A. 氨基酸廢水處理採用什麼成熟工藝
目前,對於氨基酸廢水處理,國內外尚無成熟的可以普遍推廣的處理工藝。
國家主要採用強氧化預處理工藝和稀釋好氧生化處理工藝。此類處理工藝的處理效率可靠,但運行費用高昂。一些常規的物化工藝也經常被應用在醫葯行業的廢水處理中,例如混凝沉澱工藝、電解工藝、化學氧化工藝。生物處理普遍採用厭氧水解工藝和好氧處理工藝,但對於不同類型的廢水處理效果差別很大。宜昌某制葯有限公司生產氨基酸原料所排放的氨基酸廢水屬高濃度酸性有機廢水,廢水BOD5/CODcr=0.57,屬於可生化性較好的工業廢水。可以採用水解酸化、二級好氧生物處理及深度處理工藝。經工藝比選論證,確定廢水處理工藝為:進水→細格柵→調節池→一沉池→水解酸化池→CASS池→渦凹氣浮器→配水井→曝氣生物濾池→二沉池→出水。對氨基酸醫葯廢水的物化處理進行了混凝試驗研究。通過混凝試驗確定了有機與無機混凝劑混配的用量:聚合硫酸鐵(PFS)為200mg/L,聚丙烯醯胺(PAM)用量為3mg/L。廢水處理站設計進水水量4000m3/d,進水CODcr為14000mg/L,BOD5為8000mg/L,SS濃度6700mg/L,NH3-N為890mg/L,出水CODcr為95.3mg/L,BOD5為32.8mg/L,SS為35.1mg/L,NH3-N為18.3mg/L,出水指標達到國家《發酵類制葯工業水污染物排放標准》(GB21903-2008)水污染物排放標准。宜昌某制葯有限公司氨基酸醫葯廢水處理工程所採用的處理工藝可為同類生產廢水的處理提供參考。
B. 一套氨氮污水處理需花費多少錢
我做過的項目的參考數據:
加設你這個污水沒有有機氮的物質(氨基酸、蛋白質),因為有機氮可以分解成為氨氮。
按照國內一般水平給你參考,不用進口設備和全自動化管理之類的。
一、高濃度和極高濃度的項目(氨氮>400mg/L):
南方地區(忽略冬季影響,冬季再需要准備些蒸汽設備的費用。)
①採用脫氮塔:2012年報價80萬一套的脫氮吹脫塔大約可以處理每天600噸的高濃度氨氮廢水,濃度在1000以上甚至到幾萬都是這個價格,能夠處理到氨氮<200。成本5~10元左右
②採用高效脫氮塔(廣州氨氮公司陳平教授的設備)設備,每天100~200噸項目,需要200萬元,濃度同上,成本2~5元/噸。北方冬季蒸汽用的很少。
應用領域是石化裂解、滲濾液、焦化蒸氨之類的廢水。
土建單算,就是一些必須用的池子,大約噸水投資再加500~1000元就夠了。
二、中低濃度(氨氮在40~400mg/L)
採用傳統技術多是生化法,水溫較低時(小於15℃)沒效果,每天一千噸廢水的噸水投資在3000~8000元/噸之間。處理目標是5~15mg/L之間。如果純粹是氨氮廢水,則需要結合BOD、TP數據才能合理設計出來。
三、超低濃度氨氮深度處理(氨氮10~40之間),採用普通市政污水處理工藝或者土地處理法,每天一千噸廢水的噸水投資在1000~3000元/噸之間。處理目標是穩定<5mg/L之間。
如果你能把水質情況,應用領域,污水緯度氣溫水溫等因素說清楚,我能給你一個准確的數據。市面上環保公司報價差異很大,能差出2~5倍,當然質量也能差的很多。
看你需求了,是要省錢還是要省心。一分錢一分貨,你做這些事情要明確自己的需求,就跟買車似的,都是開車,價格差很多很正常。
C. 廢水處理營養鹽加在預酸化池前後原因是
營養鹽應添加於酸化池前,因厭氧工藝要求 C: N :P= (350-500):5:1;
其反應機理:
水解階段——被細菌胞外酶分解成小分子。例如:纖維素被纖維酶水解為纖維二糖和葡萄糖,澱粉被澱粉酶分解為麥牙糖和葡萄糖,蛋白質被蛋白酶水解為短肽和氨基酸等,這些小分子的水解產物能被溶解於水,並透過細胞為細胞所利用。
發酵階段——小分子的化合物在發酵菌(即酸化菌)的細胞內轉化為更為簡單的化合物,並分泌到細胞外。這一階段主要產物為揮發性脂肪酸(VFA)醇類、乳酸、CO2、氫、氨、硫化氫等。
產酸階段——上一階段產物被進一步轉化為乙酸、氫、碳酸以及新的細胞物質。
產甲烷階段——在這一階段乙酸、氫、碳酸、甲酸和甲醇等被轉化為甲烷、二氧化碳和新細胞物質。
D. 高氨氮廢水的最佳處理方式
1 物化法 1.1 吹脫法在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與濕度、PH、氣液比有關。 1.2 沸石脫氨法利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。 1.3 膜分離技術利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。 1.4MAP沉澱法主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4 理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。 1.5 化學氧化法利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。 2 生物脫氮法傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。 2.1A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
E. 氨氮廢水處理的處理方法
高氨氮廢水如何處理,我們著重介紹一下其處理方法: 1. 吹脫法
在鹼性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法,一般認為吹脫與溫度、PH、氣液比有關。
2. 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。採用焚燒法時,產生的氨氣必須進行處理。
3.膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。例如:氣水分離膜脫除氨氮。氨氮在水中存在著離解平衡,隨著PH升高,氨在水中NH3形態比例升高,在一定溫度和壓力下,NH3的氣態和液態兩項達到平衡。根據化學平衡移動的原理即呂.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相對的和暫時的。化學平衡只是在一定條件下才能保持「假若改變平衡系統的條件之一,如濃度、壓力或溫度,平衡就向能減弱這個改變的方向移動。」遵從這一原理進行了如下設計理念在膜的一側是高濃度氨氮廢水,另一側是酸性水溶液或水。當左側溫度T1>20℃,PH1>9,P1>P2保持一定的壓力差,那麼廢水中的游離氨NH4+,就變為氨分子NH3,並經原料液側介面擴散至膜表面,在膜表面分壓差的作用下,穿越膜孔,進入吸收液,迅速與酸性溶液中的H+反應生成銨鹽。
4.MAP沉澱法
主要是利用以下化學反應:Mg2++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×10–13時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。
5.化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。 傳統和新開發的脫氮工藝有A/O,兩段活性污泥法、強氧化好氧生物處理、短程硝化反硝化、超聲吹脫處理氨氮法方法等。
1.A/O工藝將前段缺氧段和後段好氧段串聯在一起,A段DO不大於0.2mg/L,O段DO=2~4mg/L。在缺氧段異養菌將污水中的澱粉、纖維、碳水化合物等懸浮污染物和可溶性有機物水解為有機酸,使大分子有機物分解為小分子有機物,不溶性的有機物轉化成可溶性有機物,當這些經缺氧水解的產物進入好氧池進行好氧處理時,提高污水的可生化性,提高氧的效率;在缺氧段異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)游離出氨(NH3、NH4+),在充足供氧條件下,自養菌的硝化作用將NH3-N(NH4+)氧化為NO3-,通過迴流控制返回至A池,在缺氧條件下,異氧菌的反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。其特點是缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷,反硝化反應產生的鹼度可以補償好氧池中進行硝化反應對鹼度的需求。好氧在缺氧池之後,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮除磷效果稍差,脫氮效率70~80%,除磷只有20~30%。盡管如此,由於A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍採用的工藝。
2.兩段活性污泥法能有效的去除有機物和氨氮,其中第二級處於延時曝氣階段,停留時間在36小時左右,污水濃度在2g/l以下,可以不排泥或少排泥從而降低污泥處理費用。
3.強氧化好氧生物處理其典型代表有粉末活性炭法(PACT工藝)
粉末活性碳法的主要特點是向曝氣池中投加粉末活性炭(PAC)利用粉末活性炭極為發達的微孔結構和更大的吸附能力,使溶解氧和營養物質在其表面富集,為吸附在PAC 上的微生物提供良好的生活環境從而提高有機物的降解速率。
近年來國內外出現了一些全新的脫氮工藝,為高濃度氨氮廢水的脫氮處理提供了新的途徑。主要有短程硝化反硝化、好氧反硝化和厭氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式,是去除水中氨氮的一種較為經濟的方法,其原理就是模擬自然生態環境中氮的循環,利用硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。由於氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化是將氨氮氧化控制在亞硝化階段,然後進行反硝化,省去了傳統生物脫氮中由亞硝酸鹽氧化成硝酸鹽,再還原成亞硝酸鹽兩個環節(即將氨氮氧化至亞硝酸鹽氮即進行反硝化)。該技術具有很大的優勢:①節省25%氧供應量,降低能耗;②減少40%的碳源,在C/N較低的情況下實現反硝化脫氮;③縮短反應歷程,節省50%的反硝化池容積;④降低污泥產量,硝化過程可少產污泥33%~35%左右,反硝化階段少產污泥55%左右。實現短程硝化反硝化生物脫氮技術的關鍵就是將硝化控制在亞硝酸階段,阻止亞硝酸鹽的進一步氧化。
5. 厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。
厭氧氨氧化(Anaerobicammoniaoxidation,簡稱ANAMMOX)是指在厭氧條件下,以Planctomycetalessp為代表的微生物直接以NH4+為電子供體,以NO2-或NO3-為電子受體,將NH4+、NO2-或NO3-轉變成N2的生物氧化過程。該過程利用獨特的生物機體以硝酸鹽作為電子供體把氨氮轉化為N2,最大限度的實現了N的循環厭氧硝化,這種耦合的過程對於從厭氧硝化的廢水中脫氮具有很好的前景,對於高氨氮低COD的污水由於硝酸鹽的部分氧化,大大節省了能源。目前推測厭氧氨氧化有多種途徑。其中一種是羥氨和亞硝酸鹽生成N2O的反應,而N2O可以進一步轉化為氮氣,氨被氧化為羥氨。另一種是氨和羥氨反應生成聯氨,聯氨被轉化成氮氣並生成4個還原性[H],還原性[H]被傳遞到亞硝酸還原系統形成羥氨。第三種是:一方面亞硝酸被還原為NO,NO被還原為N2O,N2O再被還原成N2;另一方面,NH4+被氧化為NH2OH,NH2OH經N2H4,N2H2被轉化為N2。厭氧氨氧化工藝的優點:可以大幅度地降低硝化反應的充氧能耗;免去反硝化反應的外源電子供體;可節省傳統硝化反硝化反應過程中所需的中和試劑;產生的污泥量極少。厭氧氨氧化的不足之處是:到目前為止,厭氧氨氧化的反應機理、參與菌種和各項操作參數不明確。
全程自養脫氮的全過程實在一個反應器中完成,其機理尚不清楚。Hippen等人發現在限制溶解氧(DO濃度為0.8·1.0mg/l)和不加有機碳源的情況下,有超過60%的氨氮轉化成N2而得以去除。同時Helmer等通過實驗證明在低DO濃度下,細菌以亞硝酸根離子為電子受體,以銨根離子為電子供體,最終產物為氮氣。有實驗用熒光原位雜交技術監測全程自養脫氮反應器中的微生物,發現在反應器處於穩定階段時即使在限制曝氣的情況下,反應器中任然存在有活性的厭氧氨氧化菌,不存在硝化菌。有85%的氨氮轉化為氮氣。鑒於以上理論,全程自養脫氮可能包括兩步第一是將部分氨氮氧化為煙硝酸鹽,第二是厭氧氨氧化。
6. 好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
7.超聲吹脫處理氨氮
超聲吹脫法去除氨氮是一種新型、高效的高濃度氨氮廢水處理技術,它是在傳統的吹脫方法的基礎上,引入超聲波輻射廢水處理技術,將超聲波和吹脫技術聯用而衍生出來的一種處理氨氮的方法。將這兩種方法聯用不僅改進了超聲波處理廢水成本較高的問題,也彌補了傳統吹脫技術去除氨氮不佳的缺陷,超生吹脫法在保證處理氨氮的效果的同時還能對廢水中有機物的降解起到一定的提高作用。技術特點(1)高濃度氨氮廢水採用90年代高新技術——超聲波脫氮技術,其總脫氮效率在70~90%,不需要投加化學葯劑,不需要加溫,處理費用低,處理效果穩定。(2)生化處理採用周期性活性污泥法(CASS)工藝,建設費用低,具有獨特的生物脫氮功能,處理費用低,處理效果穩定,耐負荷沖擊能力強,不產生污泥膨脹現象,脫氮效率大於90%,確保氨氮達標。
F. 廢水厭氧生物處理的原理
1. 在厭氧處理過程中,廢水中的有機物被大量微生物共同作用,最終轉化為甲烷、二氧化碳、水、硫化氫和氨等。這一過程中,不同微生物的代謝過程相互影響,相互制約,形成了復雜的生態系統。
2. 高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
3. 水解階段是指復雜的非溶解性聚合物被轉化為簡單的溶解性單體或二聚體的過程。高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能被細菌直接利用。它們在第一階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,因此被認為是含高分子有機物或懸浮物廢液厭氧降解的限速階段。多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。水解速度的可由以下動力學方程加以描述:ρ=ρo/(1+Kh.T)ρ ——可降解的非溶解性底物濃度(g/L);ρo———非溶解性底物的初始濃度(g/L);Kh——水解常數(d^-1);T——停留時間(d)。
4. 發酵(或酸化)階段是指有機物化合物既作為電子受體也是電子遲差供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。在這一階段,上述小分子的化合物發酵細菌(即酸仿此化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護像甲烷菌這樣的嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此,未酸化廢水厭氧處理時產生更多的剩餘污泥。在厭氧降解過程中,酸化細菌對酸的耐受力必須加以考慮。酸化過程pH下降到4時能可以進行。但是產甲烷過程pH值的范圍在6.5~7.5之間,因此pH值的下降將會減少甲烷的生成和氫的消耗,並進一步引起酸化末端產物組成的改變。
5. 產乙酸階段是指在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。其某些反應式如下:CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG』0=-4.2KJ/MOL;CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG』0=9.6KJ/MOL;CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG』0=48.1KJ/MOL;CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG』0=76.1KJ/MOL;4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG』0=-2.9KJ/MOL;2HCO3-+4H2+H+->CH3COO-+4H2O ΔG』0=-70.3KJ/MOL。
6. 甲烷階段是指乙酸、氫氣、碳酸、甲酸和備旦迅甲醇被轉化為甲烷、二氧化碳和新的細胞物質。甲烷細菌將乙酸、乙酸鹽、二氧化碳和氫氣等轉化為甲烷的過程有兩種生理上不同的產甲烷菌完成,一組把氫和二氧化碳轉化成甲烷,另一組從乙酸或乙酸鹽脫羧產生甲烷,前者約占總量的1/3,後者約佔2/3。最主要的產甲烷過程反應有:CH3COO-+H2O->CH4+HCO3- ΔG』0=-31.0KJ/MOL;HCO3-+H++4H2->CH4+3H2O ΔG』0=-135.6KJ/MOL;4CH3OH->3CH4+CO2+2H2O ΔG』0=-312KJ/MOL;4HCOO-+2H+->CH4+CO2+2HCO3- ΔG』0=-32.9KJ/MOL。
7. 在甲烷的形成過程中,主要的中間產物是甲基輔酶M(CH3-S-CH2-SO3-)。需要指出的是:一些書把厭氧消化過程分為三個階段,把第一、第二階段合為一個階段,稱為水解酸化階段。在這里我們則認為分為四個階段能更清楚反應厭氧消化過程。
8. 上述四個階段的反應速度依廢水的性質而異,在含纖維素、半纖維素、果膠和脂類等污染物為主的廢水中,水解易成為速度限制步驟;簡單的糖類、澱粉、氨基酸和一般蛋白質均能被微生物迅速分解,對含這類有機物的廢水,產甲烷易成為限速階段。
9. 雖然厭氧消化過程可分為以上四個過程,但是在厭氧反應器中,四個階段是同時進行的,並保持某種程度的動態平衡。該平衡一旦被pH值、溫度、有機負荷等外加因素所破壞,則首先將使產甲烷階段受到抑制,其結果會導致低級脂肪酸的積存和厭氧進程的異常變化,甚至導致整個消化過程停滯。