A. 在半導體生產中,超純水都會被應用在哪裡
超純水的應用領域涵蓋了整個電子行業,還有許多新能源行業也有涉獵,比如我們常說的晶元、半導體、光伏等等。今天我們主要來說一下半導體領域中超純水的應用。在半導體生產中,超純水都會被應用在哪裡?答案是在晶圓沖洗、化學品稀釋、化學機械...
B. 半導體廠超純水Cl含量如何控制
摘要 純水中,電阻率,微粒子,氣泡(溶解氧,溶解氮)和TOC是非常重要的指標,略微差異,可能導致元器件生產過程的產品質量和合格率的下降,所以超純水的制備技術在半導體工業的發展中是非常重要的一環。近年半導體工業,超純水的部分指標可能更加嚴格於表1中ITRS浸沒式超純水的要求。目前掌握最尖端的超純水製造工藝主要還是國外的企業為主,如日本的栗田工業和美國的英特爾公司等等。
C. 如何區別純水 高純水和超純水
辨別水處理行業中純水,高純水和超純水的區別,主要就是看它們各自的電導率和含鹽量。 純水:純水又稱純凈水、去離子水,是指以符合生活飲用水衛生標準的水為原水,通過電滲析器法、離子交換器法、反滲透法、蒸餾法及其他適當的加工方法,製得的密封於容器內,且不含任何添加物,無色透明,可直接飲用的水,也可以稱為純凈物(在化學上),在試驗中使用較多,又因是以蒸餾等方法製作,故又稱蒸餾水。市場上出售的太空水,蒸餾水均屬純凈水;但純水還是少喝為好,因為裡面並沒有太多人體需要的礦物質。純水不易導電,是絕緣體。鉛酸蓄電池補水時要使用純水。
高純水:高純水是化學純度極高的水,其中的雜質的含量小於0.1mg/L。目前人們製成的高純水的純度已經達到99.999999%,其中雜質含量低於0.01mg/L。高純水主要指水的溫度為25℃時,電導率小於0.1us/cm,pH值為6.8-7.0及去除其他雜質和細菌的水。
高純水,是指將水中的導電介質幾乎全部去除,又將水中不離解的膠體物質、氣體和有機物均去除至很低程度的水。高純水的含鹽量在0.3mg/L以下,電導率小於0.2μs/cm。
超純水:超純水電阻率達到18MΩ*cm(25℃)的水。常用於集成電路工業中用於半導體原材料和所用器皿的清洗、光刻掩模版的制備和矽片氧化用的水汽源等。此外,其他固態電子器件、厚膜和薄膜電路、印刷電路、真空管等的製作也都要使用超純水。
總之,就是從電導率和含鹽量兩個角度來看待就行,指標越低,純度越高。
D. 超純水指標
這是我們超純水檢測機構給半導體廠和葯廠檢測的項目,不知道能否解答你的問題?
電阻率(實測電導) GB 11446.4
全硅 GB 11446.6分光光度
微粒數 GB 11446.9
細菌個數 GB 11446.10(濾膜培養
銅 GB 11446.5原子吸收分光光度法
鋅 GB 11446.5
鎳 GB 11446.5
鈉 GB 11446.5
鉀 GB 11446.5
氯化物 GB 11446.7離子色譜
硝酸根 GB 11446.7
磷酸根 GB 11446.7
硫酸根 GB 11446.7
總有機碳 GB 11446.8
E. 超純水說的是什麼水
超純水(Ultrapure water)又稱UP水,是指電阻率達到18 MΩ*cm(25℃)的水。
這種水中除了水分子外,幾乎沒有什麼雜質,更沒有細菌、病毒、含氯二惡英等有機物,當然也沒有人體所需的礦物質微量元素,也就是幾乎去除氧和氫以外所有原子的水。
超純水可以用於超純材料(半導體原件材料、納米精細陶瓷材料等)應用蒸餾、去離子化、反滲透技術或其它適當的超臨界精細技術的制備過程。
應用
超純水可以在以下領域使用:
1、電子、電力、電鍍、照明電器、實驗室、食品、造紙、日化、建材、造漆、蓄電池、化驗、生物、制葯、石油、化工、鋼鐵、玻璃等領域。
2、化工工藝用水、化學葯劑、化妝品等。
3、單晶硅、半導體晶片切割製造、半導體晶元、半導體封裝、引線櫃架、集成電路、液晶顯示器、導電玻璃、顯像管、線路板、光通信、電腦元件 、電容器潔凈產品及各種元器件等生產工藝。
4、高壓變電器的清洗等。
F. 半導體行業超純水質量會有哪些要求
超純水的應用領域涵蓋了整個電子行業,還有許多新能源行業也有涉獵,比如我們常說的晶元、半導體、光伏等等。今天我們主要來說一下半導體領域中超純水的應用。
在半導體生產中,超純水都會被應用在哪裡?答案是在晶圓沖洗、化學品稀釋、化學機械研磨、潔凈室環境中都會應用到。那麼,質量會有哪些要求?雖然每個行業都使用所謂的「超純水」,但質量標准卻各不相同。半導體所用的超純水需要達到的水質標准為:我國電子工業部電子級水質技術標准(18MΩ.cm、15MΩ.cm、10MΩ.cm、2MΩ.cm、0.5MΩ.cm五級標准)、我國電子工業部高純水水質試行標准、美國半導體工業用純水指標、日本集成電路水質標准、國內外大規模集成電路水質標准。
G. 純水和超純水的pH值該如何檢測
1、攪拌速度:PH值反映的是H+的活度,(H+)而不是H+的濃度[H+],其關系為(H+)=f×[H+]。F為H+的活度系數。它是由溶液中所有離子的總濃度決定而不只決定於被測離子的濃度。在理論純水中活度系數f等於1,但只要有其它離子存在,活度系數就要改變,PH值也就會改變。即PH值受溶液中總的離子濃度的影響,總離子濃度變化,PH值就要改變。由於復合電極液接界很靠近PH敏感玻璃球泡,從液接界滲漏出的鹽橋溶液首先聚集在敏感球泡周圍,改變了其附近的總離子濃度,由上述原因可知,使用測量值只是敏感球泡附近的被改變了PH值,不能反映其真實的PH值。雖然採用攪拌或搖動燒杯的方法可以改變這種情況,但實踐證明,攪拌速度不同,測試的值也會不一樣,同時攪拌或搖動又會加速CO2的溶解,所以也不可取。 2、高濃度3mol/L的Kcl:由於純水中離子濃度非常低,而參比電極鹽橋溶液選中高濃度3mol/L的Kcl,相互之間的濃度差較大,與它在普通溶液中的情況差別很大。在純水會加大鹽橋溶液的滲透速度,促使鹽橋的損耗,從而加速了K+和CL-的濃度的降低。引起液接界電位的變化和不穩定,而Ag/AgCl參比電極本身的電位取決於CL-的濃度。CL-濃度發生了變化,其參比電極自身電位也會隨之變化,於是就使得示值漂移,特別是不能補充內參比液的復合電極更會如此。 3、Kcl濃度的降低:為了保證復合電極的pH零電位,鹽橋必須採用高濃度的Kcl,同時為了防止Ag/AgCl鍍層被高濃度的Kcl溶解,在鹽橋中又必須添加粉末狀的AgCl,使鹽橋溶液被AgCl飽和。但是根據上述第1條所述,由於鹽橋溶液中Kcl濃度的降低,又使原本溶解在其中的AgCl過飽和而沉澱,從而堵塞液接界。 4、易受污染:純水很容易受到污染,在燒杯中敞開測量,很容易受到CO2吸收的影響,PH值會不停地往下降,有關國際標准規定測量必須在一個特殊的裝置中密閉中進行,但在一般實驗室中難於實行。
H. 半導體超純水設備的價格為何會有很大的差別
當前國內半導體行業應用的超純水設備一般有前端預處理及RO、回EDI提純等工序。
1.根據超純水設答備的材質不同,選用的RO膜的品牌不同以及EDI模塊的噸位及品牌區別,價格上也有很大的差距。
2.其中價格中膜元件及設備材質因素會極大地影響整體設備的價格。
3.具體的加工工藝以及廠家報價也會對價格有所影響。
詳情可見官網:網頁鏈接
I. 超純水水質標准
超純水是為了研製超純材料(半導體原件材料、納米精細陶瓷材料等)應用蒸餾、去離子化、反滲透技術或其它適當的超臨界精細技術生產出來的水,其電阻率大於18 MΩ*cm,或接近18.3 MΩ*cm極限值(25℃)。簡單得說就是幾乎去除氧和氫以外所有原子的水。這樣的水是一般工藝很難達到的程度,理論上可以採用二級反滲透再經過串聯的混合型交換樹脂柱對二次反滲水進行處理,但是交換樹脂的再生不便,質量難以保證。
制備
在原子光譜、高效液相色譜、超純物質分析、痕量物質等的某些實驗中,需要用超純水,超純水的制備如下:
(1)加入少量高錳酸鉀的水源,用玻璃蒸餾裝置進行二次蒸餾,再以全石英蒸餾器進行蒸餾,收集於石英容器中,可得超純水。
(2)使用強酸型陽離子和強鹼型陰離子交換樹脂柱的混合床或串聯柱。可充分除去水中的陽、陰離子,其電阻率達10 Q·cm的水,俗稱去離子水,再用全石英蒸餾器進行蒸餾,收集可得超純水。
應用
超純水可以在以下領域使用:
(1)電子、電力、電鍍、照明電器、實驗室、食品、造紙、日化、建材、造漆、蓄電池、化驗、生物、制葯、石油、化工、鋼鐵、玻璃等領域。
(2)化工工藝用水、化學葯劑、化妝品等。
(3)單晶硅、半導體晶片切割製造、半導體晶元、半導體封裝 、引線櫃架、集成電路、液晶顯示器、導電玻璃、顯像管、線路板、光通信、電腦元件 、電容器潔凈產品及各種元器件等生產工藝。
(4)高壓變電器的清洗等