Ⅰ 水為什麼會導電
因為水是弱電解質,而純水不導電,是因為沒有載流子。或者說載流子很少。
而一般喝的所謂純凈水,只是去除了一部分水中雜質,和一些雜質離子。並不是沒有載流子了。
此外,水本身存在弱電離平衡,即純水中也有少量氫離子和氫氧根離子,當有氯離子,硫酸根離子等強電解陰離子,或者鈉離子,鈣離子強電解陽離子存在時,水的電解率會增大,導致載流子增多。
事實上,所謂導電的概念,就是在外加電場下,介質中載流子的持續運動。或者也可以理解為電荷的運動,因此只要有足夠的載流子,並且載流子可以自由移動,即可判斷為導電。
(1)超純水為什麼導電擴展閱讀
水(化學式:H₂O)是由氫、氧兩種元素組成的無機物,無毒。在常溫常壓下為無色無味的透明液體,被稱為人類生命的源泉。水,包括天然水(河流、湖泊、大氣水、海水、地下水等){含雜質},蒸餾水是純凈水,人工制水(通過化學反應使氫氧原子結合得到的水)。
水是地球上最常見的物質之一,是包括無機化合、人類在內所有生命生存的重要資源,也是生物體最重要的組成部分。水在生命演化中起到了重要作用。它是一種狹義不可再生,廣義可再生資源。
純水也可以導電,但十分微弱(導電性在日常生活中可以忽略),屬於極弱的電解質。日常生活中的水由於溶解了其他電解質而有較多的正負離子,導電性增強。
Ⅱ 超純水中的電阻率是什麼
超純水中的電阻率就是單位厘米內的水的電阻值。
目前超純水行業中電阻率是18.25MΩ*CM.
不會
Ⅲ 日本在地下存放了5萬噸超純水,他們的目的是什麼
顧名思義,所謂超純水就是指非常純凈的水,電阻率達到18兆歐姆·厘米(25 )的水就可以稱為超純水。為什麼水的純凈度會與電阻率有關呢?這是因為水本身是電的不良導體,水中的雜質越少,電阻率就越大,相應的其導電性能就越小。
盡管超純水在自然界中是不存在的,但人類卻可以自己動手來制備,通常來講,超純水的制備量都很少,不過凡事都有例外,日本東京大學的科學家就在地下存放了5萬噸超純水。那麼他們的目的是什麼呢?答案就是探測宇宙中的「隱身粒子」——中微子。
中微子是宇宙中的一種基本粒子,它們的運動速度通常都非常接近光速,強相互作用力和電磁力都不會對中微子產生作用,而由於中微子的質量又極小(一般小於電子質量的100萬分之1),因此引力對它的作用也幾乎等於零,也就是說,四大基本力中有三種都對中微子無效。
弱相互作用力對中微子有效,不過這種力的作用距離極短(小於10^-17米),這個范圍其實就是原子核內的誇克層面。簡單來講就是,只有中微子直接撞上了原子核內的誇克,科學家才有可能探測得到它們,那這種概率有多大呢?我們不妨來看一下數據。
原子、誇克和中微子直徑的數量級分別為為10^-10米、10^-18米和10^-20米,也就是說,如果把中微子放大成一顆直徑1厘米的小球,那麼按照相同的比例放大,原子的直徑就有10萬公里,而位於這個原子中心的誇克的直徑則卻有1米。
由此可見,中微子擊中誇克的概率可以說低得令人發指,所以在絕大多數時候,中微子都是直接穿過原子,我們根本就察覺不到,正因為如此,中微子也被稱為「隱身粒子」。
宇宙里中微子的數量相當巨大,對我們地球人而言,平均每秒鍾就有數十萬億個中微子穿過我們的身體。由此可見,盡管中微子撞上誇克的概率極低,但在如此多的中微子里,仍然可能會有極少的一部分會與地球上的物質產生互動。
因此科學家只需要建造一個巨大的「靶子」,並對其進行嚴密的監測,就可能探測得到中微子,而日本在地下存放了5萬噸超純水的目的,就是建造這樣一個「靶子」。
這個項目全稱為「超級神岡中微子探測實驗」(Super-Kamioka Neutrino Detection Experiment),科學家將超純水裝在一個直徑39.3米、高41.4米的不銹鋼圓柱形容器之內,被深深地埋在日本岐阜縣飛驒市神岡町的一處深達1公里的廢棄礦井中。
為了保證水的純凈度,這里的空氣都是凈化處理過的,而容器里的超純水更是會被不停地進行循環凈化,去除掉其中所有能夠被去除的雜質。科學家認為,在地下1公里處,可以有效地避免地球表面的各種干擾,而超純水又幾乎是完全透明的,這樣就可以大幅度地提高發現中微子的可能性。
當中微子撞上了原子核中的誇克之後,會產生電子和μ子(μ子和電子一樣屬於輕子,其質量大約為電子的200倍,半衰期只有2.2 x 16^-6秒),這些電子和μ子的速度極快,甚至會超過光在水中的速度,在這種情況下,就會產生切連科夫輻射,從而釋放出非常微弱的光信號。
為了探測這些光信號,科學家在這個容器的內壁上設置了1.12萬個光電倍增管(上圖中的金色圓球),其功能是將光信號盡可能地放大(可以高達1億倍)。
在處於工作狀態的時候,這些光電倍增管就像是1萬多隻眼睛一樣在黑暗中「盯」著容器里的超純水,靜靜地等待著某個來自宇宙深空的中微子一頭撞在誇克上所發出的那麼一丁點微光。
如此精心的安排沒有白費,迄今為止,該項目已經多次探測到了中微子,從此拉開了中微子天文學的序幕,而日本科學家也因此獲得了兩個諾貝爾物理學獎(分別為2002年和2015年)。順便講一下,該項目其實還有另外一個目的,那就是探測質子衰變,不過這一目標始終沒有實現。