Ⅰ 一個日處理10噸生活污水的人工濕地,裡面是怎麼設置布水和集水的
進出水系統的布置:濕地床的進水系統應保證配水的均勻性,一般採用多孔管和三角堰等配水裝置。進水管應比濕地床高出0.5m。濕地的出水系統一般根據對床中水位調節的要求,出水區的末端的礫石填料層的底部設置穿孔集水管,並設置旋轉彎頭和控制閥門以調節床內的水位。
填料的使用:濕地床由三層組成表層土層、中層礫石、下層小豆石。表層土鈣含量在2~2.5kg/100kg為好;礫石層粒徑在5~50mm,鋪設厚度0.4~0.7m。
潛流式濕地床的水位控制:當接納最大設計流量時,進水端不能出現雍水現象;當接納最小流量時,出水端不能出現填料床面的淹沒現象;有利於植物生長,床中水面浸沒植物根系的深度應盡可能均勻。
下面簡要介紹一下比較常見的幾種生物膜污水處理工藝
1、顆粒型生物膜反應器
1.1上流式污泥床(USB)
上
流式污泥床(USB)是20世紀70年代末由荷蘭Lettinga開發的又一項新的顆粒型生物膜反應器,主要用於厭氧生物處理系統中,即UASB。它主要
由配水系統、污泥床、三相分離器等組成。反應過程中產生的氣體將污泥和污水進行充分混合,三相分離器將顆粒污泥、氣體和污水進行分離,污泥保留在反應器
中,氣體和處理後的出水排出反應器,其結構示意見圖1。
4.2無泡曝氣的特點:
與常規曝氣相比,採用中空纖維膜進行無泡曝氣具有如下優點:
①由於曝氣不產生氣泡,氧直接以分子狀態擴散進入生物膜,幾乎百分之百地被吸收,傳質效率可高達100%,因此溶解氧不再是限制微生物生長的決定因素。
②由於生物膜生長在中空纖維膜的外表面,所以在供氧過程中,生物膜不會受到氣體摩擦,不易脫落。
Ⅱ 人工濕地水處理方向有哪些工藝
一、污水處理工藝流程說明 本工程採用生物膜法:缺氧----好氧(A/0)處理工藝。A/O即缺氧+好氧生物接觸氧化法是一種成熟的生物處理工藝,具有容積負荷高、生物降解速度快、佔地面積小、基建投資和運行費用低等優點,可替代原有城市污水處理採用的普通活性污泥法,特別適用於中、高濃度工業廢水的處理,且投資省、佔地少、處理效率高。該工藝採用生物接觸氧化和沉澱相結合的方法,工藝成熟、可靠。設備中沉澱污泥,一部分污泥中由於溶解氧的作用進一步得到氧化分解,一部分氣提至沉砂沉澱池內,系統污泥只需定期在沉砂沉澱池中抽吸。系統中風機、潛污泵等主要控制設備的工作程序輸進PLC機,達到自動工作,以減少操作工作量,並可減少不必要的人為損壞。
1、格柵: 生產排放的污水經管網系統匯集後,經粗格柵後進入後續處理系統。粗格柵主要用來攔截污水中的大塊漂浮物,以保證後續處理構築物的正常運行及有效減輕處理負荷,為系統的長期正常運行提供保證。
2、污水調節池: 用於調節水量和均勻水質,使污水能比較均勻進入後續處理單元。調節池內設置預曝氣系統,可提高整個系統的抗沖擊性,及減少污水在厭氧狀態下的惡臭味,同時可減少後續處理單元的設計規模,污水池內設置潛污泵,用以將污水提升送至後續處理單元。
3、缺氧池: 在缺氧池內設置彈性填料,用於攔截污水中的細小懸浮物,並去除一部分有機物。該缺氧池經迴流後的硝化液在此得到反硝化脫氮,提高了污水中氨氮的去除率。經缺氧處理後的污水進入好氧生物處理池。
4、接觸氧化池: 原污水中大部分有機物在此得到降解和凈化,好氧菌以填料為載體,利用污水中的有機物為食料,將污水中的有機物分解成無機鹽類,從而達到凈化目的。好氧菌的生存,必須有足夠的氧氣,即污水中有足夠的溶解氧,以達到生化處理的目的。好氧池空氣由風機提供,池內採用新型半軟性生物填料,該填料表面積比大,使用壽命長,易掛膜,耐腐蝕,池底採用微孔曝氣器,使溶解氧的轉移率高,同時有重量輕,不老化,不易堵塞,使用壽命長等優點。
Ⅲ 人工濕地處理工業廢水的工藝設計
1工藝設計
1.1工藝流程
工藝的選擇直接關繫到處理出水的水質指標能否穩定可靠的達到處理要求、運行管理是否方便、建設費用和運行費用是否節省,以及佔地和能耗指標的高低,因此,工藝方案的選擇非常關鍵。項目濕地的進水水質具備以下特徵:
(1)廢水進入人工濕地前,預先經過芬頓工藝處理,有機污染物大部分被分解,剩餘部分難分解的高分子有機物;
(2)廢水中含有一定鹽度(主要為鐵鹽、硫酸鹽與氯鹽),約1%~2%;(3)水質波動大,進水水質的氨氮指標有較大浮動,最高氨氮可達120mg/L;水中磷以元素磷、正磷酸鹽、縮合磷酸鹽、焦磷酸鹽、偏磷酸鹽和有機團結合的磷酸鹽等形式存在,而項目進水以除正磷酸鹽外的形式為主,不利於植物吸收。因此,工藝的選擇應根據水質、水量、設計出水要求、以及當地的溫度、工程地質等因素綜合考慮。具體工程的選擇原則為:
(1)工藝選擇保證合理性、先進性和成熟性的有機結合,確保處理後的污水再生水達到排放標准,無二次污染;
(2)在出水達標的前提下,盡可能採用節能、高效的處理設備,降低建設投資和運行費用;
(3)工程操作、運行與維護管理簡單、方便,設備運行性能可靠;本設計方案選定的工藝為「提升泵池+垂直流人工濕地+景觀水池」。項目廢水通過一系列環保處理工藝處理至濕地進水標准後排入清液緩存池中均質,緩存池設有氨氮在線分析儀以及COD在線監測儀,對水質中的COD指標與氨氮指標進行實時監測。當進水水質滿足濕地進水要求時,則PLC進行「模式一」的進水方案(正常運營),清液緩存池內的水泵將廢水動力提升至高效垂直流人工濕地中,同時經砂石填料的過濾、特殊填料的吸附作用、濕地植物的吸收以及微生物的分解作用後,水中污染物得到去除,出水由底部集水管道輸送至景觀池中,與景觀池連接的管道末端設置可調節式管接,根據實際運行需要調整人工濕地的好氧—厭氧比重,進而微調微生物的硝化、反硝化作用,對污水中氨氮、硝態氮進行針對性控制,達到污水的高效效率處理。景觀池出水通過管道輸送至指定排放點中計量排放。當進水水質超出濕地進水要求時,則PLC進行「模式二」的進水方案(事故運營)。當末端氨氮在線檢測設備檢測水質超過設定值時,自動開啟應急吸附閥,同時關閉總排水閥,污水通過應急循環水泵,將污水抽至I級應急吸附池與II級應急吸附池中進行處理,凈化後的水進入排放池中,經操作員檢測合格後排放;當末端COD在線檢測設備檢測水質超過設定值時,或氨氮與COD同時超標時,只開啟內循環閥,同時關閉總排水閥,應急循環水泵將超標水質抽至高效垂直流人工濕地布水主管中,由配水支管與配水電動閥進行脈沖配水,實現污水循環不外排,直至末端在線檢測設備合格後恢復正常運行狀態。出水達到目標水質標准後排放。
1.2主要構築物設計參數
污水通過管道流入提升泵池,再進入垂直流人工濕地系統,通過均勻布水,植物吸收分解、濕地凈化後,出水最終流入景觀水池,實現處理流程的完結。
1.2.1提升泵池及泵房
1.2.1.1提升泵池
設計流量:Q=900m3/d,數量:1座,有效水深:h=4.0m,有效容積:V=150m3,結構:鋼砼。
1.2.1.2進水泵房
設計流量:900m3/d,數量:1座,尺寸:平面尺寸為7×5m。其中,提升泵的Q=20m3/h,H=8m,N=4kW,共3台(兩用一備)。
1.2.2垂直流人工濕地
垂直流人工濕地系統水質凈化技術是一種生態工程處理技術,是人工濕地的一種類型,其基本原理是在一定的填料上種植特定的濕地植物,從而建立起一個人工濕地生態系統,當待處理的污水以垂直潛流的方式通過濕地處理系統時,污水中的污染物質和營養物質被系統吸收或分解,最終使水質得到凈化[4-7]。設計參數方面,垂直流人工濕地面積為4064m2,濕地高度設計為1.6m,濕地內填料層高度設計為1.5m。
1.2.3景觀水池
設計流量:900m3/d,數量:1座,有效水深:1.0m,池體尺寸:r=4.5m,結構:鋼混,其他:種植部分挺水植物、沉水植物,以增強景觀效果。
2垂直流人工濕地系統設計
2.1填料及微生物菌種
本工程所選用填料主要為不同的砂礫級配,填料厚度1.5m,從上至下依次為50cm厚粒徑0~5mm砂石填料層(包括10cm的特殊填料),30cm厚特殊填料層,40cm厚粒徑10~30mm砂石填料層,30cm厚粒徑20~40mm碎石填料層。特殊填料由活性炭與沸石按比例混合而成,為濕地長效運行,活性炭與沸石配比設定為25%:75%。為增強特殊填料對COD、NH4+-N的去除作用,將特殊填料分兩部分,其中0.3m鋪設在原來的位置,包裹植物根系,0.1m鋪設在上層布水管管溝中。由於人工濕地對TP去除效果一般,為增加人工濕地對TP的去除效果,可在碎石層中混合鋪設0.1m石灰石。與此同時,在垂直流濕地系統中添加高效微生物菌種,利用復合微生物進行污染環境治理是近幾年才發展起來的新型污染治理技術[8-10]。它以處理工藝簡單,對污染位點的干擾、破壞小、污染物降解速度快、降解徹底、不易造成二次污染等優勢被認為是一項很有希望、很有前途的水污染治理技術。本項目中所用高效微生物菌種主要由含銅綠假單胞菌、施氏假單胞菌、海洋假單胞菌、糞產鹼菌、脫氮副球菌、地衣芽孢桿菌、枯草芽孢桿菌、蠟狀芽孢桿菌等。其中既有分解性細菌,又有合成性細菌,既有厭氧菌、兼性菌,又有好氧菌,是一個多種菌共存的生物集合。高效微生物菌種主要用於人工濕地投加,菌種的投加可加快菌群形成速度和污水處理效率,同時菌種的投加還可優化微生物群落,強化處理效果。
2.2防滲設計
人工濕地在安裝工作時也需做好嚴格的防滲處理,達到雙保險的目的。按照《人工濕地污水處理工程技術規范》(HJ2005-2010),人工濕地底部和側面應進行防滲處理,防滲層的滲透系數不低於10~8m/s。本項目垂直流人工濕地的防滲層也按此規范進行,具體做法為修築好濕地池體後,鋪設垃圾填埋場專用光面HDPE防滲膜(厚度1.0mm)。
2.3配水管與運行
為了保證濕地系統布水均勻,人工濕地劃分成21個配水單元,每個配水單元約200m2。本次900m3/d規模的尾水治理工程的工藝管道由兩部分組成,上層布水管道與下層集水管道。通過水泵將清液儲存池的原水動力提升至垂直流人工濕地,進入布水區域後東西向分成2條,最終由蝶閥控制每個配水單元的穿孔管進行布水。
2.3.1上層布水管設計
尾水由項目進水動力系統通過DN80PE主管輸送至高效垂直流人工濕地後,東西向分為2條DN80PE布水主管,布水干管(DN65,PE材質)與主管垂直相接,主管兩側干管各設一控制閥門,干管兩側對稱駁接DN40PE穿孔管,向各濕地單元均勻布水。穿孔管間距2.0m,管孔φ5mm,孔間間距200mm,採用熱熔連接。不同管徑使用轉接頭進行變換連接。
2.3.2垂直流人工濕地下層集水管設計
在濕地床體中間位置設置集水管,集水主管採用管徑為DN150PE管,穿孔集水干管採用管徑為DN100PE管,斜向下30°雙側間隔開孔,穿孔集水管間距16m。出水收集後匯入景觀池中,在景觀池中的集水主管向上蔓延,向上蔓延的長度可進行手動調節,最終引至排放渠內計量排放。每個人工濕地下層管道均設置有通氣管,用於消除濕地內部負壓,提高配水下滲速度。
2.3.3管道閥門的選用及布置
閥門選用首先掌握介質的性能、流量特性,以及溫度、壓力、流速、流量等性能,然後,結合工藝、操作、安全諸因素,選用相應類型、結構形式、型號規格的閥門。本項目垂直流人工濕地配水系統中,需要對進水進行調節,結合閥門的特點及本項目的需要,選擇蝶閥作為進水調節閥,通過蝶閥的圓盤控制管道污水的開關。首先在濕地進水主管上調壓閥、安裝手動蝶閥、電動蝶閥和電磁流量計,其次在濕地進水管以及布水干管上安裝水表、手動蝶閥和電動蝶閥。應急事故管道以及最終排水管道(均為PE管)各安裝一個手動蝶閥和電動蝶閥。
2.4植物設計
設計種植植物與廠區環境相協調,重點選擇去污能力較高並且具有一定的耐鹽能力的植物品種。種植方式為分區種植,具體分區和造型根據周圍景觀情況布置,以保證與整體景觀協調一致。
2.4.1設計原則
根據污水性質及當地氣候、地理實際狀況以及相關文獻的論證結果,選擇適宜的水生植物,才能建立良好的填料—植物系統,保證良好的凈化效果。濕地水生植物的選擇原則如下:
(1)能適應當地生長的植物或天然濕地原存的優勢種。
(2)根據處理對象即污水的特性選擇適宜的植物;如多年生的蘆葦、風車草、花葉蘆荻等去除BOD5、N、P的效率高。這些植物根系發達,根狀莖粗壯,形成不定芽,是微生物棲息生長的良好介質,在根區能形成巨大的生物量,具有強大的凈化能力。一些維管組織的莖、根狀莖具有發達的呈海綿狀空腔組織,氧氣能通過這些空腔利用葉從大氣中將氧輸送至根部,這樣其根區恰如一個好氧反應區,具有生物膜法的凈化功能。
(3)多種植物混植或串聯種植,發揮各自優點,提高系統的總體凈化能力。
(4)景觀效果好,能美化環境,為戶外休閑娛樂提供良好的環境。
2.4.2濕地植物選擇
通過試驗及查閱相關文獻,篩選對高鹽廢水有較高適應性的人工濕地植物,得出蘆葦、花葉蘆荻和香根草長勢最好;蜘蛛蘭、風車草、檉柳長勢一般;紅樹林類植物、鳶尾、紙莎草、千屈菜和水蔥長勢較差,因此,蘆葦、花葉蘆荻和香根草為高鹽廢水濕地項目的主要植物用於大面積栽植,而蜘蛛蘭、風車草、檉柳可作為次要植物,可小面積種植。紅樹林類植物、鳶尾、紙莎草、千屈菜和水蔥長勢較差,將不予以考慮。
3結論
經過工藝設計的分析,人工濕地系統處理工業廢水尾水具有一定的可行性,且可以實現高標准排放。進水主要特徵為低COD、低氨氮,高鹽度,水質波動較大,有機污染物以難降解的高分子化合物為主。進水滿足一定標准後,經過人工濕地系統處理後,出水主要指標可以達到《地表水環境質量標准》(GB3838-2002)IV類標准。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
Ⅳ 濕地工程在污水處理中的應用
一、工程地點
項目區位於吉林省梨樹縣污水處理廠西側小南河流域,起始點為污水處理廠中水通過圓涵流入小南河處,樁號為0+000,末端為小南河與招蘇台河匯合處,樁號3+700。
二、工程設計
(一)工程總體布置
以污水處理廠出口進入梨樹小南河為工程起點,樁號為0+000,末端為與招蘇台河匯合處,樁號為3+700,面積共316000m2作為人工表流濕地的建設面積,共分級修建20座溢流堰。
(二)工藝選取
人工濕地技術是一種基於自然生態原理,充分利用人工介質中的
微生物、植物根系以及介質所具有的物理、化學特性,將污水凈化的一種復合工藝。根據濕地內污水的流動狀態,人工濕地又劃分為表面流濕地和潛流濕地。表面流人工濕地在生態構造和外觀上都類似於天然濕地,但去污的效果要優於自然濕地。潛流濕地的人工布水系統位於濕地的表面,使水流在濕地表面以下運行,根據水流的方向,又可以把潛流濕地分為水平潛流和垂直潛流濕地兩類。
1、表脊坦面流人工濕地
表面流人工濕地這種類型的人工扮野豎濕地和自然濕地類似,污水從濕地表面流過。在流動的過程中廢水得到凈化。水深一般0.3~0.5米,水流呈推流式前進。污水從入口以一定速度緩慢流過濕地表面,部分污水或蒸發或滲入地下。近水面部分為好氧層,較深部分及底部通常為厭氧層。表面流人工濕地中氧的來源主要靠水體表面擴散、植物根系的傳輸和植物的光合作用,但傳輸能力十分有限。
2、潛流人工濕地
目前在實際應用中,潛流濕地由於在處理效果具有較大優勢,已成為人工濕地主要的應用模式,而在潛流濕地中根據水流方式的不同,又可分為水平潛流型和垂直潛流型兩種濕地模式。早期國際上應用的人工濕地污水處理系統大部分為水平潛流人工濕地,但是隨著垂直潛流系統在污染物的去除和佔地小等方面優勢逐漸得到認識,尤其是對污水中有機物和氮具有更高的凈化效果,垂直潛流人工濕地在國內外都開始迅速的發展。
人工濕地水質深度凈化系統的各類工藝的特點對比如表7-1所示。
綜合考慮本項目處理規模、水質特點、運行穩定、管理簡單、景觀審美、場地特徵、氣候、投資、建設方要求等,綜合各方面的因素,本次設計選擇表流人工濕地工藝。
(三)人工濕地工藝流程
表面流人工濕地的去除機理如下:
1)稀釋作用;2)沉澱和絮凝作用、流速降低、生物分泌物,自然沉澱,絮凝沉澱發生;3)好氧微生物的代謝作用4)厭氧微生物的作用5)生物的作用6)水生維管束植物的作用
為了保證人工濕地水質凈化系統的運行穩定性,由梨樹縣污水處理廠進入人工濕地的水體水質必須保證符合入水標准即執行一級A排放標准。工程將梨樹縣污水處理廠的污水引至小南河人工濕地進行水質凈化,最後流入招蘇台河水域。
(四)人工濕地相關水力參數計算
在人工濕地的設計過程中,確定濕地的水力污染負荷是最重要步
驟之一,同時也關繫到人工濕地未來處理效果的關鍵因素。本次工程設計方法主要利用濕地水文動力學基本原理,由進出水水質和總體水量平衡進行系統的水力負荷與停留時間等水力參數,然後計算出所需土地面積和污染物負荷量,同時結合住房和城鄉建設部《人工濕地污水處理技術導則》RISN-TG006-2009 和環境保護部《人工濕地污水處理工程技術規范》(HJ 2005-2010)相關標准要求選取合適的設計參數。
1、表面水力負荷
指每平米人工濕地在單位時間所能接納的污水量。
式中,qhs—表面水力負荷,m3/(d.m2);Q—日處理量,m3/d;A—濕地面積,m2。本項目中,Q=30000m3/d,A=316000m2,因此qhs=0.095m3/(d.m2)。
根據國家標准《人工濕地污水處理工程技術規范》HJ 2005-2010 要求,表面流人工濕地qhs控制范圍應為<0.1,本次設計面積滿足表面水力負荷要求。
2、表面有機負荷
指每平方米人工濕地在單位時間去除的五日生化需氧量。
式中:qos—表面有機負荷,kg/(m2·d);Q—人工濕地設計水量,m3/d;C0—人工濕地進水BOD5濃度,mg/L;C1—人工濕地出水BOD5濃度,mg/L;A—人工濕地面積,m2。
本項目中,Q=30000m3/d;C0=10mg/L(一級A);C1=10mg/L(地表Ⅴ類水),故表面有機廳大負荷不需計算,滿足要求;
3、水力停留時間
指污水在人工濕地內的平均駐留時間。
式中:t—水力停留時間,d;V—人工濕地基質在自然狀態下的體積,包括基質實體及其開口、閉口孔隙,m3;Q—人工濕地設計水量m3/d;本項目中,據計算可知,V=316000×0.7×1=221200m3,Q=30000 m3,因此t=7.4d,滿足國家標准《人工濕地污水處理工程技術規范》HJ 2005-2010要求(4~8d)。
經過上述計算,本工程無論從表面水力負荷、表面有機負荷及水利停留時間上均滿足達到地表Ⅴ類水標准需要的指標。
三、結論
通過對表流濕地的水處理效果進行分析, 分析結果見下表。
從以上數據可看出,本項目人工濕地建成以後,運轉後,每天將大量減少污染物的排放量,對保護周邊地區的環境和降低水體的污染負荷將起到良好的作用。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd