點所消耗的能量.相反,當電子從N型流至P型材料時, 結點的溫度就會升高.
實驗證明, 在溫差電路中引入第三種材料(銅連接片和導線) 不會改變電路的特性.這樣,半導體元件可以各種不同的連接方法滿足使用者的要求.把一隻P型半導體和一隻N型半導體聯結成熱電偶, 接上直流電源後, 在接頭處就會產生溫差和熱量的轉移.把若干對半導體熱電偶對在電路上串聯起來, 而在傳熱方面則是並聯的, 這就構成了一個常見的製冷熱電堆.
藉助熱交換器等各種傳熱手段, 使熱電堆的熱端不斷散熱並且保持一定的溫度, 把熱電堆的冷端放到工作環境中去吸熱降溫, 這就是半導體製冷的原理.