導航:首頁 > 廢水知識 > 濃縮池上清液回用問題

濃縮池上清液回用問題

發布時間:2024-10-19 20:02:44

『壹』 排泥水處理技術應用


排泥水處理技術應用具體包括哪些內容呢,下面中達咨詢為大家帶來相關內容介紹以供參考。
上海市自來水閔行有限公司(以下簡稱閔行公司)原水取自黃浦江閔行江段,屬黃浦江上游水源,取水口斷面水質基本符合GB3838-88國家地面水環境質量Ⅲ類~Ⅳ類水體標准,屬受輕度有機污染水體。因此保護閔行段水源水質對閔行公司顯得尤為重要,它是閔行公司唯一的供水水源。
原上海市自來水公司,充分注意到在同一江段取原水凈化成自來水後又將沉澱池排泥水回排到同一江段的不合理現象,早在1990年就曾組織科研人員對水廠排泥水的處理工藝進行了研究,通過調研初步掌握了水廠排泥水的特性、處理工藝旅運及各類脫水機械性能等有關資料。
1995年10月30日,上海市自來水公司聯合同濟大學、上海市環境科學研究院等單位在閔行一水廠實施排泥水處理工程生產性研究,為今後水廠排泥水處理推廣應用提供經驗和依據。
在國外,為了防止污染,都制定了相關法律,以保障人類社會的健康發展,促進水資源的可持續利用,保護生態環境的平衡。因此,世界發達國家都十分重視污泥處理與處置技術的研究和應用。日本近年來經脫水處理的排泥水佔了80%以上。在日本,1976年就頒布法律,供水能力在1萬m3/d以上的水廠必須對水廠排泥水進行處理,禁止直接排放河流,且必須對污泥泥餅進行無公害化處置。日本水廠的排泥水處理通常是將排泥水收集在污水池,然後用泵送入排泥水濃縮池,經自然沉降和濃縮使底部污泥含水率達98%~96%,然後用壓力水泵將濃縮污泥送到加壓脫水機(或不加壓長時間脫水),從脫水機分離的泥餅含水率達65%。
國內由於經濟和脫水設備等原因,水廠排泥水處理污泥處置研究和應用的起步較晚,投入也較少。隨著人們對環保意識的增強和國家環保法律的頒布,全國主要城市自來水廠也開始重視對水廠排泥水進行處理和研究。
1排泥水沉降特性試驗
由於排泥水含固率的不均勻性,排泥水瞬時含固率在0.1%~2%之間波動,因此排泥水必須經過濃縮池沉降濃縮。在濃縮池底部形成平衡、均勻的濃縮污泥,再送入污泥脫水機械進行深度處理。所以,我們研究了不培卜同含固率排泥水的污泥自然沉降特性和加註PAM高分子絮凝劑沉降特性,掌握其沉降速度(沉降時間)、壓密點污泥濃度和固通量等規律。通過對排泥水沉降特性的試驗,為排泥水污泥濃縮池的平面積和高度的設計提供依據,為脫水機械的選型提供參考。同時,我們還對排泥水的污泥和上清液進行成份分析,為上清液的外排和污泥處置提供依據。 從我們進行大量的沉澱池排泥水沉降試驗結果分析:
(1)閔行一水廠沉澱池排泥水污泥沉降速率視排泥水含固率大小而定。隨著排泥水含固率的逐漸增高,前3 h及8 h污泥沉降效率越來越低,同樣,前3 h,8 h,24 h排泥水沉降污泥含固率濃縮倍數也越來越小。隨排泥水污泥濃度的增高,排泥水的沉降污泥界面下降速率也逐步降低。
(2)閔行一水廠沉澱池排泥水外排頻率受智能化污泥檢測儀控制,污泥停留在沉澱池底時間較長,污泥中有機物明顯發酵,使污泥顏色變黑。因此排泥水經自然沉降後,上清液濁度很高,3 h後上清液最高濁度達200 NTU,最低也達30 NTU。閔行一水廠排泥水處理工程實施以後,排泥水經濃縮後的上清液不回收利用,在排放時達到廢水排放標准。
2排泥水處理污泥葯劑選擇
2.1污泥處理葯劑選擇原則
(1)聚合物必須為可溶性,並且能吸附在懸浮顆粒上。
(2)吸附是不可逆的,並在短時間內完成。
(3)要產生最配鎮穗大絮粒,最大沉降容量,最好過濾性,最小殘留濁度。
(4)選擇高分子量的聚合物,分子量越高,架橋能力越強,污泥顆粒形成的絮粒越大。
(5)選擇溶解時間短、丙烯醯胺單體含量少的絮凝劑。
(6)貨源穩定、價格低廉、安全無毒。
2.2PAM樣品性能測試
由於絮凝劑機理研究還不很清楚,加上絮凝體的復雜性和各地污泥的特性不一樣,因此對高分子絮凝劑的使用缺乏理論指導,只能用試驗方法逐個篩選,以求得到最佳品種和最佳加註量。我們首先進行實驗室選擇,然後在現場進行生產性試驗。在進行實驗室篩選過程中,首先掌握PAM絮凝劑產品性能數據。
2.3污泥脫水葯劑選擇結果
從試驗結果分析:
(1)閔行一水廠排泥水濃縮污泥脫水葯劑聚丙烯醯胺陽離子和陰離子都可用,固液分離效果好。
(2)陽離子PAM,陰離子PAM加註率基本上在0.56%~1.39%絮凝效果都很好,形成上清液濁度基本相同,固液分離效果好。考慮價格因素,選用陰離子PAM。
(3)非離子PAM,隨著加註量的增大到1.39%以後,礬花程度和上清液濁度都很好,但加註量不很經濟。
3水廠排泥水污泥總量估算
在水廠排泥水處理工程中,污泥總量的估算是十分關鍵的工作。因為它涉及到排泥水處理工程的土建結構規模大小,脫水機械和泵等設備的配置。因此,掌握原水濁度(SS懸浮物)、色度、混凝劑以及聚丙烯醯胺投加量來估算排泥水污泥總量,對確定排泥水處理工程有著直接而重大的意義。
3.1原水濁度設計取值
排泥水懸浮物總量的確定需要一年四季對進水廠原水懸浮固體跟蹤測試。由於水廠化驗室未進行這項測試,但對原水中濁度一年四季進行了測定,因此在設計中以三年的原水濁度進行統計,取出現90%以上的濁度概率作為原水濁度設計取值,另外10%的濁度概率可以通過排泥水處理工程中污泥平衡池對污泥總量平衡,利用脫水機,泵機調配等措施來達到削峰填谷的目的。這樣能最大限度節約投資,降低設備裝備容量。
3.2排泥水污泥總量估算
閔行一水廠排泥水污泥總量估算採用英國水處理研究中心《污泥處理指南》一書中提供的排泥水中污泥含量計算公式:
DS=SS+0.2B+1.53C=XA+0.2B+1.53C
① 斜板濃縮池2組 ② 濃縮池污泥切割機 2台(1用1備) ③ 濃縮池污泥泵 2台(1用1備) ④ 污泥平衡池1座 ⑤ 離心機進泥泵2台(1用1備) ⑥ 離心機2台(1用l備) ⑦ PAM配製裝置2台(1用1備) ⑧ PAM計量加註泵 2台(1用1備) ⑨ 螺旋式輸送器 兩條系統 ⑩ 刮泥機 2套 ⑾ 潛水攪拌機 1-2台 ⑿ 污泥潛水泵 2台(1用1備) 圖1閔行一水廠排泥水處理工藝流程
關於濁度與SS值相關關系,不同水源、不同季節(潮汐河流)、不同濁度范圍,都可能與SS值有不同的相關關系。我們在實驗室對NTU值與SS值進行了大量的相關比對,根據濁度值與SS值統計:1個NTU值相當於1.398 39 mg/L SS值,因此在估算污泥總量時採用濁度值比SS值為1∶1.97。閔行一水廠設計污泥量為12 t/d。
4排泥水處理工藝流程
根據閔行一水廠排泥水實際情況,閔行一水廠生產能力為67 000 m3/d,其排泥水處理選用了高效率的脫水機械以及PLC自動化控制系統(見圖1)。
從圖1可以看到,水廠排泥水處理工藝流程主要由五部分組成:①排泥水收集池;② 排泥水濃縮池;③污泥平衡池;④聚合物投加系統;⑤離心機脫水機房和污泥泵房。本流程系統有兩個物料進口,即收集池的排泥水進口和高分子絮凝劑PAM一個加註口;有兩個物料出口,即排泥水濃縮池上清液排放進穩壓井回用口和螺旋輸送器的泥餅(含固率≥30%)出口。
排泥水收集池。收集沉澱池排泥水。
污泥濃縮池。污泥濃縮的目的是使水廠排泥水的含水率得到一定程度的降低,從而降低排泥水後續處理設施的基本建設費用和運行費用。
濃縮污泥平衡池。它是水廠排泥水處理工藝單元不可缺少的構築物,也是實施排泥水處理工程自動化的關鍵所在。
濃縮污泥脫水。本工程方案採用卧螺離心機。離心機型號DSNX-4550,處理能力Q=12 m3/h,2台( 1用1備)。
脫水後的污泥由螺旋輸送器送至污泥堆場,待裝車外運。脫水機分離出的分離水迴流到排泥水收集池。
本工藝流程的最大特點在於整個生產流程能實現自動化運行管理,其次是整個生產過程安全衛生。工藝流程中的排泥水收集池和污泥平衡池的容量能充分滿足物料進出量的平衡,經處理後的排泥水上清液能最大限度地將水資源得到再利用或符合水源保護區排放標准。
5水廠排泥水處理經濟成本核算
對於給水廠排泥水處理,首先經處理後的濃縮池排放水要符合國家環保部門頒布的排放標准,外運填埋符合環境要求。其次排泥水處理工藝合理,設備先進,運行管理方便,自動化控製程度高,力求投資及運行成本低,使有限的經濟投入產生最大的經濟效益。運行成本由人工費、水電費、葯劑費、設備檢修費、泥餅運輸費、管理費、折舊費等7項指標構成,閔行一水廠排泥水處理成本折算見表1。
6結論與討論
(1)通過閔行一水廠排泥水沉降特性試驗和污泥粒徑分布測試,對排泥水處理工藝選擇進行反復論證,確定採用排泥水自動收集、高效斜板濃縮、投加PAM葯劑調制、離心機脫水的自動化控制的工藝運行方法。研究結果認為工藝流程合理,設計先進,佔地面積小,運行管理方便,固液分離效果好,泥餅含固率高,分離水清,污泥回收率高。該研究成果可作為示範工程,具有推廣價值,為今後黃浦江水系水廠排泥水處理工藝設計、設備選型、儀表配製及運行模式提供了科學依據。
表1閔行一水廠排泥水處理成本核算 運算說明A.工資福利費E1=40 000×10=400 000元/a(1)排泥水處理工程設5班3運轉共5人,並設班長、替班、電工、機工、清潔工各1人,合計10人。 (2)年工資福利費40 000元/(a·人)。B.電費、水費 E2 =0.75×50×24×365+15×1.80×365 =338 355元/a (1)考慮設備24 h運行,平均電耗50 kW (2)考慮基本電費和工業動力費不等因數故總電費按0.75元/(kW·h)計 (3)自來水用量為15 m3/d,工業水價1.10元/m3,排水費0.70元/m3, 合計1.80元/m3C.葯劑費 E3= 0.04×1.5×6000×365=131400元/a (1)設平均干泥6 t/d,SS 80 mg/L (71370 m3/d×80×10-6t/m3=6 t/d) (2) 根據試驗推薦陰離子,投加量按1.5%計算。 (3)陰離子PAM價格40元/kg。 D.檢修費 E4=17540000元×1%=175400元/a (1)本項目概算投資1 754萬元。 (2)檢修費按工程投資費1%提取。 E.污泥外運費 E5=40×6×2.5×365=219000元/a (1)目前污泥委託閔行渣土所外運。 (2)外運污泥含固率約60%。 (3)污泥外運價格為80元/m3,40元/t。  V =年制水總量×85%=20 693 675 m3 S/V=202萬元/20693675 m3≈0.097元/m3 (1)閔行一水廠制水能力為66700 m3/d。 (2)年制水總量按制水能力的85%計算。 註:①平均制水成本未將土地徵用費計算在內; ②建設水廠排泥水工程投資貸款費用未將利率償還計算在內。
(2)離心脫水機可作為上海黃浦江水系水廠排泥水固液分離首選脫水機械:密封運行,操作方便,自如調節差速,出泥含固率高,環境衛生,葯耗量低,對進泥含固率要求幅度寬,分離水質好。
(3)斜板濃縮池在水廠排泥水處理中是必不可少的構築物。合理的設計,能緩解進濃縮池排泥水濃度的波動,能確保上清液外排水質量達到環保排放標准。
(4)本工程主要運行參數。濃縮池上清液SS小於70 mg/L;濃縮池濃縮污泥可自動控制在含固率3%~13%;每台離心機產干泥量400~1 200 kg/h;離心機進行固液分離,葯劑PAM投加量0.8~1.5kg/t干泥,聚丙烯醯胺陰離子型和陽離子型都能適合離心機固液分離;離心機處理濃縮污泥,污泥回收率在99%以上,分離水SS≤400 mg/L。
(5)閔行一水廠排泥水處理系統採用PLC中央控制,配有污泥濃度計、流量儀、液位儀、液位開關等在線自動跟蹤監測儀表,用變頻方式實施對泵流量控制,用小型熒屏作為終端顯示屏,方便管理人員查看整套系統運行狀況和隨時設置運行參數,達到排泥水處理整套系統在高度自動化情況下正常運行。
(6)水廠排泥水處理的實施,雖然增加了自來水的運行成本,但是環境工程的實施有利於水資源的綜合利用,有利於走可持續發展的道路,有利於水環境質量的提高。該工程的實施,可以減少排泥水直接排入黃浦江所造成對水環境的負面影響。從長遠觀點來看,有利於自來水公司水質進一步提高,並能帶來潛在的社會效益和環境放益。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

『貳』 污泥濃縮池 體積和停留時間怎麼確定啊

你打算多久污泥外運一次,用天數乘以12.12不就可以了嗎?
(1)、進泥含水率:當為初次污泥時,其含水率一般為95%-97%;當為剩餘活性污泥時,其含水率一般為99.2%-99.6%。
(2)、污泥固體負荷:當為初次污泥時,污泥固體負荷宜採用80-120Kg/(m2.d);當為剩餘法泥時,污泥固體負荷宜採用30-60Kg/(m2.d)。
(3)、濃縮後污泥含水率:由曝氣池後二次沉澱池進入污泥濃縮池的污泥含水率,當採用99.2%-99.6%時,濃縮後污泥含水率宜為97%-98%。
(4)、濃縮時間不宜小於12h;但也不要超過24h。
(5)、有效水深一般宜為4m,最低不小於3m。
(6)、污泥室容積和排泥時間,應根據排泥方法和兩次排泥間時間而定,當採用定期排泥時,兩次排泥間一般可採用8h。
(7)、集泥設施:輻流式污泥濃縮池的集泥裝置,當採用吸泥機時,池底坡度可採用0.003;當採用刮泥機時,不宜小於0.01。不設刮泥設備時,池底一般設有泥斗。其泥斗與水平面的傾角,應不小於50度。刮泥機的回轉速度為0.75-4r/h,吸泥機的回轉速度為1r/h,其外緣線速度一般宜為1-2m/min。同時在刮泥機上可安設柵條,以便提高濃縮效果,在水面設除浮渣裝置。
(8)、構造及附屬設施
一般採用水密性鋼肋混凝土建造。設污泥投入管、排泥管、排上清液管,排泥管最小管徑採用150mm,一般採用鑄鐵管。
(9)、豎流式濃縮池:當濃縮池較小時,可採用豎流式濃縮池,一般不設刮泥機,污泥室的截錐體斜壁與水平面所形成的角度,應不小於50°,中心管按污泥流量計算。沉澱區按濃縮分離出來的污水流量進行設計。
(10)、上清液:濃縮池的上清液,應重新回到初沉池前進行處理。其數量和有機物含量參與全廠的物料平衡計算。
(11)、二次污染:污泥濃縮池一般均散發臭氣,必須時應考慮防臭或脫臭措施。臭氣控制可以從以下三方面著手,即封閉、吸收和掩撇。所謂封閉,是指用蓋子或其它設備封住臭氣發生源;所謂吸收,是指用化學葯劑來氧化或凈化臭氣;所謂掩蔽,是指採用掩蔽劑使臭氣暫時不向外擴散。

重力濃縮池設計參數

污泥種類

進泥濃度(%)

出泥濃度(%)

水力負荷
[m3/(m2.d)]

固體負荷[kg/(m2.d)]

固體捕捉率(%)

溢流TSS(mg/l)

初次污泥

1.0-7.0

5.0-10.0

24-33

90-144

85-98

300-1000

滴濾池生物膜

1.0-4.0

2.0-6.0

2.0-6.0

35-50

80-92

200-1000

剩餘活性污泥

0.2-1.5

2.0-4.0

2.0-4.0

10-35

60-85

200-1000

初次污泥與剩餘活性污泥的混合污泥

0.5-2.0

4.0-6.0

4.0-10.0

25-80

85-92

300-800

重力污泥濃縮池的計算公式

名 稱

公 式

符 號 說 明

1、濃縮池總面積

A=QC/M

Q--污泥量(m3/d)
C--污泥固體濃度(g/l)
M--濃縮池污泥固體量(kg/m2.d)

2、單池面積

A1=A/n

N--濃縮池數量

3、濃縮池直徑

D=(4A1/π)0.5

4、濃縮池工作部分高度

H1=TQ/24A

T--設計濃縮時間

5、濃縮池總高度

H=h1+h2+h3

H2--超高
H3--緩沖層高度

6、濃縮後污泥體積

V2=Q(1--P1)/(1--P)

P1--進泥濃度
P2--出泥濃度

加壓過濾
加壓過濾(壓濾)一般是間歇操作,初投資高,脫水效率較低。但脫水效果好,一般泥餅含水率在65%以下。整個壓濾機是密封的,過濾壓力一般為0.392-0.49Mpa以上。目前常用的加壓過濾設備有板框壓濾機和廂式壓濾機。
(1)、用壓濾機為城市污泥脫水時,過濾能力一般為2-10kg干泥/m2.h;當為城市消化污泥時,投加三氯化鐵量為4%-7%,氧化鈣為11%-22.5%,過濾能力一般為24kg干泥/m2.h,過濾周期一般為1.5-4h。
(2)、壓濾機設置台數應不小於2台。
(3)、污泥壓入過濾機一般有兩種方式:一種是高壓污泥泵直接壓入;另一種是壓縮空氣,通過污泥罐將污泥壓入過濾機,常用的高壓污泥泵有離心式或柱塞式。當採用柱塞式污泥泵時,應設減壓閥及旁通迴流管。每台過濾機應單獨配備一台污泥泵。
(4)、污泥壓濾後需用壓縮空氣來剝離泥餅,所需的空氣量按濾室容積每平方米需氣2m3/m3.min計算,壓力為0.1-0.3Mpa。
(5)、當用轉送帶運送污泥時,應考慮卸落時的沖力,並應附有破碎泥餅的鋼絲格網,以防泥餅塑化。

斜板沉澱池
斜板沉澱池是根據「淺層沉澱」理論,在沉澱池中加設斜板或蜂窩斜管,以提高沉澱效率的一種新型沉澱池。它具有沉澱效果高、停留時間短、佔地少等優點。斜板(管)沉澱池應用於城市污水的初次沉澱中,其處理效果穩定,維護工作量也不大;斜板耐沖擊負荷的能力較差。斜板(管)設備在一定條件下,有孳長藻類等問題,給維護管理工作帶來一定困難。
按水流與污泥的相對運動方向,斜板(管)沉澱池可分為異向流、同向流和側向流3種形式。在城市污水處理中主要採用升流式異向斜板(管)沉澱池。
設計數據
(1)、在需要挖掘原有沉澱池潛力,或需要壓縮沉澱池佔地等技術經濟要求下,可採用斜板沉澱池。
(2)、升流式異向流斜板(管)沉澱池的表面負荷,一般可比普通沉澱池的設計表面負荷提高一倍左右。對於二次沉澱池,應以固體負荷核算。
(3)、斜板垂直凈距一般採用80-120m,斜管孔徑一般採用50-80mm。
(4)、斜板(管)斜長一般採用1-1.2m。
(5)、斜板(管)傾角一般採用60°。
(6)、斜板(管)區底部緩沖層高度,一般採用0.5-1.0m。
(7)、斜板(管)區上部水深,一般採用0.5-1.0m。
(8)、在池壁與斜板的間隙處應裝設阻流板,以防止水流短路。斜板上緣宜向池子進水端傾斜安裝。
(9)、進水方式一般採用穿孔牆整流布水,出水方式一般採用多槽出水,在池面上增設幾條平行的出水堰和集水槽,以改善出水水質,加大出水量。
(10)、斜板(管)沉澱池一般採用重力排泥。每日排泥次數至少1-2次,或連續排泥。
(11)、池內停留時間:初次沉澱池不超過30min,二次沉澱池不超過60min。
(12)、斜板(管)沉澱池應設斜板(管)沉澱池應設斜板(管)沖洗設施。
計算公式

名稱
公式
稱號說明

1、池子水面面積
F=Qmax/mq×0.91(m2)
Qmax---最大設計流量

n---池數(個)

q---設計表面負荷[m3/(m2.h)]

0.91---斜板區面積利用系數

2、池子平面尺寸
圓型池直徑:

D=√4F/π(m)

方形池邊長:

a=F(m)

3、池內停留時間
T=(h2+h3)60/q(min)

H2---斜板區上部水深

H3---斜板高度

4、污泥部分所需的容積
(1)V=Qmax(C1-(2)24T100/K2y(100-p0)n
S---每人每天污泥量[L/(人.d)],一般採用0.3-0.8

N---設計人口數(人)

t---污泥室儲泥周期(d)

C1---進水懸浮物濃度

C2---出水懸浮物濃度

Kz---生活污水量總變化系數

y---污泥容重(t/m3)

po---污泥含水率(%)

5、污泥斗容積
(1)圓錐體:

V1=πh5/3(R2+Rr1+r12)(m3)

(2)方錐體:

V1=h5/3(a2+aa1+a12)(m3)
H5---污泥斗高度

R---污泥鬥上部半徑(m)

R1---污泥斗下部半徑(m)

A1---污泥斗下部邊長

6、沉澱池總高度
H=h1+h2+h3+h4+h5(m)
H1---超高(m)

H4---斜板(管)區底部緩沖層高度(m)

註:當斜板(管)沉澱池為矩形池時,其計算方法與方形池類同。

污水管道一般規定

項目
一般規定

1、充滿度

2、最小管徑

3、流速

4、最小管徑
(1)、廠區內的工業廢水管、生活污水管、街坊內的生活污水管200mm

(2)、城市街道下的生活污水管300mm

5、覆土
(1)、荷載要求:最小覆土在車道下一般不小於0.7m

(2)、冰凍要求;

1)、無保溫措施時,管內底可埋設在冰凍線以上0.15m

2)、有保溫措施或水溫較高的管道,可根據當地經驗埋得淺些,以上兩種情況均不宜小於0.7m

(3)、最大覆土:不宜大於6m

(4)、理想覆土:在滿足各方面要求的前提下,爭取維持在1-2m

6、連接
(1)、管道在檢查井內連接,一般採用管頂平接

(2)、不同直徑也可採用設計水面平接

(3)、在任何情況下進水管底不得低於出水管底

7、坡度驟變的處理
(1)、管道坡度驟然變陡,可由大管徑變小管徑

當D=200-300mm時,只能按生產規格減小一級

當D=400mm時,應根據水力計算確定,但減小不得超過二級

(2)、管道坡度驟然變緩,應逐漸過渡

8、小管核算
(1)、當有公共建築物位於管線始端時,應加入該集中流量進行滿復核

(2)、流量很小而地形又較平坦的上游支線,可採用非計算管段,採用最小管徑,按最小坡度控制

9、沖洗
(1)、在流速小於0.4m/s的上游管段,可考慮設沖洗井

(2)、每座井沖洗的長度一般為250m

10、溢流
污水管道在進入泵站或處理廠前,當條件允許時,可設事故溢流口,但必須取得當地有關部門的同意

11、通風
在充滿過高的管段、跌水井、大濃度污水接入的井位以及污水管線以上每隔500m左右的井位宜設通風管

12、計算
在適當管段中,宜設置觀測和計量構築物

『叄』 自來水廠生產廢水回收利用探討

自來水廠的生產廢水主要來自沉澱池或澄清池的排泥水和濾池的反沖洗廢水,可占整個水廠日產水量的3%~7%。對這部分水進行回用,不僅可以節約水資源,提高水廠的運營能力,還可減少廢水的排放量,特別是對廢水排放條件較差的水廠。目前國內外的大型水廠很多在設計時都考慮了生產廢水的回用措施,但由於水質的問題,有相當部分的水廠沒有或不常回用。這是因為這部分廢水中不僅富集了原水中幾乎所有的雜質,還包括了在生產工藝中投加的各種葯劑。這些物質重新回到生產系統中,再加上由此產生的生物因素(如賈弟鞭毛蟲和隱孢子蟲),的確具有一定的風險。因此在考慮回用時,必須要仔細研究。一、生產廢水回用的衛生安全性研究衛生安全的飲用水,需滿足三個方面的水質要求:感官性狀良好;防止介水傳染病的發生,確保微生物學的安全性,特別是人和動物糞便的污染可引起介水傳染病的爆發流行;預防化學物質的急、慢性中毒以及其他健康危害(如致畸、致突變、致癌作用)。衛生安全性研究主要根據生產廢水的特點,從微生消冊橡物安全性、微量有機污染物以及致突變方面進行系統研究。不少學者對凈水廠生產廢水回用的微生物安全性進行了一系列的研究,有人認為回用會造成濾後水中的「兩蟲」數量增加的風險,生產廢水必須經過預處理方能回用;也有人認為濾池反沖洗排水直接回用不會對水處理工藝系統的處理效果造成影響,而且由於濾池反沖排水回用,拿旁增加了原水中顆粒的碰撞和吸附的機會,使得隱孢子蟲卵囊或賈第鞭毛蟲孢囊被吸附和包卷的機會增多,反而有利於「兩蟲」和顆粒的去除。混凝沉澱和過濾是常規水處理工藝去除賈第蟲和隱孢子蟲的重要階段。目前國內大多數水廠也逐漸重視生產廢水回用的安全性,但目前的研究多基於常規水質參數的檢驗,由於檢測方法的復雜和費用的昂貴,即使針對水域中的賈第鞭毛蟲和隱孢子蟲,也只有深圳和澳門地區進行了初步檢測,對生產廢水直接回用是否造成水處理系統中賈第鞭毛蟲和隱孢子蟲的累積和泄漏問題尚未見報道。二、姿拆生產廢水的回用方式生產廢水回用的方式主要分為直接回用和處理回用。(一)直接回用直接回用是目前國內採用較多的方式,主要有濾池反沖洗廢水直接回收和生產廢水上清液回收。前者設置回收池,將濾池反沖洗廢水加以收集,提升至原水絮凝前加以回收。後者設置污泥濃縮池,沉澱池排泥水和濾池反沖洗水經過濃縮,上清液提升至原水絮凝前加以回收,底部污泥進入污泥處理系統或直接排入河道或下水道。這種回用方式本身費用較低,可以結合廠區的污泥處理系統一起實施,但需加強水質監測措施,一旦回用水水質不能滿足回用標准,必須降低回用負荷或不回用。(二)處理回用處理回用是對生產廢水進行處理,使其水質滿足原水的常規化學指標和生物指標後再回用。處理方式與生產廢水的水質有較大關系,如果處理費用高於原水費用且原水水量充沛,則無法體現此方式的必要性三、生產廢水回用的水質問題及處理方式生產廢水在回用的過程中需注意鐵、錳等常規指標及微生物指標(賈弟鞭毛蟲和隱孢子蟲)。鐵、錳過量攝入對人體是有慢性毒害的。錳的生理毒性比鐵嚴重。自來水廠關注於鐵、錳的去除,並非是考慮毒理學上的要求,而是因鐵、錳的異味很大,而且污染生活器具,令人難以忍受,在遠未達到慢性毒害的程度前早已不能飲用了。目前我國的地表水環境質量標准和生活飲用水標准中對鐵和錳的標准分別為0.3mg/l和0.1mg/l。一般地下水含鐵錳較高,但有些地表水中鐵、錳離子的含量也超出了水質標准,雖然尚在常規處理的能力內,但如果對生產廢水不加處理就進行回用,其富集作用將會影響到出廠水的水質。如上海某以黃浦江上游原水為水源的水廠,在設計中考慮了濾池反沖洗水的回用,2001年原水中鐵、錳離子最高達10.0mg/l和0.32mg/l,平均值達3.2mg/l和0.12mg/l,這是其對生產廢水不回用的主要原因。在水處理方面,膜分離技術脫離了傳統的化學處理范疇,轉入到物理固液處理領域。與常規飲用水處理工藝相比,膜技術具有少投甚至不投加化學葯劑、佔地面積小、便於實現自動化等優點,並已應用於城鎮自來水的深度處理上。常用的以壓力為推動力的膜分離技術有微濾(MF)、超濾(UF)、納濾(NF)以及反滲透(RO)等。其特點是能夠提供穩定可靠的水質,這是由於膜分離水中雜質的主要機理是機械篩濾作用,因而出水水質在很大程度上取決於膜孔徑的大小。三、回用水系統的設計及運行在設計回收池時,應結合實際的廢水排放規律,盡量做到均勻回收。減小進水的沖擊負荷,但這必然造成回收池的體積放大,對廠平面布置造成一定的困難,因此必須統一考慮。例如在進行某40萬m3/d水廠的設計方案時,由於其污泥脫水系統將沉澱池排泥水和濾池反沖洗水均納入其處理范圍中,因此只需考慮其上清液的收集與回用。針對其工藝流程進行分析,排泥水濃縮池為24小時連續工作,上清液流量為165m3/h;反沖洗廢水濃縮池每日工作9.5小時,上清液流量為391m3/h。因此其最大排出流量為391+165=556m3/h(9.5hr),其餘為165m3/h(14.5hr)。如果考慮均勻回收,則其平均流量為(556×9.5+165×14.5)/24=320m3/h。若按平均流量回收,需增設1隻上清液回收調蓄池,其容積為(556-320)×9.5=2242m3。由於場地限制,該廠無法滿足如此大容積回收池,只能利用濃縮池附近的區域設置調節容量為150m3的回收池,其回收流量基本與濃縮池上清液的排放量相同。回用水系統的處理方式根據生產廢水的水質和回用要求確定,應充分考慮其經濟性和可靠性,應針對具體情況選擇合適的處理流程,並以試驗加以驗證。在運行時首先要制定一個回用水標准,並根據此標准配置在線的水質監測自控儀表,納入水廠的PLC控制,以便根據其反饋值對回用水系統的運行進行控制。在水質儀表的選擇時,考慮到低濁度並不能代表隱蟲安全,建議用顆粒計數器檢測水中顆粒數來代替濁度。四、結論在判斷生產廢水是否回用時,應根據原水和生產廢水的水質、水量等因素進行分析:當原水水量足以滿足供水要求且費用較低,而生產廢水必須先處理再回用,回用費用遠高於原水費用時,可以不考慮回用;當原水費用較高,而生產廢水的水質較好可不處理,回用費用低於原水費用時,可以考慮直接回用;當原水水量較緊張且費用較高,而生產廢水的水質經過簡單處理可以滿足回用要求,回用費用與原水費用接近時,可以考慮處理回用。在考慮回用水處理時,處理效果和經濟性是一種工藝是否被採用的關鍵。特別是後者,決定了這種工藝是否得以推廣。回用水系統工藝的選擇和設計,最好結合水廠的臭氧預處理、深度處理和污泥處理等一並考慮。
以上由中達咨詢搜集整理
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

『肆』 垃圾滲濾液處理工藝

城市垃圾填埋場滲濾液的處理一直是填埋場設計、運行和管理中非常棘手的問題。滲濾液是液體在填埋場重力流動的產物,主要來源於降水和垃圾本身的內含水。由於液體在流動過程中有許多因素可能影響到滲濾液的性質,包括物理因素、化學因素以及生物因素等,所以滲濾液的性質在一個相當大的范圍內變動。一般來說,其pH值在4~9之間,COD在2000~62000mg/L的范圍內,BOD5從60~45000mg/L,重金屬濃度和市政污水中重金屬的濃度基本一致。城市垃圾填埋場滲濾液是一種成分復雜的高濃度有機廢水,若不加處理而直接排入環境,會造成嚴重的環境污染。以保護環境為目的,對滲濾液進行處理是必不可少的。�

1 滲濾液處理工藝的現狀

��垃圾滲濾液的處理方法包括物理化學法和生物法。物理化學法主要有活性炭吸附、化學沉澱、密度分離、化學氧化、化學還原、離子交換、膜滲析、氣提及濕式氧化法等多種方法,在COD為2000~4000�mg/L時,物化方法的COD去除率可達50%~87%。和生物處理相比,物化處理不受水質水量變動的影響,出水水質比較穩定,尤其是對BOD5/COD比值較低(0.07~0.20)難以生物處理的垃圾滲濾液,有較好的處理效果。但物化方法處理成本較高,不適於大水量垃圾滲濾液的處理,因此目前垃圾滲濾液主要是採用生物法。

��生物法分為好氧生物處理、厭氧生物處理以及二者的結合。好氧處理包括活性污泥法、曝氣氧化池、好氧穩定塘、生物轉盤和滴濾池等。厭氧處理包括上向流污泥床、厭氧固定化生物反應器、混合反應器及厭氧穩定塘。�

2 滲濾液處理介紹

��垃圾滲濾液具有不同於一般城市污水的特點:BOD5和COD濃度高、金屬含量較高、水質水量變化大、氨氮的含量較高,微生物營養元素比例失調等。在滲濾液的處理方法中,將滲濾液與城市污水合並處理是最簡便的方法。但是填埋場通常遠離城鎮,因此其滲濾液與城市污水合並處理有一定的具體困難,往往不得不自己單獨處理。常用的處理方法如下。�

2.1 好氧處理

��用活性污泥法、氧化溝、好氧穩定塘、生物轉盤等好氧法處理滲濾液都有成功的經驗,好氧處理可有效地降低BOD5、COD和氨氮,還可以去除另一些污染物質如鐵、錳等金屬。在好氧法中又以延時曝氣法用得最多,還有曝氣穩定塘和生物轉盤(主要用以去除氮)。下面將分別予以介紹。�

2.1.1 活性污泥法�

2.1.1.1 傳統活性污泥法

�滲濾液可用生物法、化學絮凝、炭吸附、膜過濾、脂吸附、氣提等方法單獨或聯合處理,其中活性污泥法因其費用低、效率高而得到最廣泛的應用。美國和德國的幾個活性污泥法污水處理廠的運行結果表明,通過提高污泥濃度來降低污泥有機負荷,活性污泥法可以獲得令人滿意的垃圾滲濾液處理效果。例如美國賓州Fall Township污水處理廠,其垃圾滲濾液進水的CODCr為�6000~21000�mg/L,BOD5為�3000~13000�mg/L,氨氮為200~2000�mg/L。曝氣池的污泥濃度(MLVSS)為�6000~12000mg/L,是一般污泥濃度的3~6倍。在體積有機負荷為1.87kgBOD5/(m3·d)時,F/M為0.15~0.31kgBOD5/(kgMLSS·d),BOD5 的去除率為97%;在體積有機負荷為0.3kgBOD5/(m3·d)時,F/M為0.03~0.05kg BOD5/(kgMLSS·d),BOD5的去除率為92%。該廠的數據說明,只要適當提高活性污泥法濃度,使�F/M在0.03~0.31kgBOD5/(kgMLSS·d)之間(不宜再高),採用活性污泥法能夠有效地處理垃圾滲濾液。

�許多學者也發現活性污泥能去除滲濾液中99%的BOD5,80%以上的有機碳能被活性污泥去除,即使進水中有機碳高達1000mg/L,污泥生物相也能很快適應並起降解作用。在低負荷下運行的活性污泥系統,能去除滲濾液中80%~90%的COD,出水BOD5<20mg/L。對於COD� 4000~13000�mg/L、BOD51600~11000mg/L、NH3-N 87~590mg/L的滲濾液,混合式好氧活性污泥法對COD的去除率可穩定在90%以上。眾多實際運行的垃圾滲濾液處理系統表明,活性污泥法比化學氧化法等其它方法的處理效果更佳。�

2.1.1.2 低氧�好氧活性污泥法

�低氧�好氧活性污泥法及SBR法等改進型活性污泥流程,因其具有能維持較高運轉負荷,耗時短等特點,比常規活性污泥法更有效。同濟大學徐迪民等用低氧�好氧活性污泥法處理垃圾填埋場滲濾液,試驗證明:在控制運行條件下,垃圾填埋場滲濾液通過低氧�好氧活性污泥法處理,效果卓越。最終出水的平均CODCr、BOD5、SS分別從原來的�6466� mg/L、3502�mg/L以及239.6mg/L相應降低到CODCr<300mg/L、BOD5<50mg/L(平均為13.3mg/L)以及SS<100mg/L(平均為27.8mg/L)。總去除率分別為CODCr 96.4%、BOD5 99.6%、SS 83.4%。

�處理後的出水若進一步用鹼式氯化鋁進行化學混凝處理,可使出水的CODCr下降到1 00mg/L以下。

�兩段法處理滲濾液的氮、磷也均較一般生物法為佳。磷的平均去除率為90.5%;氮的平均去除率為67.5%。此外該法運行彌補厭氧�好氧兩段生物處理法第一段形成NH3-N較多,導致第二段難以進行和兩次好氧處理歷時太長的不足。�

2.1.1.3 物化活性污泥復合處理系統

�由於滲濾水中難以降解的高分子化合物所佔的比例高,存在的重金屬產生的抑製作用,所以常用生物法和物理�化學法相結合的復合系統來處理垃圾滲濾液。對於BOD5�1500m g/L、Cl-800mg/L、硬度(以CaCO3計)800mg/L、總鐵600mg/L、有機氮100mg/L、TSS 300mg/L、 SO2-4300mg/L的滲濾液,有學者採用該方法進行處理,發現效果很好,其BOD5 、COD、NH3-N、Fe的去除率分別達99%、95%、90%、99.2%。該系統中的進水通過調節池後,可以避免毒性物質出現瞬時的高濃度而對活性污泥生物產生抑製作用;在澄清池中加入石灰,可去除重金屬和部分有機質;氣提池(進行曝氣,溫度低時加入NaOH)能去除進水NH3-N的50%,從而使NH3的濃度處於抑制水平之下;由於廢水中磷被加入的石灰所沉澱,且 pH值過高,因而需添加磷和酸性物質;活性污泥系統可以串聯或並聯使用,運行時可通過調節迴流污泥比來選用常規法或延時曝氣法處理,具有較大的操作靈活性。�

2.1.2 曝氣穩定塘

�與活性污泥法相比,曝氣穩定塘體積大,有機負荷低,盡管降解進度較慢,但由於其工程簡單,在土地不貴的地區,是最省錢的垃圾滲濾液好氧生物處理方法。美國、加拿大、英國、澳大利亞和德國的小試、中試及生產規模的研究都表明,採用曝氣穩定塘能獲得較好的垃圾滲濾液處理效果。

�例如英國在Bryn Posteg Landfill投資60000英鎊建立一座1000m3的曝氣氧化塘,設2台表面曝氣裝置,最小水力停留時間為10d,氧化塘出水經沉澱後流經3km長的管道入城市下水道。此系統1983年開始運行,滲濾液最大CODCr為24000mg/L,最大BOD5為�10000�mg/L,F/M=0.05~0.3kgCOD/(kgMLSS·d),水量變化范圍0~150m3/d,出水BOD5平均為 24mg/L,但偶然有超過50mg/L的時候,COD去除率達97%,但在運行過程中需投加P,考慮到日常運行費用,投資償還及其利息,與滲濾液直接排至市政管網相比,每年可節約750英鎊。

�英國水研究中心(Water Research Center)對東南部New Park Landfill的CODCr> 15000mg/L的滲濾液也做了曝氣穩定塘的中試,當負荷為0.28~0.32kgCOD/(kgMLSS·d)或者說為0.04~0.64kgCOD/(kgMLSS·d),泥齡為10d時,COD和BOD5去除率分別為98%和91%以上。在運行過程中也需要投加磷酸。�

2.1.3 生物膜法

�與活性污泥法相比,生物膜法具有抗水量、水質沖擊負荷的優點,而且生物膜上能生長世代時間較長的微生物,如硝化菌之類。加拿大British Columbia大學的C.Peddie和J.Atwater用直徑0.9m的生物轉盤處理CODCr<�1 000�mg/L,NH3-N<50m g/L的弱性滲濾液,其出水BOD5<25mg/L,當溫度回升,微生物的硝化能力隨即恢復。但是應當指出,這種滲濾液的性質與城市污水相近,對於較強的滲濾液此方法是否適用還待研究。�

2.2 厭氧生物處理

�厭氧生物處理的有目的運用已有近百年的歷史。但直到近20年來,隨著微生物學、生物化學等學科發展和工程實踐的積累,不斷開發出新的厭氧處理工藝,克服了傳統工藝的水力停留時間長,有機負荷低等特點,使它在理論和實踐上有了很大進步,在處理高濃度(BOD5 ≥2000�mg/L)有機廢水方面取得了良好效果。

�厭氧生物處理有許多優點,最主要的是能耗少,操作簡單,因此投資及運行費用低廉,而且由於產生的剩餘污泥量少,所需的營養物質也少,如其BOD5/P只需為4000∶1,雖然滲濾液中P的含量通常少於1mg/L,但仍能滿足微生物對P的要求。用普通的厭氧硝化,35℃ 、負荷為1kgCOD/(m3·d),停留時間10d,滲濾液中COD去除率可達90%。

�近年來,開發的厭氧生物處理方法有:厭氧生物濾池、厭氧接觸池、上流式厭氧污泥床反應器及分段厭氧硝化等。�

2.2.1 厭氧生物濾池

�厭氧濾池適於處理溶解性有機物,加拿大Halifax Highway101填埋場滲濾液平均COD為12850mg/L、BOD5/COD為0.7,pH為5.6。將此滲濾液先經石灰水調節至pH=7.8,沉澱1h後進厭氧濾池(此工序還起到去除Zn等重金屬的作用),當負荷為4kgCOD/(m3·d)時,COD去除率可達92%以上;當負荷再增加時,其去除率急劇下降。

�加拿大Toronto大學的J.G.Henry等也在室溫條件下成功地用厭氧濾池分別處理年齡為1.5 年和8年的填埋場滲濾液,它們的COD各為14000mg/L和4000�mg/L,BOD5/COD各為0.7和0.5,當負荷為1.26~1.45kgCOD/(m3·d),水力停留時間為24~96h時,COD去除率均可達90%以上。當負荷再增加,其去除率也急劇下降。由此可見,雖然厭氧濾池處理高濃度有機污水時負荷可達5~20kgCOD/(m3·d),但對於滲濾液其負荷必須保持較低水平才能得到理想的處理效果。�

2.2.2 上向流式厭氧污泥床

�英國的水研究中心報道用上向流式厭氧污泥床(UASB)處理COD>10000mg/L的滲濾液,當負荷為3.6~19.7kgCOD/(m3·d),平均泥齡為1.0~4.3d,溫度為30℃時COD和BOD5的去除率各為82%和85%,它們的負荷比厭氧濾池要大得多。

�在厭氧分解時,有機氮轉為氨氮,且存在NH4+�NH3+H�+反應。若pH>7時,平衡中的NH3占優勢,可用吹脫法去除。但厭氧分解時pH近似等於7,因此出水中可能含有較多的NH4+,將會消耗接納水體的溶解氧。�

2.3 厭氧與好氧的結合方式

�雖然實踐已經證明厭氧生物法對高濃度有機廢水處理的有效性,但單獨採用厭氧法處理滲濾液也很少見。對高濃度的垃圾滲濾液採用厭氧�好氧處理工藝既經濟合理,處理效率又高。COD和BOD的去除率分別達86.8%和97.2%。�

2.3.1 厭氧�好氧生物氧化工藝(厭氧硝化和生物氧化塘)

�西南師大生物系對pH為8.0~8.6,COD為16124mg/L,BOD5為214~406mg/L、NH3- N為475mg/L的滲濾液採用厭氧�好氧生物化學法處理,取得出水pH為7.1~7.9,COD為170.33~314.8mg/L,BOD5為91.4mg/L、NH3-N為29.1mg/L的良好效果。�

2.3.2 厭氧�氧化溝�兼性塘工藝

�下面結合廣州市李坑垃圾填埋場作以下說明及分析。李坑垃圾填埋場污水處理廠按流量300m3/d設計,進水BOD5為2500�mg/L、CODCr為4000mg/L、NH3-N 為�1000mg/L、SS為600mg/L、色度為�1000倍;出水BOD5為30mg/L、CODCr為80mg/L 、NH3-N為10mg/L、SS為70mg/L、色度為40倍。選用工藝流程為:厭氧�氧化溝�兼性塘�絮凝沉澱。當進水水質較好,兼性塘出水達標時,即可直接將兼性塘水向外排放;而當進水水質較差,兼性塘出水達不到排放標准時,則啟用混凝沉澱系統,再排放沉澱池上清液。

�從目前該套工藝的運行情況來看,當進水的COD較高時,出水水質良好;一旦COD 降低,特別是冬季低溫少雨,COD降低到不利於生化處理時,出水各水質成分均偏高難以達標,出水呈棕褐色,盡管啟用絮凝沉澱系統,效果仍不理想。由此可見,對於滲濾液的色度和NH3-N的有效去除,對生化處理將產生有利影響。�

2.3.3 厭氧�氣浮�好氧工藝

�大田山垃圾衛生填埋場滲濾液處理採用的是此工藝。根據廣州市環境衛生研究所對類似垃圾填埋場滲濾液檢測資料及模擬試驗,結合本場實際情況定出滲濾液污水處理設計參數。進水水質CODCr為8000mg/L、BOD5為5000mg/L、SS為700mg/L、pH值為7.5 ;出水水質CODCr為100mg/L、BOD5為60mg/L、SS為500mg/L、pH值為6.5~7.5。�針對該場遠離市區的特點,為便於管理和節省能耗,經比較後選用厭氧和好氧聯合處理工藝。厭氧段為上向流式厭氧污泥床反應器,好氧段為生物接觸氧化法,加化學混凝沉澱和生物氧化塘,凈化處理達標後排放。剩餘污泥經濃縮後送回填埋場處理。

�考慮到滲濾液水質變幅較大的特點,在厭氧段後加入氣浮工藝,提高處理能力以應付進水水質偏高的情況。目前深圳下坪垃圾填埋場設計採用厭氧�氣浮�好氧工藝處理滲濾液。�

2.3.4 UASB�氧化溝�穩定塘

�福州市於1995年建成全國最大的現代化的城市垃圾綜合處理場--福州市紅廟嶺垃圾衛生填埋場。處理垃圾滲濾液水量為1000m3/d;垃圾滲濾液水質(入口)為CODCr為 8000mg/L、BOD5為5500mg/L;處理水質要求(出口)為CODCr去除率95%、 BOD5去除率97%。

�設計採用上向流式厭氧污泥床�奧貝爾氧化溝�穩定塘工藝流程。垃圾填埋場的垃圾滲濾液集中到貯存庫,依靠庫址的較高地形,自流到集水池、格柵,經巴式計量槽計量後,靠勢能流至配水池,再依靠靜水頭壓至上向流式厭氧污泥床。經厭氧處理後的污水流至一沉池進行固液分離,上清液自流到奧貝爾氧化溝,沉澱污泥靠重力排至污泥池,污泥定期用罐車送到垃圾填埋場或堆肥利用。

�污水在奧貝爾氧化溝進行好氧生化處理,奧貝爾氧化溝採用三溝式A/O工藝,具有先進的污水脫氮處理效果。該工藝突出的優點是在第一溝中既能對氨氮進行硝化,又能以BOD為碳源對硝酸鹽進行反硝化,總氮去除率可達80%,由於利用了污水中BOD作碳源,導致污水中的 BOD5被去除,減少了污水中的需氧量。為了提高氧化溝脫氮效果,把第三溝的出水用潛水泵再抽至第一溝進行內迴流,在第一溝中進行反硝化。

�經氧化溝處理的污水流入二沉池進行固液分離,澄清水自流至穩定塘進行生物處理。二沉池的剩餘污泥靠重力排至濃縮池。濃縮池中的上清液迴流至氧化溝處理,其濃縮後的污泥用潛水泵抽至罐車輸送到垃圾填埋場填埋,或進行堆肥處理。�

2.4 土地處理

�土地處理法亦即土壤灌溉法,是人類最早採用的污水處理法,但是土地處理系統的應用多見於城市污水處理。對於滲濾液的處理方法,將滲濾液收集起來,通過噴灌使之迴流到填埋場。循環填埋場的滲濾液由於增加垃圾濕度,從而提高了生物活性,加速甲烷生產和廢物分解。其次由於噴灌中的蒸發作用,使滲濾液體積減小,有利於廢水處理系統的運轉,且可節約能源費用。北英格蘭的Seamer Carr垃圾填埋場,有一部分採用滲濾液再循環,20個月後再循環區滲濾液的COD值降低較多,金屬濃度有較大幅度下降,而NH3 -N、Cl-濃度變化較小。說明金屬濃度的下降不僅是由於稀釋作用引起的,也可能是垃圾中無機成分對其吸附造成的。

�由於再循環滲濾液具有諸多優點,所以設計填埋場時頂部不要全部封閉,而應設立規則性排列的溝道以免對周圍水源的污染。低濃度滲濾液不能直接排放,因NH3-N、Cl-濃度仍較高,溫度較低季節,蒸發少,生物活性弱,再循環滲濾液的效果有待進一步研究。�

2.5 硝化和反硝化

�"老"的填埋場往往處於甲烷發酵階段,其滲濾液中氨氮含量較高,通常為100~1000mg /L。去除氨氮主要有兩種方法:一是硝化和反硝化;另一種是提高pH值至9以上,再用空氣吹脫。Robinson和Maris將年齡為20年的填埋場滲濾液在溫度為10℃,泥齡為60d的條件下曝氣(實際上此與氧化塘運行條件相仿),可完全硝化。其它用生物轉盤等好氧方法也都取得了成功,因此普遍認為滲濾液的硝化是不成問題的。�

2.6 英Rochem's反滲透處理廠

�在英國垃圾滲濾液處理廠使用Rochem's專利圓盤管反滲透系統對初級滲濾液進行處理。這種處理技術是由南亨伯賽德郡溫特頓填埋場所設計和生產的Rochem's離析膜系統。

�這個系統的心臟是Rochem's專利圓盤管。這個圓柱體的組成包括板片、八角型鋼和一個圓管內的耐磨膜墊層,它能處理那些快速堵塞普通的反滲透膜系統的滲濾液。在膜的壓力下滲濾液進入Rochem's處理系統進行曝氣和pH校正。當含有污染物的滲濾液流經圓柱體內膜表面時,滲濾液中的污染物質由於反滲透作用而分離出來並經膜排出。整個系統清理的操作是自動化的,當需要對該系統進行化學清洗時,控制指示器就會顯示出信息來,同時自動清洗系統就會用已經程式化的化學制劑對該系統進行內部清洗,使其恢復到最初的功能。因為滲濾液在封閉情況下,在膜的表面形成湍流,減少氧化,產生惡臭,所以到一定時間要進行內部清洗,但這種清洗的間隔時間較長,Rochem's 離析膜系統能夠去除重金屬、固體懸浮物、氨氮和有害的難降解的有機物,處理後的水滿足嚴格的排放標准。

�現在德國的Ihlenbery填埋場安裝投入使用的Rochem's處理系統,其處理能力的污水量為50m3/h,水的回收率為90%。�

城市垃圾滲濾液處理工藝介紹 來自: 免費論文網

3 處理工藝的分析比較

��與好氧方法相比,厭氧生物處理具有以下優點。

��(1)好氧方法需消耗能量(空氣壓縮機、轉刷等),而厭氧處理卻可產生能量(產生甲烷氣) 。COD濃度越高,好氧方法耗能越多;厭氧方法產能越多,兩者的差異就越明顯。

��(2)厭氧處理時有機物轉化成污泥的比例(0.1kgMLSS/kgCODCr)遠小於好氧處理的比例(0.5kgMLSS/kgCODCr),因此污泥處理和處置的費用大為降低。

��(3)厭氧處理時污泥的生長量小,對無機營養元素的要求遠低於好氧處理,因此適於處理磷含量比較低的垃圾滲濾液。

��(4)根據報道,許多在好氧條件下難於處理的鹵素有機物在厭氧時可以被生物降解。

��(5)厭氧處理的有機負荷高,佔地面積比較小。

��但是,厭氧處理出水中的COD濃度和氨氮濃度仍比較高,溶解氧很低,不宜直接排放到河流或湖泊中,一般需要進行後續的好氧處理。另外,世界上大多數垃圾滲濾液多是偏酸性的 (pH值一般在5.5~7.0)。pH在7以下,產甲烷菌將會受到抑制甚至死亡,不利於厭氧處理,而好氧處理對pH的要求就沒有這么嚴格。再者,厭氧處理的最適溫度是35℃,低於這個溫度時,處理效率迅速降低。比較而言,好氧處理對溫度要求不高,在冬季時即使不控制水溫,仍能達到較好的出水水質。

��鑒於以上原因,目前對COD濃度在�50 000�mg/L以上的高濃度垃圾滲濾液建議採用厭氧方法 (後接好氧處理)進行處理,對COD濃度在�5 000�mg/L以下的垃圾滲濾液建議採用好氧生物處理法。對於COD在�5 000�~�50 000�mg/L之間的垃圾滲濾液,好氧或厭氧方法均可,選擇工藝時主要考慮其它因素。�

4 結論和建議

��通過對上述幾種處理方法及處理工藝的分析比較可得以下結論,並提出水質、水量等方面的建議和意見:

��(1)垃圾滲濾液具有成分復雜,水質水量變化巨大,有機物和氨氮濃度高,微生物營養元素比例失調等特點,因此在選擇垃圾滲濾液生物處理工藝時,必須詳細測定垃圾滲濾液的各種成分,分析其特點,以便採取相應的對策。還應通過小試和中試,取得可靠優化的工藝參數,以獲得理想的處理效果。

��(2)多種方法應用於滲濾液的處理是可行的。在有條件的地方修築生物塘,同時採用水生植物系統處理滲濾液,不僅投資省,而且運行費用低。土地處理也受到人們的重視,但在滲濾液的處理中選用尚少。生物膜法和活性污泥法有成熟的運行管理經驗,近年來結合採用厭氧�好氧工藝生物處理滲濾液較多。但修建專用的滲濾液處理廠投資大,運行管理費用高,而且隨著填埋場的關閉,最終使水處理設施報廢,故應慎重選用。

��(3)我國目前真正能滿足衛生填埋標準的填埋場並不多,許多填埋場因為投資所限無法按設計要求建造能達到環境保護要求的滲濾液收集系統。因此,宜發展投資省,效果好的滲濾液處理技術。垃圾填埋場滲濾液向填埋場回灌,利用土地吸附,土壤生物降解及垃圾填埋層的厭氧濾床作用使滲濾液降解,具有投資省、效果好,無需專門處理設施投資等特點。而且滲濾液的回灌可使垃圾保持濕潤,加速填埋場的穩定。回灌法目前採用較少,可作深入研究,以明確回灌法的使用條件,處理效率及回灌處理的工程設計參數。

��(4)對垃圾填埋場滲濾液進行處理是問題的一個方面,另一方面應當考慮減少滲濾液產生量。宜發展可減少滲濾液產生量的填埋技術,如好氧填埋或准好氧填埋。

��(5)對垃圾滲濾液的處理,我國尚處於研究探索階段,為了建設標准化的城市垃圾衛生填埋場,對其滲濾液的處理應作更深入的研究。

『伍』 污泥濃縮池能將污泥的含水率降至多少

看什麼樣的污泥,剩餘污泥到97-98%,初沉污泥可以更低

『陸』 請問污水處理廠污泥濃縮池中上清液半排放管的作用

排出多餘氣體!

『柒』 污水再生回用和水資源可持續利用

方先金

(北京市市政工程科學技術研究所,北京市西城區大帽胡同號,100035,中國)

我國是一個水資源貧乏的國家,人均水資源擁有量只有2200m3,僅為世界平均水平的1/4,在世界銀行連續統計的153個國家中居第88位。同時,我國水資源在時間和地區分布上很不平衡,南方多北方少,北方大部分地區人均水資源擁有量低於聯合國可持續發展委員會確定的1750m3用水緊張線,其中9個地區低於500m3的嚴重缺水線。水資源短缺已成為制約我國經濟和社會發展的重要因素。

1水資源可持續利用面臨的問題

1.1水資源總量緊缺

50年來,全國用水總量從1949年的1000多億m3增加到1997年的5566億m3,其中農業用水佔75.3%,工業用水佔20.2%,城鎮生活用水佔4.5%,人均綜合年用水量從不足200m3增加到458m3。目前,全國每年缺水近400億m3,其中,農業缺水300億m3,因旱致災,年均減少糧食200多億千克;城市和工業缺水60億m3,影響工業產值2300多億元,全國668座城市有400多座缺水,有110個城市嚴重缺水。特別是1999年以來,我國北方地區持續乾旱,給工農業生產造成較大的影響,也給城市、農村居民生活用水造成很大的困難。2001年6月上旬旱情最為嚴重時,全國受旱面積一度達到4.2億畝(1畝=100m2),由於持續乾旱,水源不足,造成城鄉人民生活用水緊張,有2198萬城鎮人口和3300萬農村人口及1450萬頭大牲畜發生飲水困難。天津、長春、大連、青島、唐山和煙台等大中城市已受到水資源短缺的嚴重威脅,許多水庫、河流出現從來沒有過的斷流和乾枯。今後隨著人口的增長、生活水平的提高、城市化的加快,水資源供需矛盾將更加突出,據預測,我國用水高峰將在2030年前後出現,2030年我國人口將達到16億人,糧食總產量需達到7億t,年用水總量為7000億~8000億m3,全國每年缺水將在700億m3左右。

氣候變化對我國水資源可利用量也產生了負面影響。據1950~1997年的降水和氣溫資料分析,我國近20年來呈現北旱南澇的局面。20世紀80年代華北地區持續偏旱,京津地區、海灤河流域、山東半島10年平均降水量偏少10%~15%。進入20世紀90年代,黃河中上游地區、漢江流域、淮河上游、四川盆地的8年平均降水量偏少約5%~10%,黃河花園口的天然來水量初步估計偏少約20%,海灤河和淮河的年徑流量也都明顯偏少。北方缺水地區持續枯水年份的出現,以及黃河、淮河、海河與漢江同時遭遇枯水年份等不利因素的影響,加劇了北方水資源供需失衡的矛盾。據相關研究,未來50年由於人類活動產生的溫室效應,全球年平均氣溫可能升高,氣溫升高將使地表蒸發量提高,水資源量將相應減少。

1.2水資源分布不均

我國水資源在時間和空間分布上很不平衡。長江流域及其以南地區國土面積只佔全國的36.5%,其水資源量佔全國的81%;黃淮海流域人口、糧食產量和國內生產總值都佔全國的1/3左右,但其多年平均水資源僅佔全國的7.2%。受季風氣候的影響,各地的降水量年內分配極不均勻,大部分地區每年汛期4個月的降水量佔全年降水總量的70%左右,很容易形成春旱夏澇。水資源在時間和空間分布上不平衡給水資源充分利用帶來了一定的難度。

1.3水資源浪費嚴重

我國一方面水資源嚴重短缺,另一方面卻浪費嚴重。長期以來,「以需定供」的水資源非可持續利用模式是造成水資源短缺的人為原因。盲目發展第一、第二產業,特別是片面追求糧食增產和重工業的發展,造成產業結構的不合理,水資源利用效率偏低,使本來就緊缺的水資源問題更加嚴重。

目前,我國農田灌溉面積中渠灌面積佔75%左右,而渠系損失約為50%,農田蒸發損失約為17%,實際利用量僅有33%左右。由於大多數地方採用傳統的灌溉模式,每畝實際灌水量達到450~500m3,超過了實際需水量的1倍左右,浪費極為嚴重。我國主要依靠降水的旱作耕地面積約12億畝,其中70%分布在降水量250~600mm的北方地區,由於蓄水和保水等基礎設施不足,農田對自然降水的利用率僅為56%左右。按最新統計估算,我國農田灌溉用水的利用率僅有1.0kg/m3,旱作耕地的水分利用效率為0.60~0.75kg/m3,全國農業用水的平均效率為0.8kg/m3,綜合經濟效益為0.2美元/m3,而以色列已超過1美元/m3,差距十分明顯。現階段我國農業水資源利用不符合水資源可持續利用的要求。

我國工業用水效率總體水平仍然較低,2001年我國萬元工業產值取水量為90m3,約為發達國家的3~7倍;工業用水重復利用率約為52%,遠低於發達國家80%的水平。2000年全國城市人均生活用水量達220.2L/d,遠高於發達國家的人均生活用水量。社會各界的水憂意識不強,浪費水資源的現象仍很嚴重,這說明節水措施尚未有效落實,節約用水的技術和管理水平不高。近十年來,我國根據經濟可持續發展戰略對經濟結構調整雖已初見成效,但水資源消耗利用模式尚未發生實質性變化。

1.4水污染形勢嚴峻

目前我國污水處理率還較低,大量的城市和生活污水未經處理直接排入江河湖庫水域,使全國大部分水域和近50%的重點城鎮的集中飲用水水源受到不同程度的污染,其中水污染比較嚴重的城鎮98個,主要分布在三河三湖流域。由於水污染一些水源被迫停止使用,尋找新的水源,從而加劇了城市缺水。水污染還影響到供水水質,損害居民的身體健康。目前,全國水土流失面積356km2,占國土面積的37%。全國地下水多年平均超采74億,已形成164個地下水超采區,部分地區出現地面沉降,海水入侵等問題。許多重要河流、湖泊污染嚴重,由於污染而引發的水事矛盾不斷增加。水污染嚴重影響我國的水資源可持續利用,影響我國經濟社會的可持續發展。

2實現我國水資源可持續利用應採取的措施

我國政府十分重視水資源可持續利用,明確指出:水資源可持續利用是我國經濟社會發展的戰略問題。多年來,針對我國水資源特點和水資源利用中存在的問題,採取了一系列措施來保證水資源的可持續利用。

2.1合理利用水資源

我國水資源可持續利用的根本出路在於堅持可持續發展戰略,變「以需定供」的傳統開發模式為「量水而行、以水定需」的水資源可持續利用的模式。立足於可利用水資源的保護和合理利用,根據水資源承載能力,確定經濟社會發展結構,確保各種水域的可持續利用,對經濟結構進行戰略調整,在水資源充裕和緊缺地區採用不同的經濟結構。大力發展節水、省能、高附加值的高新技術產業和服務業。根據我國水資源的時空分布特點合理發展農業,採取必要的退耕還林,使生態系統得到改善,保證水資源的供需平衡。

2.2合理調配水資源

根據我國降水年內分布不均的特點,應修建大量的蓄水設施,以充分利用水資源。目前,全國共建水庫8.5萬座,使年供水能力大大提高。蓄水設施一方面能將雨季多餘降水貯存起來,供乾旱季節使用。另一方面可以減少洪水災害,保證經濟的發展。在地域上,我國的水資源南多北少,南方水資源充裕,北方水資源嚴重不足。南水北調工程是解決我國北方地區水資源缺水矛盾,實現水資源合理配置的重大戰略工程。南水北調東、中、西三條線路將與長江、黃河和海河相互聯接,形成水資源合理配置的總體格局,達到南北調配、東西互濟的水資源配置目標。三條調水線路年調水總量380億~480億m3,可基本改變我國黃淮海地區水資源嚴重短缺的狀況,保證我國水資源總體上可持續利用。

2.3大力開展節水工作

我國歷來重視節約用水工作,20多年前,國家就提出了要實行開源與節流並重的方針,認真開展了節約用水工作,並制定了一系列節約用水的法規和標准,建立了節約用水的管理制度,也形成了比較健全的管理體制,城市節約用水工作取得了一定的成績,到2000年全國設市城市累計節約用水300多億m3,使近5年來城市用水總量基本無增長,改變了城市用水量隨經濟發展同步增長的趨勢。但是,目前我國農業用水利用率還較低、工業萬元產值用水量和城市居民日平均用水量還較高,節水的潛力還較大。在農業方面,應發展和推廣農業節水技術,減少農田的深層滲漏和地表流失量,減少單位面積的用水量,減少田間和輸水過程中的蒸發和蒸騰量,提高灌溉和降水的水分利用效率,不斷提高單位水資源的產量和效益。在工業節水方面,應在調整工業生產結構的同時,改進生產工藝,提高用水重復率,減少萬元工業產值的用水量。為了保證節水工作,要制定和完善相關的政策法規,建立一套符合市場經濟原則的體制和機制,對現有水價偏低進行改革,建立水資源的宏觀控制和微觀定額體系,形成總量控制與定額管理相結合的水資源管理體制。

2.4大力發展污水處理和再生回用工作

水污染加劇了我國水資源短缺形勢,直接威脅著飲用水的安全和人民的健康,影響到工農業生產和農作物安全,造成的經濟損失約為國民生產總值的1.5%~3%。水污染已成為不亞於洪災、旱災甚至更為嚴重的災害。水污染早在20世紀70年代已經顯現出來,但沒有引起足夠的注意,採取的措施不夠恰當有力,因此出現了今天的嚴重局面。如再不及時採取有效對策,將嚴重影響我國水資源可持續利用。長期以來採用的以末端治理、達標排放為主的工業污染控制戰略,已被國內外經驗證明是耗資大、效果差、不符合可持續發展的戰略。應大力推行以清潔生產為代表的污染預防戰略,淘汰物耗能耗高、用水量大、技術落後的產品和工藝,在工業生產過程中提高水資源利用率,削減污染排放量。對於工業和城市生活排水造成的點源污染,應大力發展污水處理工程,使我國的污水處理率在2000年34.3%的基礎上進一步提高。對於面污染源包括各種無組織、大面積排放的污染源,如含化肥、農葯的農田徑流,畜禽養殖業排放的廢水、廢物等,其控制應與生態農業、生態農村的建設相結合,通過合理使用化肥、農葯以及充分利用農村各種廢棄物和畜禽養殖業的廢水,將面源污染減少至最小。應積極開展污水資源化再利用工作,提高污水再生回用率。

3污水再生回用是實現水資源可持續利用的有效途徑

污水再生回用是經濟可靠的開源節流措施,與跨流域調水、海水淡化、雨水蓄用等開源措施相比,污水再生回用具有經濟性和可靠性。人類使用過的水,污染雜質只佔0.1%左右,比海水3.5%少得多,其餘絕大部分是可再用的清水。跨流域調水和雨水蓄用工程投資較大,並需投入大量資金控制水體進一步污染,跨流域調水還會對現有的生態系統產生影響。在我國現有經濟條件下,跨流域調水和雨水蓄用只能逐步進行。污水再生回用的本質是實行循環用水和分質用水,將污水經再生後回用到水質要求較低的用戶。隨著工業化的加速發展,人們生活水平不斷提高,水污染范圍也在擴大、污染程度加深,社會經濟發展和環境污染之間形成一對尖銳的矛盾。發展污水再生回用、減少廢水排放量是解決環境問題最有力的措施。另外,為滿足用戶的需要,再生水必須符合相應的水質標准,為此,需對污水處理廠二級出水進行深度處理,從而減少了污染物總量,減輕了廢水對環境的壓力。

污水再生回用應嚴格按回用對象和目的控制回用水水質,以確保回用水的安全性。為此,我國制定了一系列相關回用標准。如生活污水經二級處理後能夠達到《污水綜合排放標准》,但不能作為生活雜用水或工農業用水;若考慮回用,必須進一步處理。當污水回用於農田灌溉,水質指標應該滿足《農田灌溉水水質標准》;當污水回用於城市景觀,水質指標應該滿足《再生水回用於景觀水體的水質標准》;當污水回用於城市生活雜用,水質指標應該達到《生活雜用水水質標准》;工業污水回用水質指標應該滿足相應的工業用水標准等。

城市供水量的80%變為污水排入城市下水道,收集起來再生處理後,70%可以安全回用;二者合計,約城市供水量的56%可以轉變成再生水,返回到城市水質要求較低的用戶,替換出等量的清潔水,相應地增加城市一半以上的供水量。廢水是一種非常寶貴的資源,挖潛能力巨大。我國2000年全國污水排放量為620m3,這是很大的再生水資源。污水再生回用立足於自有水資源增加城市供水量,是實現水資源持續利用的有效措施。污水再生回用能有效地緩解城市水資源短缺。

為了保證水資源可持續利用,支持經濟可持續發展,針對我國水資源存在的問題,近十多年來,通過國家科技攻關,以及缺水城市為解決水污染和水資源短缺做出的努力,國內已經建成一批不同工藝、不同回用對象的城市污水回用示範工程。表1列出了華北地區部分城市污水回用工程情況統計結果。目前我國污水回用工程主要回用對象為污水處理廠內部用水、市政雜用、河道補水、綠化、工業用水等,尚未回用於地下回灌和飲用水源。北京市2001年完成的高碑店污水處理廠出水回用工程是我國目前最大的污水再生回用工程。大量的污水回用工程實踐表明:污水再生回用是解決水資源可持續利用的有效途徑。

表1華北地區部分城市污水回用情況單位:萬m3/d

4我國污水再生回用最大工程

4.1工程概況

高碑店污水處理廠回用工程是目前我國最大污水再生回用工程,該工程於1999年3月至8月完成該項目的前期研究工作,並完成了可行性研究,1999年10月完成項目立項和審批;2000年1月完成該工程的初步設計和審批工作,2月完成施工圖設計,同年4月開始施工,2001年5月完成工程施工,2001年6月完成調試和試運轉,2001年7月開始供水。

高碑店污水處理廠是目前我國最大的污水處理廠,處理能力為100萬m3/d。該廠污水系統流域面積96km2,服務人口240萬人,匯集北京市南部城區的大部分生活污水、東郊工業區、使館區和化工路的全部污水。該處理廠採用前置缺氧段活性污泥法工藝,即在推流式曝氣池前設置缺氧段,其目的是改善污泥性質,防止污泥膨脹。該廠出水水質水量穩定,其二級出水已接近相關的回用水水質標准。但該回用工程運轉前,高碑店污水處理廠二級出水直接排入通惠河下游,除每年約5500萬m3用於農業灌溉外,剩餘的出水每年超過3億m3沒有得到利用,這是很大的水資源浪費。為了緩解北京市面臨的21世紀城市發展和可利用水資源的矛盾,實現北京市水資源可持續利用,支持國民經濟可持續發展戰略,北京市政府決定開發該廠污水資源。高碑店污水處理廠回用工程使用回用水的區域達141km2,回用水用戶涉及到工業、公園綠化、道路噴灑和沖刷、河湖補水等。

4.2工程規模和技術方案

本工程近期規模為30萬m3/d,遠期規模為47萬m3/d。在回用工程技術方案確定中盡可能地利用現有設施,以降低工程投資。具體設計方案如下:高碑店污水處理廠二沉池出水經新建泵站(規模47萬m3/d)提升後用兩條管道分別輸送到高碑店湖(規模30萬m3/d)和水源六廠(規模17萬m3/d)。送至高碑店湖的處理水通過第一熱電廠現有深度處理設施進一步處理後供該廠冷卻用水;送至水源六廠的處理水在該廠進行深度處理後,一部分通過水源六廠現有供水系統供給東郊工業區和焦化廠;一部分通過新建管道輸送到西便門和東便門。在水源六廠現有供水管道和新建管道沿線設取水口,並新建回用水支線,供市政雜用取水。

4.3回用水水質技術保障措施

由於高碑店污水處理廠建設時,國家對城市污水處理廠出水要求中還沒有氮和磷的指標控制,因此,目前該廠出水中氮和磷的含量較高,這會直接影響回用水水質,必須對該廠進行技術改造,進一步提高該廠出水水質。改造規模為50萬m3/d,即對高碑店污水處理廠一期工程(50萬m3/d)進行改造。該改造工程分兩步進行。第一步改造後使出水水質優於目前第一熱電廠冷卻水取水水源高碑店湖的水質,出水中BOD、COD、總磷和氨氮分別達到10mg/L、40mg/L、1mg/L和10mg/L。第二步改造使該廠50萬m3/d滿足高碑店湖Ⅳ類水體的水質要求。第一步主要改造工作量包括曝氣池改造和污泥處理系統的改造。原曝氣池為1/12為厭氧區,其餘為好氧區,改造後原池2/9為缺氧區及厭氧區(水力停留時間共為2h),其中進水端分出一停留時間為15min的強化吸附區。其餘仍為好氧區(水力停留時間7.25h)。原污泥系統中剩餘污泥泵入初沉池,其混合污泥再進污泥濃縮池濃縮後消化脫水,因濃縮污泥池停留時間較長,處於厭氧狀態,磷又被釋放出來,通過上清液回到污水中,因此達不到除磷的目的。改造後,原有濃縮池改為濃縮酸化池,濃縮酸化池上清液做為碳源排入水處理系統;將消化池上清液和脫水機濾液及沖洗水收集後進行化學除磷。

高碑店污水處理廠二級出水水質水量穩定,達到設計要求,但還不能滿足市政雜用水標准,而綠化用水和道路噴灑等市政雜用水水質對人類健康和城市環境會產生影響,因此,市政雜用水必須在回用前進行深度處理,以滿足相應標准。在設計中將深度處理選擇在水源六廠。水源六廠現有日處理能力17萬m3/d的深度處理設施,主要採用機械加速澄清、砂濾和消毒等工藝處理過程,其出水可滿足相應用戶要求。由於北京市工業結構的調整,目前該廠平均實際供水量不足5萬m3/d,尚有12萬m3/d處理能力沒有得到利用。另外,水源六廠離市政雜用水用戶較近,市政雜用水深度處理設在水源六廠利用其剩餘處理能力,可滿足市政雜用水近、遠期規模需求,在該廠深度處理後的水質能滿足市政雜用水水質要求。

4.4主要回用對象

按規劃要求,該工程近期供北京市第一熱電廠冷卻循環用水20萬m3/d,遠期供北京市第一熱電廠冷卻循環用水30萬m3/d。近期通過北京市水源六廠供東郊工業區和焦化廠5萬m3/d,供城市綠化、道路噴灑和沖刷、市區河道景觀用水等市政雜用水共5萬m3/d。遠期通過水源六廠供工業和市政雜用水水量將擴充到17萬m3/d。

4.5主要工程內容和投資

本工程總投資3.6億元,其中征地拆遷費約1億元,工程費用為2.18億元,工程建設內容主要為:

(1)高碑店污水處理廠內47萬m3/d的泵站一座。

(2)高碑店污水處理廠改造。

(3)高碑店污水處理廠至高碑店湖輸水管:DN1800mm,長1480m。

(4)高碑店污水處理廠至水源六廠管道:DN1400mm,長4766m。

(5)市政雜用水配水管:DN1200mm,長6791m;DN1000mm,長1431m;DN800mm,長4615m;DN600mm,長2845m;D=500mm,長2880m。

(6)水源六廠改造:包括深度處理設施改造、蓄水池清淤和護砌、污泥池擴建、供水泵站改造、進出水口的改造、增加自控和電氣設備等。

(7)園林供水支線管道。

4.6工程效益

該工程每年可節約清潔水資源16673萬m3,節約自來水3650萬m3/a,相當於節約了建設一座10萬m3/d的自來水廠的投資4億元。該工程達到了開源節流的目的,為北京市城市綠化面積擴大和道路噴灑壓塵創造條件,對環境綜合治理具有較大的作用,環境的改善還會帶來了周圍地區的土地增值。該工程在一定程度上緩解了北京市水資源短缺的矛盾。該工程的巨大經濟和環境效益,推動了北京市節水和污水再生回用工作。目前北京已完成污水再生回用規劃,7個污水回用工程正在進行施工或做前期工作。北京市的污水再生回用實踐表明:污水再生回用符合環境保護和水資源可持續利用戰略,是解決水資源可持續利用的有效途徑。

5結論

我國是一個水資源貧乏的國家,隨著經濟發展和城市化進展的加快,水資源短缺的矛盾已經成為我國水資源可持續利用和管理中亟待解決的問題。我國水資源可持續利用面臨水資源總量不足、分布不均、水利用率低和水污染等問題,實現我國水資源可持續利用的出路在於堅持可持續發展戰略。應根據我國水資源特點進行水資源合理利用和配置,變「以需定供」的傳統開發模式為量水而行、以水定需的水資源可持續利用的模式,根據水資源承載能力,對經濟結構進行戰略調整;同時,應繼續發展節水技術,減少生產過程的水資源浪費,大力發展污水處理和再生回用工作,提高污水處理率和處理效果。污水再生回用可以減少污染物總量,增加供水能力,是經濟可靠的開源節流措施。幾年來污水再生回用實踐表明:污水再生回用能有效地緩解城市水資源短缺,是實現水資源可持續利用的有效途徑。

閱讀全文

與濃縮池上清液回用問題相關的資料

熱點內容
沁園凈水器哪個是廢水口 瀏覽:38
水上蒸餾去水用什麼 瀏覽:926
n2濾芯有什麼區別 瀏覽:82
山東四象限提升專用變頻器 瀏覽:308
怎麼樣去除污水中的油 瀏覽:961
濱州安裝提升泵師傅電話 瀏覽:67
洗浴中心排污水都有什麼辦法 瀏覽:267
陽台廢水和屋面雨水能否並管 瀏覽:718
廢水比300cc怎麼調節 瀏覽:428
水處理用還原劑 瀏覽:903
超濾設備報價值得信賴 瀏覽:22
隨州市隨縣鄉鎮污水ppp 瀏覽:184
別克英朗空調濾芯什麼時候換 瀏覽:934
強酸性陽離子交換容量測定 瀏覽:47
飲水機養魚開口漏水怎麼辦 瀏覽:941
江蘇徐礦電廠廢水處理 瀏覽:252
農村污水處理 瀏覽:860
做PVC熱收縮膜用幾型樹脂好 瀏覽:192
污水管水力怎麼計算 瀏覽:990
凈水器儲水罐怎麼增大水壓 瀏覽:491