一個是反滲透壓脫鹽
一個是離子交換法脫鹽
反滲透:RO(Reverse Osmosis)反滲透技術是利用壓力表差為動力的膜分離過濾技術。反滲透法通常又稱超過濾法,反滲透膜屬新材料范疇,是一種用高分子化學材料特殊加工製成的、具有半透性能的薄膜。它能夠在外加壓力作用下使水溶液中的某些組分選擇性透過,從而達到淡化、凈化或濃縮分離的目的。反滲透法的最大優點是整個過程中無水相變化,能耗較少,而且設備投資省、建設周期短。它的能耗僅為電滲析法的1/2,蒸餾法的1/40。反滲透海水淡化的技術關鍵在於反滲透膜、高壓泵、能量回收裝置和系統優化設計技術。
反滲透特點
1、分離介質:分子擴散膜,也稱半透膜。
2、截留因素:水溶液的滲透壓和濃度。
3、分離對象:分子態和離子態溶解物。
RO反滲透膜孔徑小至納米級(1納米=10-9米),在一定的壓力下,H2O分子可以通過RO
以離子交換劑上的可交換離子與液相中離子間發生交換為基礎的分離方法。廣泛採用人工合成的離子交換樹脂作為離子交換劑,它是具有網狀結構和可電離的活性基團的難溶性高分子電解質。根據樹脂骨架上的活性基團的不同,可分為陽離子交換樹脂、陰離子交換樹脂、兩性離子交換樹脂、螯合樹脂和氧化還原樹脂等。用於離子交換分離的樹脂要求具有不溶性、一定的交聯度和溶脹作用,而且交換容量和穩定性要高。
離子交換反應是可逆的,而且等當量地進行。由實驗得知,常溫下稀溶液中陽離子交換勢隨離子電荷的增高,半徑的增大而增大;高分子量的有機離子及金屬絡合陰離子具有很高的交換勢。高極化度的離子如Ag+、Tl+等也有高的交換勢。離子交換速度隨樹脂交聯度的增大而降低,隨顆粒的減小而增大。溫度增高,濃度增大,交換反應速率也增快。
離子交換分離廣泛用於:①水的軟化、高純水的制備、環境廢水的凈化。②溶液和物質的純化,如鈾的提取和純化。③金屬離子的分離、痕量離子的富集及干擾離子的除去。④抗菌素的提取和純化等
Ⅱ 電廠化學水處理流程是什麼對進水水質有些什麼要求
一級除鹽是陰床+陽床的最簡單除鹽系統,除鹽效果不徹底,30萬和以上機組用這水就是找死。電導率能達到10us/cm。二級除鹽是陰床+陽床+混床的系統,為啥有了混床還要陰陽床,那是因為作為前置預處理線除掉一部分離子,不然混床工作壓力很大,再生頻繁。混床出水能達到電導率0.1us/cm.以上倆個是制除鹽水的系統, 機械過濾器活性炭過濾器除碳器什麼酒沒說了,反正都得有。除鹽水是往鍋爐補水用的。精處理用的是高速混床,對鍋爐水進行精處理,除去管道等造成的水中溶解鐵、雜質等等。
Ⅲ 電廠化學水處理
1 化學廢水集中處理現狀
電廠的化學廢水有經常性廢水和非經常性廢水兩部分,2×600 MW機組的廢水排放量如表1所示。
表1 化學廢水排放量
500)this.style.width=500;" onmousewheel="return bbimg(this)">screen.width-333)this.width=screen.width-333" border=0>
由表1可知全廠廢水排放量約為經常性:(24+80)t/h(連續),非經常性:22000 t/a(平均)
1.1 廢水處理主要流程
化學廢水→廢水貯存槽→氧化槽→反應槽→pH調整槽→混合槽→凝聚澄清池→清凈水槽(水質監控)→煤灰用水系統。
澄清池底部排泥經濃縮池濃縮後送至泥渣脫水機脫水,泥餅用汽車運到干灰場貯存。清水返回廢水貯存池。
1.2 存在問題
1.2.1 容量方面
上述流程將鍋爐酸洗廢水、鍋爐排污水、鍋爐補給水處理系統所排廢水、凝結水精處理系統廢水等全廠所有化學廢水,都集中至化學廢水集中處理站處理。這樣,集中處理系統的容量大、佔地多、造價高。
1.2.2 處理設施方面
傳統的貯存槽主要是貯存廢水,兼有部分粗調功能。但廢水的氧化、反應、pH調整和混合,分別在氧化槽、反應槽、pH調整槽和混合槽中進行。這些槽上設有各種攪拌、加酸、加鹼設施,且池內防腐、池上蓋房(或棚)。這樣,廢水處理系統流程復雜、處理設施繁多、投資大、運行管理不便。
1.3 主要設備及其技術數據
廢水貯存槽:V=1 000 m3 6座
氧化槽、反應槽、pH調整槽、混合槽:V=600 m 31套
澄清池:Q=100m3/h 2座
濃縮池:Q=20m3/h 1座
脫水機:Q=10m3/h 2台
清凈水槽:8 m×6m×3m 2座
廢水貯存池用排水泵: H=0.23MPa,Q=50m3/h 12台
葯品儲存、計量系統設備:1套
2 簡化後的化學廢水集中處理系統
2.1 處理系統主要流程
化學廢水→廢水貯存槽A→廢水貯存槽(該槽兼有貯存、氧化、反應、pH調整和混合五種功能)→凝聚澄清池→清凈水槽(水質監控)→煤灰用水系統。
澄清池底部排泥處理方法與傳統方式相同。
2.2 優點
2.2.1 容量方面
鍋爐補給水處理系統和凝結水處理系統的反沖洗水,主要是懸浮物不合乎排放標准,將其直接排入工業下水道,由工業廢水處理系統處理。
鍋爐補給水處理系統和凝結水處理系統的再生廢水,主要是pH值不合乎排放標准,此部分水就地調pH值排放。如將此部分水用泵送入化學廢水集中處理站,處理方法仍是調pH值。
鍋爐酸洗廢水、鍋爐排污水等化學廢水,因其量大、懸浮物高、pH值也不符合排放標准要求,就地處理困難大,故集中起來處理較方便。
循環水弱酸處理站廢水,含有硫酸鈣易沉物,雖然目前環保對排水的含鹽量沒有限制,但懸浮物超標不能排;另外,如只將此水就地調pH值,而不去除其中的硫酸鈣就排入自流下水道,長此以往,有污堵下水道的隱患。這部分廢水進行集中處理。通過以上劃分,系統的容量可大大減小。設計流量由100 m3/h降至80 m3/h。
2.2.2 處理設施方面
取掉了傳統廢水處理流程中的氧化槽、反應槽、pH調整槽和混合槽五種設施,以及五種設施上的各種配套設備、管道和廠房(或棚)。雖然取消了五種設施,但這五種設施的處理功能並沒取消,而是在廢水貯槽B中進行,因為傳統的貯存槽本身具有粗調水質的功能,現將其轉換成細調功能即行。
2.2.3 廢水貯存槽方面
傳統工藝的廢水儲存槽有1000 m3的池子6座。每座都設有2台耐腐蝕輸送泵、加葯管道、空氣攪拌管道、檢測裝置等。
系統簡化後貯存槽總容量從6000m3縮小為 m3,且分為A型和B型。廢水貯存槽A只有1座3000 m3的池子,廢水貯存槽B有2座1000m3的池子。
廢水貯存槽A,用來儲存廢水,並輸送廢水到廢水貯存槽B,沒有調整廢水水質的功能;這座池上只設有2台輸送泵和空氣攪拌管道,沒有加葯管道和檢測裝置。
2座廢水貯存槽B,開始用來儲存廢水,儲滿後一池用來調整(氧化、反應、pH調整和混合)廢水,另一池輸送已調整好的廢水至澄清池,兩池倒換使用;這兩池上各設有輸送泵、加葯管道、空氣攪拌管道和檢測裝置。
2.3 主要設備及其技術數據
廢水貯存槽A:V=3 000 m3 1座
廢水貯存槽B:V=1 000 m3 2座
澄清池:Q=80 m3/h 2座
濃縮池:Q=15 m3/h 1座
脫水機:Q=10 m3/h 2台
清凈水槽:6 m×6 m×3 m 2座
廢水貯存池用排水泵:H=0.23 MPa、Q=40 m3/h 6台
葯品儲存、計量系統設備: 1套
3 兩種處理方案的主要經濟指標比較
詳見表2。
表2 兩種處理方案的主要經濟指標
500)this.style.width=500;" onmousewheel="return bbimg(this)">screen.width-333)this.width=screen.width-333" border=0>
Ⅳ 關於電廠化學水處理方面的問題
你絕對是純小白……要是學電廠化學的你老師會氣死。→_→
一級除鹽是陰床+陽床的最簡單除鹽系統,除鹽效果不徹底,30萬和以上機組用這水就是找死。電導率能達到10us/cm。
二級除鹽是陰床+陽床+混床的系統,為啥有了混床還要陰陽床,那是因為作為前置預處理線除掉一部分離子,不然混床工作壓力很大,再生頻繁。混床出水能達到電導率0.1us/cm.
以上倆個是制除鹽水的系統,恩,機械過濾器活性炭過濾器除碳器什麼酒沒說了,反正都得有。除鹽水是往鍋爐補水用的。
精處理用的是高速混床,對鍋爐水進行精處理,除去管道等造成的水中溶解鐵、雜質等等。
Ⅳ 求電廠化學水處理,要要反滲透的。
反滲透的進水都有標准你都沒寫 估計還要預處理 一般在它進水的標准內都可以處理掉內99%以上的污物 很有效果 可以提取純容水 目前國內的反滲透不咋地 我們都用韓國的世韓集團的 和美國海德能的 你可以去查查資料
Ⅵ 電廠化學水處理流程
電站的水處理流程分為兩大組成部分,第一部分是物理軟化水流程,第二部分是化內學除鹽水流程。容
物理軟化水流程:來自廠區供水管網的原水(又稱生水),經過石英砂過濾器、活性炭過濾器,除去了原水中的固體顆粒和懸浮雜質,稱為澄清水;澄清水再經過反滲透裝置清除了其中大部分鈣、鎂離子,成為軟化水。
化學除鹽水流程:軟化水經過除碳器,除去水中的二氧化碳(嚴格地說是HCO3—),再經過混床,除去水中殘存的鈣、鎂、鈉、硅酸根等有害離子,成為除鹽水,也就是鍋爐補給水,存儲在除鹽水箱,再用除鹽水泵打入除氧器,最終經給水泵打入鍋爐汽包。
Ⅶ 電廠化學水處理的流程。
原水經過預處理:根據水質不同需選用不同處理設備、葯劑,混凝、軟化、澄清、過濾
然後處理合格的水再進行下一步,過濾(活性炭or機械過濾器),陽床-除碳器-陰床,混床
或者根據需要 也可以選擇RO EDI