『壹』 大型污水處理廠水池結構的設計分析
下面是中達咨詢給大家帶來關於大型污水處理廠水池結構的設計相關內容,以供參考。
引言:
當前社會的快速發展,使得人們對環境污染的問題越來越重視,其中,工業污水是造成環境污染的重要因素之一。在瞎凳污水處理過程中,污水處理廠水池結構的建設尤為重要,它不僅直接關系著污水的處理質量,還對處理設施有一定的影響。為此,我們需要加強大型污水處理廠水池結構的設計,保證污水處理效果。下面我們首先來了解一下大型污水處理廠水池結構設計的相關內容,然後針對其相關問題提出有效的解決措施。
一、探討污水處理廠水池結構設計的相關內容
(一)污水處理廠水池荷載及荷載組合
首先,荷載主要包括池內的水壓、土對池壁的壓力、溫度濕度及地下水的壓力,其中水壓的計算大都按照滿水條件進行計算。而土壓力的影響因素較多,它與土質有著密切聯系,為此,我們可以通過朗肯理論對土壓進行計算。由於溫度濕度是隨著環境的變化而變化的,它們一旦變化就會導致結構物體積發生改變,從而產生一定的應力。地下水壓力對底板的影響尤為重要,為了避免水壓對底板造成破壞,需要我們在設計過程中對水壓做好准確的計算。其次,荷載組合包括水壓力與自重的組合、土壓力與自重的組合及水壓力、自重、溫差、濕差三者的組合。在水池結構設計中,水壓力與自重的組合和土壓力與自重的組合是最基礎的兩種組合,而水壓力、自重、溫差、濕差的組合是非常不利的。
(二)污水處理廠水池結構的計算
污水處理廠水池結構的類型有很多種,像敞口水池、有蓋水池、小型水池、大型水池等,對不同的結構類型我們要採取不同的計算模型。首先,對敞口水池要要將其假定為三邊支承,有走道板的需要其設計為橫向深梁,為了更加合理的對其進行計算,需要對敞口水池依據不動鉸支撐來分析。其次,對跨度在六米內的小型水池或有蓋水池,我們需要按照地基反力直接分布進行底板的計算。再就是對大型水池,我們可以利用單位截條來進行底板的計算。
二、分析大型污水處理廠水池結構設計中存在的問題
(一)水池上浮問題的分析
在水池結構設計過程中,一旦出現失誤就會導致水池的上浮問題。例如在對水池結構進行設計時,只考慮到水池整體穩定性,忽略磨亮旅了對水池中局部部分的抗浮驗算,就容易導致水池的上浮問題。而且,在水池結構設計規劃過程中,一旦出現基礎處理失誤、計算失誤、抗浮措施使用不當等問題,都容易導致水池上浮的發生。根據水池上浮問題產生的原因,我們要採取有效的措施避免上浮鍵迅事故。首先,為了避免水池抗浮力過小而導致上浮問題,需要我們採取加大水池抗浮力的措施,也就是說通過增加水池的自重力來與地下浮力相抗衡,具體方法包括增加水池覆蓋土的數量、保證水池填土質量、加大水池底板厚度等。其次,對水池的抗浮力要做到全方位驗算,不僅要對水池整體抗浮性進行驗算,還要對水池中間的多格水池、連接柱子的頂板及底板分別進行抗浮性驗算。這樣就可以根據驗算結果全面做好水池結構的抗浮設計。另外,在對水池結構進行抗浮設計時,要採用恰當的抗浮措施,包括錨桿、抗浮樁等方法,避免水池上浮事故的發生。
(二)水池滲漏問題的分析
在大型污水處理廠的建設中,水池結構多採用鋼筋混凝土結構,根據這一結構特性,一旦混凝土結構發生變形,就會導致水池滲透的問題。水池結構產生裂縫的原因有很多,包括混凝土結構受到外部環境的影響、水池結構設計中荷載組合選用不當、預埋件設計不符合規定、鋼筋使用不合理等。為了解決水池結構的滲透問題,需要我們採取以下措施控制水池裂縫的發生。首先,在進行水池結構設計時,要按照規定選擇混凝土強度等級,嚴格把控水泥用量,從而避免混凝土結構發生變形,控制水池滲透現象。其次,在水池結構設計過程中,要做好水池抗裂度的驗算,對構造配筋的選擇也要按照水池需要進行,並考慮好荷載組合的選擇,合理的進行水池結構設計,從而避免水池壁產生裂縫。再就是對穿牆管套的施工要進行充分的准備,對其使用數量及位置都要做出明確的規定。最後,為了避免混凝土結構受到外界環境的影響,要按照要求設置沉降縫或者伸縮縫,防止混凝土結構發生變形,進一步保證大型污水處理廠水池結構的設計質量。
總結:
綜上所述,我國工業化和城市化進程不斷發展,這也進一步加劇了環境污染問題,並且,工業中產生的大量污水對人們身體的健康造成了一定的威脅,為此,加強污水處理尤為重要。近年來,我國污水處理工程不斷擴大,大型污水處理廠的建設水平逐漸提高。但是,在水池結構設計過程中,仍然存在著一定的問題,像水池沉降不均問題、滲透問題等,需要我們採取相關措施解決這些問題,進一步保證污水處理質量。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
『貳』 求生活污水處理工藝流程圖及動畫
一、A/O工藝
1.基本原理
A/O是Anoxic/Oxic的縮寫,它的優越性是除了使有機污染物得到降解之外,還具有一定的脫氮除磷功能,是將厭氧水解技術用為活性污泥的前處理,所以A/O法是改進的活性污泥法。
A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,可提高污水的可生化性及氧的效率;在缺氧段,異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。
2.A/O內循環生物脫氮工藝特點
根據以上對生物脫氮基本流程的敘述,結合多年的焦化廢水脫氮的經驗,我們總結出(A/O)生物脫氮流程具有以下優點:
(1)效率高。該工藝對廢水中的有機物,氨氮等均有較高的去除效果。當總停留時間大於54h,經生物脫氮後的出水再經過混凝沉澱,可將COD值降至100mg/L以下,其他指標也達到排放標准,總氮去除率在70%以上。
(2)
流程簡單,投資省,操作費用低。該工藝是以廢水中的有機物作為反硝化的碳源,故不需要再另加甲醇等昂貴的碳源。尤其,在蒸氨塔設置有脫固定氨的裝置後,碳氮比有所提高,在反硝化過程中產生的鹼度相應地降低了硝化過程需要的鹼耗。
(3)
缺氧反硝化過程對污染物具有較高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有機物的去除率分別為62%和36%,故反硝化反應是最為經濟的節能型降解過程。
(4)
容積負荷高。由於硝化階段採用了強化生化,反硝化階段又採用了高濃度污泥的膜技術,有效地提高了硝化及反硝化的污泥濃度,與國外同類工藝相比,具有較高的容積負荷。
(5)
缺氧/好氧工藝的耐負荷沖擊能力強。當進水水質波動較大或污染物濃度較高時,本工藝均能維持正常運行,故操作管理也很簡單。通過以上流程的比較,不難看出,生物脫氮工藝本身就是脫氮的同時,也降解酚、氰、COD等有機物。結合水量、水質特點,我們推薦採用缺氧/好氧(A/O)的生物脫氮
(內循環) 工藝流程,使污水處理裝置不但能達到脫氮的要求,而且其它指標也達到排放標准。
3. A/O工藝的缺點
1.由於沒有獨立的污泥迴流系統,從而不能培養出具有獨特功能的污泥,難降解物質的降解率較低;
2、若要提高脫氮效率,必須加大內循環比,因而加大了運行費用。另外,內循環液來自曝氣池,含有一定的DO,使A段難以保持理想的缺氧狀態,影響反硝化效果,脫氮率很難達到90%。
3、 影響因素
水力停留時間(硝化>6h ,反硝化<2h )污泥濃度MLSS(>3000mg/L)污泥齡( >30d )N/MLSS負荷率(
<0.03 )進水總氮濃度( <30mg/L)
二、A2/O工藝
1.基本原理
A2/O工藝是Anaerobic-Anoxic-Oxic的英文縮寫,它是厭氧-缺氧-好氧生物脫氮除磷工藝的簡稱。該工藝處理效率一般能達到:BOD5和SS為90%~95%,總氮為70%以上,磷為90%左右,一般適用於要求脫氮除磷的大中型城市污水廠。但A2/O工藝的基建費和運行費均高於普通活性污泥法,運行管理要求高,所以對目前我國國情來說,當處理後的污水排入封閉性水體或緩流水體引起富營養化,從而影響給水水源時,才採用該工藝。
2. A2/O工藝特點:
(1)污染物去除效率高,運行穩定,有較好的耐沖擊負荷。
(2)污泥沉降性能好。
(3)厭氧、缺氧、好氧三種不同的環境條件和不同種類微生物菌群的有機配合,能同時具有去除有機物、脫氮除磷的功能。
(4)脫氮效果受混合液迴流比大小的影響,除磷效果則受迴流污泥中夾帶DO和硝酸態氧的影響,因而脫氮除磷效率不可能很高。
(5)在同時脫氧除磷去除有機物的工藝中,該工藝流程最為簡單,總的水力停留時間也少於同類其他工藝。
(6)在厭氧—缺氧—好氧交替運行下,絲狀菌不會大量繁殖,SVI一般小於100,不會發生污泥膨脹。
(7)污泥中磷含量高,一般為2.5%以上。
3.A2/O工藝的缺點
·反應池容積比A/O脫氮工藝還要大;
·污泥內迴流量大,能耗較高;
·用於中小型污水廠費用偏高;
·沼氣回收利用經濟效益差;
·污泥滲出液需化學除磷。
三、氧化溝
1氧化溝技術
氧化溝(oxidation ditch)又名連續循環曝氣池(Continuous loop reactor),是活性污泥法的一種變形。氧化溝污水處理工
藝是在20世紀50年代由荷蘭衛生工程研究所研製成功的。自從1954年在荷蘭首次投入使用以來。由於其出水水質好、運行穩定、
管理方便等技術特點,已經在國內外廣泛的應用於生活污水和工業污水的治理[1]。至今,氧化溝技術己經歷了半個多世紀的
發展,在構造形式、曝氣方式、運行方式等方面不斷創新,出現了種類繁多、各具特色的氧化溝[2]。
從運行方式角度考慮,氧化溝技術發展主要有兩方面:一方面是按時間順序安排為主對污水進行處理;另一方面是按空間順序安
排為主對污水進行處理。屬於前者的有交替和半交替工作式氧化溝;屬於後者的有連續工作分建式和合建式氧化溝[3],見圖1
氧化溝工藝分類。
目前應用較為廣泛的氧化溝類型包括:帕斯韋爾(Pasveer)氧化溝、卡魯塞爾(Carrousel)氧化溝 、奧爾伯(Orbal)氧化溝
、T型氧化溝(三溝式氧化溝)、DE型氧化溝和一體化氧化溝。
2,氧化溝工藝在污水處理中的應用
從理論上講,氧化溝既具有推流反應的特徵,又具有完全混合反應的優勢;前者使其具有出水優良的條件,後者使其具有抗沖擊
負荷的能力。正是因為有這個環流,且有能量分區的緣故,使它具有其它許多污水生物處理技術所擁有的眾多優勢,其中最為顯
著的優勢是工作穩定可靠。由於具有出水水質好,運行穩定,管理方便以及區別於傳統活性污泥法的一系列技術特徵,氧化溝技
術在污水處理中得到廣泛應用。據不完全統計[4],目前,歐洲己有的氧化溝污水處理廠超過2 000多座,北美超過800座。氧
化溝的處理能力由最初的服務人口僅360人,到如今的500萬~1 000萬人口當量。不僅氧化溝的數量在增長,而且其處理規模也在
不斷擴大,處理對象也發展到既能處理城市污水又能處理石油廢水、化工廢水、造紙廢水、印染廢水及食品加工廢水等工業廢水
。我國自20世紀80年代亦開始應用這項技術,隨著污水處理事業的極大發展,全國各地先後建起了不同規模、不同型式的氧化溝
污水處理廠。目前在我國,採用氧化溝處理城市污水和工業廢水的污水處理廠已有近百家,見表1(我國典型氧化溝型式及應用及
表)2(部分國內氧化溝污水處理廠型式及規模)。
3氧化溝工藝的研究新進展
通過對多種連續流生物除磷脫氮工藝時空關系的分析,並結合新的除磷脫氮理論,繼續貫徹簡易污水處理的思想,重慶大學的王
濤[5]、鍾仁超[6]、劉兆榮[7]、麥松冰[8]等人對氧化溝工藝進行了改良。
3.1改良氧化溝池型的構建原則
改良氧化溝池型的構建是在一體化簡易污水處理技術的思想基礎上,依託於卡魯塞爾氧化溝、一體化氧化溝和奧貝爾氧化溝而建
立的。它是以連續流的方式,不作專門的時空調配,通過空間分區和空間順序及對溶解氧的優化控制,將污水凈化(C、N、P的去
除)和固液分離功能集於一體,以水力內迴流的方式替代機械內迴流的反應器。構建的總原則是以連續流的方式,在更少的和合
理的空間中完成C、N、P和SS的同時去除。
3.2改良氧化溝池型
按上述構建原則,提出了如圖2所示改良型氧化溝模型。污水流入外溝經迴流調節閘板後流經中溝和內溝,在各溝道內循環數十
次到數百次,最終由固液分離器進行泥水分離出水。外—中—內溝道分別為好氧/缺氧交替區、厭氧區和好氧區,完成有機物的
降解和同時脫氮除磷。
該模型著重在保留奧貝爾氧化溝硝化反硝化優勢,同時克服該工藝佔地面積大的缺點。借鑒卡羅塞爾氧化溝跑道型溝道的構型和
水力內迴流方式,減少了大迴流比的機械設備;考慮將奧貝爾氧化溝的同心圓型溝道展開,去掉中心島的無效佔地,同時又保留
其三溝道串連、層層推進的流態特點。另外,將一體化氧化溝中的側溝固液分離器技術也揉合了進來,不設置單獨的二沉池並實
現污泥的無泵自動迴流。
3.3改良氧化溝的優化分析
(1)改良型氧化溝採用奧貝爾氧化溝三溝道串聯的特性,將各分區考慮成串聯,從而有利於難降解有機物的去除,並可減少污
泥膨脹現象的發生[9]。
(2)改良型氧化溝借鑒奧貝爾氧化溝的溶解氧梯度分布,具有較好的脫氮功能。在外溝道形成交替的好氧和大區域的缺氧環境
,較高程度地發生「同時硝化/反硝化」,即使在不設內迴流的條件下,也能獲得較好的脫氮效果。由於外溝道溶解氧平均值很
低,氧傳遞作用是在虧氧條件下進行的,所以氧的傳遞效率有所提高,有一定的節能效果,一般約節省能耗15%~20%。加之外溝
道內所特有的同時硝化/反硝化功能,節能效果更為明顯。內溝道作為最終出水的把關,一般應保持較高的溶解氧,但內溝道容
積最小,能耗相對較低。
(3)改良型氧化溝將奧貝爾氧化溝布置相對困難的圓形或橢圓形溝型設計為環狀跑道型,降低了佔地面積和工程造價。同時取
消了無效佔地的中心島,進一步節省佔地面積和造價。
(4)改良型氧化溝借鑒卡羅塞爾氧化溝水力條件,使內溝的好氧區向外溝的缺氧區迴流實現了水力內迴流,簡化了處理環節、
節省了設備和能耗。
(5)改良型氧化溝借鑒一體化氧化溝將集曝氣凈化和固液分離於一體的優勢,不單獨建二沉池和污泥迴流泵站,污泥自動迴流
,簡單、節能且節省佔地和基建投資。
4結論
(1)氧化溝由於其出水水質好、運行穩定、管理方便等技術特點,在我國污水處理廠中有著較為廣泛的應用。
(2)改良型氧化溝模型借鑒了卡羅塞爾氧化溝的構型和內迴流方式,引用了側溝式一體化氧化溝的側溝固液分離技術,同時保
留了奧貝爾氧化溝三溝串連、層層推進的流態特點,是多種先進工藝的集成,是氧化溝技術研究的新進展。
(3)改良型氧化溝工藝具有系統簡單、管理方便、節約能耗、節省佔地和減少基建投資等優點。
以下為幾種常見氧化溝的類型結構示意圖:
多溝交替式氧化溝 卡魯塞爾氧化溝 一體化氧化溝
奧貝爾氧化溝
1. 基本原理
氧化溝又名氧化渠,因其構築物呈封閉的環形溝渠而得名。它是活性污泥法的一種變型。因為污水和活性污泥在曝氣渠道中不斷循環流動,因此有人稱其為「循環曝氣池」、「無終端曝氣池」。氧化溝的水力停留時間長,有機負荷低,其本質上屬於延時曝氣系統。氧化溝一般由溝體、曝氣設備、進出水裝置、導流和混合設備組成,溝體的平面形狀一般呈環形,也可以是長方形、L形、圓形或其他形狀,溝端面形狀多為矩形和梯形。
2.氧化溝工藝特點
(1)構造形式多樣性
基本形式氧化溝的曝氣池呈封閉的溝渠形,而溝渠的形狀和構造則多種多樣,溝渠可以呈圓形和橢圓形等形狀。可以是單溝系統或多溝系統;多溝系統可以是一組同心的互相連通的溝渠,也可以是相互平行,尺寸相同的一組溝渠。有與二次沉澱池分建的氧化溝也有合建的氧化溝,合建的氧化溝又有體內式和體外式之分,等等。多種多樣的構造形式,賦予了氧化溝靈活機動的運行性能,使他可以按照任意一種活性污泥的運行方式運行,並結合其他工藝單元,以滿足不同的出水水質要求。
(2)曝氣設備的多樣性
常用的曝氣設備有轉刷、轉盤、表面曝氣器和射流曝氣等。不同的曝氣裝置導致了不同的氧化溝型式,如採用表曝氣機的卡魯塞爾氧化溝,採用轉刷的帕斯維爾氧化溝等等,與其他活性污泥法不同的是,曝氣裝置只在溝渠的某一處或者幾處安設,數目應按處理場規模、原污水水質及氧化溝構造決定,曝氣裝置的作用除供應足夠的氧氣外,還要提供溝渠內不小於0.3m/s的水流速度,以維持循環及活性污泥的懸浮狀態。
(3)曝氣強度可調節
氧化溝的曝氣強度可以通過兩種方式調節。一是通過出水溢流堰調節:通過調節溢流堰的高度改變溝渠內水深,進而改變曝氣裝置的淹沒深度,使其充氧量適應運行的需要。淹沒深度的變化對曝氣設備的推動力也會產生影響,從而可以對進水流速起到一定的調節作用;其二是通過直接調節曝氣器的轉速:由於機電設備和自控技術的發展,目前氧化溝內的曝氣器的轉速時可以調節的,從而可以調節曝氣強度的推動力。
(4)簡化了預處理和污泥處理
氧化溝的水力停留時間和污泥齡都比一般生物處理法長,懸浮裝有機物與溶解性有機物同時得到較徹底的穩定,姑氧化溝可以不設初沉池。由於氧化溝工藝污泥齡長,負荷低,排出的剩餘污泥已得到高度穩定,剩餘污泥量也較少。因此不再需要厭氧消化,而只需進行濃縮和脫水。
3.氧化溝工藝的缺點:
(1)污泥膨脹問題當廢水中的碳水化合物較多,N、P含量不平衡,pH值偏低,氧化溝中污泥負荷過高,溶解氧濃度不足,排泥不暢等易引發絲狀菌性污泥膨脹;非絲狀菌性污泥膨脹主要發生在廢水水溫較低而污泥負荷較高時。微生物的負荷高,細菌吸取了大量營養物質,由於溫度低,代謝速度較慢,積貯起大量高粘性的多糖類物質,使活性污泥的表面附著水大大增加,SVI值很高,形成污泥膨脹。
(2)泡沫問題由於進水中帶有大量油脂,處理系統不能完全有效地將其除去,部分油脂富集於污泥中,經轉刷充氧攪拌,產生大量泡沫;泥齡偏長,污泥老化,也易產生泡沫。
(3)污泥上浮問題當廢水中含油量過大,整個系統泥質變輕,在操作過程中不能很好控制其在二沉池的停留時間,易造成缺氧,產生腐化污泥上浮;當曝氣時間過長,在池中發生高度硝化作用,使硝酸鹽濃度高,在二沉池易發生反硝化作用,產生氮氣,使污泥上浮;另外,廢水中含油量過大,污泥可能挾油上浮。
(4)流速不均及污泥沉積問題在氧化溝中,為了獲得其獨特的混合和處理效果,混合液必須以一定的流速在溝內循環流動。一般認為,最低流速應為0.15m/s,不發生沉積的平均流速應達到0.3~0.5m/s。氧化溝的曝氣設備一般為曝氣轉刷和曝氣轉盤,轉刷的浸沒深度為250~300mm,轉盤的浸沒深度為480~
530mm。與氧化溝水深(3.0~3.6m)相比,轉刷只佔了水深的1/10~1/12,轉盤也只佔了1/6~1/7,因此造成氧化溝上部流速較大(約為0.8~1.2m,甚至更大),而底部流速很小(特別是在水深的2/3或3/4以下,混合液幾乎沒有流速),致使溝底大量積泥(有時積泥厚度達1.0m),大大減少了氧化溝的有效容積,降低了處理效果,影響了出水水質。
四、SBR工藝
1.工藝原理
在反應器內預先培養馴化一定量的活性污泥,當廢水進入反應器與活性污泥混合接觸並有氧存在時,微生物利用廢水中的有機物進行新陳代謝,將有機物降解並同時使微生物細胞增殖。將微生物細胞物質與水沉澱分離,廢水即得到處理。其處理過程主要由初期的去除與吸附作用、微生物的代謝作用、絮凝體的形成與絮凝沉澱性能幾個凈化過程完成。
2.SBR工藝特點
(1)理想的推流過程使生化反應推動力增大,效率提高,池內厭氧、好氧處於交替狀態,凈化效果好。
(2)運行效果穩定,污水在理想的靜止狀態下沉澱,需要時間短、效率高,出水水質好。
(3)耐沖擊負荷,池內有滯留的處理水,對污水有稀釋、緩沖作用,有效抵抗水量和有機污物的沖擊。
(4)工藝過程中的各工序可根據水質、水量進行調整,運行靈活。
(5)處理設備少,構造簡單,便於操作和維護管理。
(6)反應池內存在DO、BOD5濃度梯度,有效控制活性污泥膨脹。
(7)SBR法系統本身也適合於組合式構造方法,利於廢水處理廠的擴建和改造。
(8)脫氮除磷,適當控制運行方式,實現好氧、缺氧、厭氧狀態交替,具有良好的脫氮除磷效果。
(9)工藝流程簡單、造價低。主體設備只有一個序批式間歇反應器,無二沉池、污泥迴流系統,調節池、初沉池也可省略,布置緊湊、佔地面積省。
3. SBR工藝的缺點
(1)間歇周期運行,對自控要求高;
(2)變水位運行,電耗增大;
(3)脫氮除磷效率不太高;
(4)污泥穩定性不如厭氧硝化好。
五、CAST工藝
1、CAST工藝原理
CASS生物處理法是周期循環活性污泥法的簡稱,CASS池分預反應區和主反應區。在預反應區內,微生物能通過酶的快速轉移機理迅速吸附污水中大部分可溶性有機物,經歷一個高負荷的基質快速積累過程,這對進水水質、水量、PH和有毒有害物質起到較好的緩沖作用,同時對絲狀菌的生長起到抑製作用,可有效防止污泥膨脹;隨後在主反應區經歷一個較低負荷的基質降解過程。CASS工藝集反應、沉澱、排水、功能於一體,污染物的降解在時間上是一個推流過程,而微生物則處於好氧、缺氧、厭氧周期性變化之中,從而達到對污染物去除作用,同時還具有較好的脫氮、除磷功能。
2、CAST工藝特點
(1)運行靈活可靠
● 生物選擇器可以根據污水水質情況,以好氧、缺氧和厭氧三種方式運行。選擇器可以恆定容積也可以可變容積運行
● 可任意調節狀態,發揮不同微生物的生理特性
● 選擇器容積可變,避免產生污泥膨脹,提高了系統的可靠性
● 抗沖擊負荷能力強,工業廢水、城市污水處理都適用
(2)處理構築物少,流程簡單
● 池子總容積減少,土建工程費用低
● 不需設二次沉澱池及其刮泥設備,也不用設迴流污泥泵站
(3)可實現除磷脫氮
● 調節生物選擇器可變容積的曝氣和非曝氣順序,提高了生物除磷脫氮效果
(4)節省投資
● 構築物少,佔地面積省
● 設備及控制系統簡單
● 曝氣強度小,不須大氣量的供氣設備
● 運行費用低
3.工藝缺點
(1)間歇周期運行,對自控要求較高;
(2)變水位運行,電耗增大;
(3)容積利用率較低;
(4)污泥穩定性不如厭氧硝化好。
『叄』 污水處理廠3d模型
傳統的焦化污水的處理方法是活性污泥法,該法能較好的處理污水中的酚,對氨氮的處理率回較低答,一般僅為20%-30%.氨的存在對水體的危害是很大的,必須要進行較為徹底的降解.A2O法,充分利用硝化反硝化的原理,好比自然界的氮循環現象,在較好的處理污水中酚的同時,使氨氮得到較為徹底的降解.目前,A2O法在焦化污水的處理方面已推廣.A2O法的開工運行與活性污泥法之間有著一定的聯系.
『肆』 SWMM模型
SWMM模型
SWMM模型是由美國弗羅里達大學開發,主要應用於城市水文水利學模擬的軟體。廣泛用於分析降雨對城市徑流的影響,幫助優化城市排水系統,減少經濟損失。
SWMM作為降雨徑流模型,專注於城市區域的模擬,包括管網、河道等,同時支持水量和水質模擬。模型將模擬空間劃分為子流域,每個流域包含可滲透和非滲透區域。
SWMM模擬的水文過程包括地表蒸發、雪積累與融化、降雨下滲、地下水補給、水文-地下水相互作用、水庫泄洪、綠色基礎設施對水量損失等。水力過程涉及河道與水渠、蓄水設施、水泵、堰等模擬與管理措施。此外,模型支持水質模擬,包括污染物遷移、轉化、污水處理設施等。
SWMM的應用涵蓋估算排水系統規模、模擬城市蓄水能力、優化管網排水系統等。
SWMM輸入分析數據,包括地理參數(坡度、滲透區域、大小)、管道水力數據(損失率)、以及降雨、污染數據。模型參數可通過資料庫輸入,簡化大區域建模工作。
運行SWMM需輸入降雨量、時間、降雨強度、污染數據、設置模型運行參數,包括時間步長與要運行的模塊。
結果分析包括管道流量時間曲線、水位等數據。模型概化程度較高,簡單易用,但其精度是否滿足市政規劃需求有待研究驗證。對於精確模擬城市內澇,可能需要更復雜的2D水動力學模型。
『伍』 數學建模污水處理問題
問題1.假設該工廠利用的是類似於沉澱法的處理,即污物處理按二項分布沉澱。有得到處理率為P=10%/小時,剩餘率H=1-P=90%
一天有24小時,則留下(90%)^24的污物=7.98%
設T時間長度剩餘一半,有H^T=50%,推出T=6.5788小時
問題2.設其容量為V,為保持池中容量的平衡,流入量始終要等於流出量,即每小時流出的處理水和提取物共100KG
設容器中有水含污物V2,水V1,處理完污物V3(V3+V2+V1=V),這次排除的量分別為處理完污物V3,水含污物(100-V3)/(V2/(V1+V2)),水(100-V3)/(V1/(V1+V2)),其中V3=(V3+V2)*10%
每小時流入100KG的污水,增加量中dV1=100×0.4,dV2=100×0.6,由於沉澱概率按二項分布,設原容器中有水含污物Q2,水Q1,處理完污物Q3,所以一小時後,V3=Q2*0.1+dV2*0.1,V2=Q2*0.9+dV2*0.9,V1=V-V3-V2
N小時後V2=Q2*0.9^N+dV2*(0.9^(N-1)+0.9^(N-2)……+0.9^1)
化簡後V2=Q2*0.9^N+dV2*((0.9(1-0.9^(N-1)))/(1-0.9))
數據分析:取lim(N趨於無窮)V2=dV2*9=100*0.6*9=540KG
『陸』 化糞池構造 原理 農村的
化糞池原理是固化物在池底分解,上層的水化物體,進入管道流走,防止了管道堵塞,給固化物體(糞便等垃圾)有充足的時間水解。
1、一般情況下,農村自建房的化糞池大小以長2.7米,寬1.5米,深度為1.3米為宜。用的較多的結構一般為目字形結構,如圖所示:
傳統化糞池的應用已經有一百多年歷史,技術路線是污水和污泥接觸的模式,沉積的污泥消化降解產生沼氣、二氧化碳、硫化氫等消化氣,消化氣的上浮作用對污泥產生擾動,消化氣對污泥的擾動作用能夠讓污泥與生物菌群的混合更充分,有助於消化降解。但底部污泥隨消化氣上升,氣泡逸出後,污泥又重新向下沉澱,這些上升和沉澱的污泥又重新污染污水。