A. 最大泡壓法測表面張力 儀器常數K
溶液的吸附作用和液體表面張力的測定
一.實驗目的
1.用最大泡壓法測定不同濃度的表面活性物質(正丁醇)溶液在一定溫度下的表面張力;
2.應用Gibbs和Langmuir吸附方程式進行精確作圖和圖解微分,計算不同濃度正丁醇溶液的表面吸附量和正丁醇分子截面積,以加深對溶液吸附理論的理解;
3.掌握作圖法的要點,提高作圖水平。
二.實驗原理
當液體中加入某種溶質時,其表面張力要發生變化。例如在水中溶入醇、醛、酮等有機化合物,水的表面張力要減小;若加入某些無機物,則水的表面張力稍有增大。溶液系統可通過自動調節不同組分在表面層中的量來降低表面Gibbs能,使系統趨於穩定。因此,若加入的溶質能夠降低溶液的表面張力,則該溶質力圖濃集在表面上;反之,則該溶質在表面層中的濃度一定低於溶液的內部,這種表面層中某物質的含量與溶液本體中不同的現象,稱之為表面吸附作用。當表面層中物質的量大於本體溶液中的量,叫做發生了正吸附,反之為發生負吸附,Gibbs用熱力學方法導出了一定溫度下,吸附量的定量公式——Gibbs吸附等溫式:
=-
式中, 為表面吸附量(mol/m2);γ為表面張力(N/m或J/ m2);T為熱力學溫度(K);c為溶液本體的平衡濃度(mol/L);R為氣體常數[J/(mol•K)]。
能使溶劑水的表面張力降低的溶質通常稱為表面活性物質。工業上和生活中所用的去污劑、起泡劑、乳化劑及潤滑劑等都是表面活性物質。表面活性物質的分子是由親水的極性部分和憎水的非極性部分構成的,正丁醇分子為ROH型一元醇,其羥基為親水基,烴基為憎水基,當它溶於水後,在溶液表面層形成羥基朝下,烴基朝上的正丁醇單分子層。當溶液濃度增加時,表面吸附量也增加;當濃度足夠大時,吸附量達極大值 ,表面溶液的表面吸附達飽和狀態。 可近似看成表面上定向排滿單分子層時單位表面積中正丁醇的物質量。
正丁醇溶液的γ-c曲線示於圖一。從曲線可求得不同濃度下的dγ/dc值,將各值待入Gibbs公式可計算不同濃度時表面吸附量 。如果作 -c曲線,可求得飽和吸附量 ,並由下式計算出正丁醇的分子截面積:
S=
式中,N0為Avgodro常數(6.02×1023/mol)。
實際上將 -c曲線外推求 比較困難。設氣固單分子層吸附的Langmuir吸附等溫式適用於溶液的表面吸附,並以表面吸附量 (表面超量)代替單位表面上所含正丁醇的物質量,則有:
θ=
或
式中,θ為吸附分數,c為溶液本體的平衡濃度,K為與溶液表面吸附有關的經驗常數。由 ~c作圖可得一直線,由直線斜率求 ,進而可求分子的截面積S。
圖一 γ~c曲線、 ~ c曲線和 ~c曲線
圖二 最大泡壓法測液體表面張力儀器裝置圖
用最大泡壓法測表面張力方法如下:測定液體表面張力的方法很多,如毛細管升高法、滴重法、環法、滴外形法等等。本實驗採用最大泡壓法,實驗裝置如圖二所示。
圖二中A為充滿水的抽氣瓶;B為直徑為0.2~0.3mm的毛細管;C為樣品管;D為U型壓力計,內裝水以測壓差;E為放空管;F為恆溫槽。
將毛細管豎直放置,使滴口瓶面與液面相切,液體即沿毛細管上升,打開抽氣瓶的活栓,讓水緩緩滴下,使樣品管中液面上的壓力漸小於毛細管內液體上的壓力(即室壓),毛細管內外液面形成一壓差,此時毛細管內氣體將液體壓出,在管口形成氣泡並逐漸脹大,當壓力差在毛細管口所產生的作用力稍大於毛細管口液體的表面張力時,氣泡破裂,壓差的最大值可由U型壓力計上讀出。
若毛細管的半徑為r,氣泡從毛細管出來時受到向下的壓力為:
式中,△h為U型壓力計所示最大液柱高度差,g為重力加速度,ρ為壓力計所貯液體的密度。氣泡在毛細管口所受到的由表面張力引起的作用力為2πr•γ,氣泡剛脫離管口時,上述二力相等:
若將表面張力分別為 和 的兩種液體用同一支毛細管和壓力計用上法測出各自的 和 ,則有如下關系:
即
對同一支毛細管來說,K值為一常數,其值可借一表面張力已知的液體標定。本實驗用純水作為基準物質,20.0℃時純水的表面張力為7.275×10-2N/m(或J/m2)。
三.儀器和試劑
表面張力測定裝置(包括恆溫槽)1套;容量瓶100ml1個,50ml5個;1ml刻度移液管1支;吸耳球1個;正丁醇(二級);去離子水。
四.實驗步驟
1.溶液配製
按表分2次配製9份溶液,第一次1~5號,第二次配製6~9號。
表 - 正丁醇表面張力測定溶液配製方法
樣品號數
1
2
3
4
5
6
7
8
9
容量瓶體積/cm3
100
50
50
50
50
50
50
50
50
/cm3
0.10
0.10
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.如圖裝配儀器,恆溫槽溫度調至20.0℃,樣品管內置待測液體,毛細管豎直放置,毛細管口與液面相切。恆溫5min以上,測定液體的表面張力。
3.測定毛細管常數。樣品管內加入一定量蒸餾水(以放入毛細管後管口剛好與液面相切為准),旋動抽氣瓶活栓讓水緩緩滴下,使氣泡從毛細管均勻逸出,以3~5s逸出1個氣泡為宜,記錄壓力計兩側液面之最高和最低讀數各三次,取 的平均值計算毛細管常數K值。
4.同法測定各正丁醇溶液的 值,測量順序由稀到濃,每次測量前用樣品沖洗樣品管和毛細管數次。
五.數據處理
1.計算各濃度正丁醇溶液的表面張力,並作γ-c曲線;
樣品號數
1
2
3
4
5
6
7
8
9
溶液濃度c
2.用雙玻璃棒法求六個以上切點(均勻分布)的 )值;
3.計算 值,並求c/ 值;
4.作c/ ~c圖,得一直線,由直線斜率求 值;
5.計算出正丁醇的分子截面積。文獻記載直鏈醇類的分子截面積約為2.2×10-19m2,並以此求出相對誤差。
B. 物理化學強人進!
同意翼之軒轅的解釋。但也可以從另一個角度去解釋:假如水從管頂冒出,冒出的水就會流回下面的水槽,接著再會有水從毛細管的頂端冒出,這樣循環往復,不就成了永動機了嗎?顯然違背能量守恆。因此不會從頂端冒出。
C. 毛細管粘度計的管常數是如何讓計算出來的
用毛細管黏度計測定黏度時,如果動能校正項不能忽略即需考慮黏度計的儀器常數。考慮黏度計的儀器常數時,黏度的計算公式為:
η/ρ=At-B/t
式中A、B就是黏度計的儀器常數。黏度計的儀器常數A、B可以有三種方法來求得。
1、用一種黏度已經精密測定的標准黏度液在兩個或兩個以上溫度下測定流出時間,應用此法時,一定要注意嚴格控制溫度,否則不易測准。
2、用兩種或兩種以上不同的標准黏度液在同一溫度下測定流出時間,要求所選標准黏度液一種粘度較大,在所用黏度計中流動時動能校正項極小,而另一種標准黏度液粘度較小,使之在黏度計中流動時動能校正項較大。
3、用同一種標准黏度液在同一溫度下,測定在流出液柱上施加不同的外壓力下的流出時間。
通過上式計算就可以得到黏度計的儀器常數