㈠ 污水處理工藝有哪幾種
污水處理工藝:
一、不溶態污染物的分離技術:
1、重力沉降:沉砂池(平流、豎流、旋流、曝氣)、沉澱池(平流、豎流、輻流、斜流);
2、混凝澄清;
3、浮力浮上法:隔油、氣浮;
4、其他:阻力截留、離心力分離法、磁力分離法
二、污染物的生物化學轉化技術:
1、活性污泥法:SBR、A/O、A/A/O、氧化溝等
2、生物膜法:生物濾池、生物轉盤、生物接觸氧化池等
3、厭氧生物處理法:厭氧消化、水解酸化池、UASB等
4、自然條件下的生物處理法:穩定塘、生態系統塘、土地處理法
三、污染物的化學轉化技術:
1、中和法:酸鹼中和
2、化學沉澱法:氫氧化物沉澱、鐵氧體沉澱、其他化學沉澱
3、氧化還原法:葯劑氧化法、葯劑還原法、電化學法
4、化學物理消毒法:臭氧、紫外線、二氧化氯、氯氣、次氯酸鈉
四、溶解態污染物的物理化學分離技術:
1、吸附法
2、離子交換法
4、其他分離方法:吹脫和氣提、萃取、蒸發、結晶、冷凍
現代污水處理技術,按處理程度劃分,可分為一級、二級和三級處理。
一級處理,主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。
二級處理,主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准。
三級處理,進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲分析法等。
㈡ 針對城市污水處理技術研究
作為城市綜合管理的關鍵環節,污水處理對於城市正常運行及環境保護具有重要作用。本文首先介紹了城市污水處理尺宴的常用工藝,陵仿銀然後探討了城市污水處理的節能降耗策略,以期為相關技術與研究人員提供參考。
同國內城市經濟、工業產業相比,城市基礎設施的發展與建設速度相對較為緩慢,此種狀況導致了我國城市基礎設施長時間處於超負荷承載狀態,而環境保護作為城市基礎設施的重要部分,其發展狀況更加不容樂觀。當前城市污水處理採用的工藝類型較多,但各類工藝都具有不同的優勢與劣勢,而部分城市項目在未調查當地水質情況下便隨意選擇工藝,這在一定程度上影響了污水處理質量。因此,加強有關城市污水處理技術大灶的探討,對於改善城市基礎設施建設整體水平具有重要的現實意義。
一、城市污水處理常用技術工藝
城市污水是居民城市生活中產生的污水,其包含較多的細菌、有機物、病毒及寄生蟲卵等,含有較高量的硫、磷、氮等分子。依據清除對象及工作原理,當前採用的污水處理工藝主要有化學法、物理法與生物法等。
1、氧化溝工藝
氧化溝污水處理通常採用連環循環曝氣池,其是活性污泥法的一類延伸技術,是延時、低載荷曝氣活性污泥法。因曝氣池主要選用封閉的溝渠型,所以與原有的活性污泥法相比其在水力流態上具有不同的特點。在完成預處理後污水後直接輸送至氧化溝,在環形溝處活性污泥與污水充分混合後會通過表面曝氣的形式進行循環流動,具備完全混合式與推流式兩種特性。氧化溝法對有機物清除效率較高,殘余污泥量較少且易脫水,整體指標優異,同時具有除磷、工藝簡單快捷、處理效果可靠、泥齡長、脫氮等優點;其缺點則主要包括體積龐大、負荷較小、運行成本過高、能耗過大等,在中小型低負荷污水處理廠應用較為廣泛。[1]
2、SBR法
SBR法也就是序列間歇式活性污泥法,或叫做序列間歇式反應器法。其屬於一種依照間歇曝氣方式工作的活性污泥處理工藝,是一種沉澱靜置、變容積、好氧-缺氧-厭氧間歇產生、混合充分、交替進水、單池處理的活性污泥法。SBR法將原有的動態沉澱改為靜置理想沉澱、將穩態生活反應改為非穩定生化反應、將空間分割處理模式改為時間分割處理模式,具有間歇處理與運行有序雙重特點。另外SBR反應池是該技術的關鍵,此池主要集成了生物降解、均化、初沉、二沉等功能,且未採用污泥迴流系統。
3、CCAS工藝
CCAS工藝也就是連續循環曝氣系統工藝,其關鍵部分為CCAS反應池,可完成懸浮物與有機物降解、除磷、排氮等功能,且對污水預處理的要求較低,出水便可達標排放。完成預處理後的污水會直接傳輸至反應池前部的預反應池,在此部分內活性污泥微生物會吸附水中的大量可溶性BOD,隨後污水會通過反應器隔牆處的孔洞按照0.03~0.05m/min的速度流入主反應區。主反應區內主要依照「曝氣、閑置、沉澱、排水」的處理工序循環運行,以確保污水通過「好氧-缺氧」的周期處理清除氮和碳,並在「好氧-厭氧」的處理中去除磷。不同工序的周期及設備運行都通過提前編制的程序命令進行操作,且可利用計算機進行綜合管控。
4、生物膜法
生物膜法是通過吸附生長在部分固體物表面的微生物處理有機污水的技術。生物膜是一類由大量兼性菌、厭氧菌、原生動物、好氧菌、藻類、真菌等構成的生態系統,其表面具有的固體介質即為載體或濾料。由濾料依次向外可將生物膜分成厭氣層、好氣層、附著水層及運動水層。此法的主要工作原理為:生物膜會對污水中包含水層的有機物進行吸附,在經過好氣層的好氣菌分解後再完成厭氣層的厭氣處理,運動水層則用於更新老化的生物膜系統,由此周期循環實現污水凈化。[2]
二、城市污水處理的節能降耗策略
1、污泥處理
作為城市污水處理的主要耗能部分之一,污泥處理單元通常包含污泥穩定、污泥濃縮與污泥脫水等過程。當前應用較多的污泥濃縮方法有離心濃縮、氣浮濃縮與重力濃縮。分析不同污泥濃縮工藝能耗實踐數據可發現,氣浮濃縮的比能耗一般在0.2~10kWh・m-1左右,重力濃縮的比能耗一般在0.02~0.14kWh・m-1左右,離心濃縮的比能耗一般在0.5~1.2kWh・m-1左右,而氣浮濃縮中生物氣浮比能耗則通常為0.05~0.12kWh・m-1。相比之下,重力濃縮的耗能量最小,但因其濃縮效果較差,容易導致磷的泄漏,所以將重力濃縮改為生物氣浮可有效提高污泥濃縮效能。
電耗與熱耗是厭氧消化耗能的主要部分,熱耗常用於保持消化過程溫度,而電耗則用於泵送與攪拌;而風機對消化池的曝氣是好氧消化耗能的主要部分。兩者間的主要差異為厭氧消化產生的沼氣可有效補償消化過程的能耗。如某污水處理廠污泥處理主要選用生化沼氣的高溫與中溫兩級消化工藝,單日產生化沼氣設計量為5.4萬m3,依照運行穩定性計算日均發電量可保持在7.5萬kWh,全年發電量則可突破2700萬kWh。另外當前大部分污水處理廠均選用離心脫水、帶式壓濾縮水、板框壓濾脫水等機械脫水方式,依據不同機械脫水電耗數據分析可發現離心DS脫水通常保持在11~33kWh・t-1左右。
2、污水處理
污水處理中的主要耗能部分為生物處理好氧工藝中的曝氣系統。對曝氣系統可採取的降耗節能措施有:(1)設置自動調控設備,依據曝氣池中的溶解氧濃度對供氣量進行調整;(2)加強設備設計,盡量採用壓力承載性能高的局部構建及管材,降低不必要的延長與局部損失;(3)將曝氣裝置替換為混合效率更好的潛水攪拌器等;(4)可考慮將曝氣設備安置在單側,在水流斷面上構造成旋轉推流,讓氣液充分接觸,由此改善氧的高轉移率;(5)選用性能穩定、工作可靠、節能效果良好的變頻調速風機。[3]
3、污水提升
作為污水提升的基本工作裝置,污水提升泵降耗處理將改善處理廠整體節能效果。如依據某污水處理廠提升泵具體運行能耗數據分析發現,提升泵電耗占處理廠整體能耗的16%左右;工作揚程是提升泵電耗的主要決定性因素,另外構築物水頭損失設定值過高,也會加大污水提升電耗。所以應在工程設計時進行管道淹沒出流規劃並調整跌水高度,減小出口處水頭損失消耗,以降低污水提升高程與能耗。對於泵揚程處理,可在設計時增加總體布置密度,採用短而直的管道連接方式,選用平流式沉澱池和淹沒堰,以減少泵電耗。
4、化學除磷
化學除磷是指通過添加化學葯劑與污水內的磷發生反應形成沉澱來除磷的一種方法。該方法在污水處理廠中應用較為廣泛,但不同的化學葯劑擁有不同的除磷效果。某研究者對幾類葯劑除磷效果比對發現,三氯化鐵具有較高的除磷率,但其會產生排放尾水色度過大問題。而選用高分子混凝劑不僅能取得較好的除磷率,且能大幅度改善葯耗。
城市污水處理水平將直接關系著城市居民的健康生活與發展。因此,相關技術與研究人員應加強有關污水處理的研究,總結污水處理工藝及關鍵技術處理要點,以逐步提升城市整體發展質量。
本文介紹了關於「針對城市污水處理技術研究」的內容。歡迎登陸中達咨詢,查詢更多相關信息。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
㈢ 闡述生態環保的污水處理技術
根據本人多年工作經驗對污水生態處理技術簡介、污水生態處理技術遵循的原理、污水生態處理技術的主要方法等三方面來闡述基於生態環保的污水處理技術的分析研究。
隨著社會與經濟的越來越快發展,生態環保已經成為越來越重要的話題。生態環保關繫到每一個人的生活,影響非常的大。而在生態環保中,最大的問題是水資源污染的問題,隨著工業等各種產業生產的需要,有的未經過檢測合格就擅自將污水排入河流或是水系裡,導致自然水體被破壞,水污染越來越嚴重,而水污染嚴重影響著人們的生活。為了改變這一現狀,很多地方開始進行污水處理,但是傳統的污水治理方法成本太高,難以實行,取得的效果也不是很好,所以本文從生態環保角度出發,提出基於生態環保的污水處理技術。
一、污水致力傳統技術與污水生態處理技術簡介
污水處理技術有傳統的方法和生態處理技術。傳統的污水處理技術就是利用物理、化學等原理作用對污水進行凈化,物理方法就是利用物理特性將有害物質進行吸收,化學方法就是利用物質之間的化學反應將有害物質反映或是轉化為無害物質。而這兩種方法都不易實現,能源消耗非常大,而且在技術維護方面難度也比較大,成本比較高,難以進行有力的推廣。這也是很多企業冒著違規的風險將污水直接排出的原因。
生態環保的污水處理技術,就是利用生物原理將污水有目的、有控制性的投入到一定的生態系統中,利用這個生態系統中的土壤、動物、植物、微生物等多種資源的符合作用,將污水中的超標物質和有害物質進行利用吸收,使污水中的有害物質進行降解,最後達標的過程。這一過程也可以用循環再生來形容。生態環保的污水處理技術處理污水的最大好處就是操作簡單、投資較小、無副污染物出現,同時還可以達到整體優化的效果。
二、污水生態處理技術遵循的原理
1.循環再生原理
生物學中的循環再生原理,指的就是利用生態系統中的生物成分,將非生物成分合成新物質,然後又降解的過程,在這一過程中,通過生成和降解的循環,使整個生態系統保持平衡。在污水生態處理技術方面,也是利用循環再生的原理,將污水排入特定的生態系統,使污水中的非生物組分參與到這個循環再生的過程,加大了循環再生過程的進程和速度。
2.和諧共存原理
和諧共存原理指的是在生態系統中,所有生物與非生物之間的最穩定狀態就是和諧共存,如果做不到和諧共存,那麼其中一方就會被一方毀壞,直到達到平衡為止。所以在污水處理的過程中,污水引入到一個特定系統中,引起系統的不平衡,這個系統裡面的生物就會將污水裡面的非生物稀釋或是降解,最後達到平衡狀態,做到和諧共存。
3.整體優化原理
使用生態學的方法對污水進行處理是一個簡單的過程,但是在這個處理過程中,包括很多環節,譬如說污水源控制、修復生態系統的選擇、污水布水公藝選擇、再生水的利用等等,這些環節都是必不可少的,而且對污水處理整個過程來說非常重要,不能單獨的進行考慮。所以,應該將這些環節作為一個整體來考慮,對這個整體進行優化,最後達到使用污水生態處理技術處理污水的同時又對污水中的資源加以利用,變廢為寶,達到整體優化的目的。
4.區域分異原理在進行污水生態處理技術上,必須要考慮到地區差異。因為每個地區的生態系統都會因為當地的特殊環境而不一樣,所以在考慮應用這種那個方法的時候就必須考慮到這個因素,不能盲目的進行,導致污水生態學處理技術作用不明顯。考慮到地區差異,就必須因地制宜,選擇不同的修復植物、布水公藝、管理方法等進行管理和運用。並且在開始利用使用污水生態處理技術的時候,應先進行小范圍的實驗,在取得成功後,在開始大規模的使用這種方法。這樣污水生態處理技術的成功率才會比較高。
三、污水生態處理技術的主要方法
污水處理技術主要是應用生態系統天然的資源,來將污水中的污染物質轉移或是轉化為其他物質,達到消除或是降低水中污染物中的作用。這種方法費用低還能達到整體優化的目的。目前,我國主要採取土地處理系統、蚯蚓濾池處理系統、生態塘處理系統三種方法來進行污水處理,並取得了顯著的效果。
1.土地污水處理系統
土地污水處理系統就是利用土地―植物系統的自我調控能力以及生物作用對污水進行處理,從而改善污水的水質,在處理污水的同時植物和土地可以吸收污水中的富營養和水分,從而土地更加肥沃,植物生產的更快,更好。這樣在進行污水處理的同時也能帶來植物的更好發展,一舉兩得,實現廢水最大化的利用,變廢為寶。污水土地處理系統有很多種類型,常見的包括慢速滲透處理系統,還有與之相對的快速滲透系統,地表漫流處理系統以及地下滲透處理系統。使用土地污水處理系統的這幾種方法來凈化污水,其使用的原理是沉澱、過濾、揮發、生物氧化、土壤吸附、光解等,這幾種都是最原始的處理污水的原理,包括物理原理和化學原理。這幾種處理方法都可以使污水處理到達標水平,可以直接灌溉或是作為景觀水使用。
2.蚯蚓濾池處理系統
蚯蚓濾池處理是人工製造的生態系統,就是將蚯蚓引入常規的濾池內構成。蚯蚓濾池處理系統是利用蚯蚓的消化分解作用以及過濾作用而達到處理污水的目的,所以蚯蚓濾池一般分為三層。第一層為蚯蚓分解層,這一層就是利用蚯蚓的消化分解以及上下鑽動的特性來達到分解污水中污染物的過程。這一作用原理就是蚯蚓吃食污染物,和體內的細菌進行反應,排除,蚯蚓糞便的細菌進入環境中後使得有機物的數量增多,殺死微生物,達到處理污染物的效果。第二層是補充層,第三層是承托層。第二層和第三層的最主要作用是過濾作用,使得蚯蚓處理過的污水進一步的過濾。污水從蚯蚓濾池的上部進入,經過處理後的水從下部排出。蚯蚓濾池的整個處理污水的過程操作簡單、成本比較低,污水處理效果好,可以方便推廣使用。
3.生態塘處理系統
生態塘污水處理系統也是應用較多的生態污水處理技術。主要原理就是將污水引入人工製造的一個生態系統中,這個生態系統包括水產和水禽類生物。生態池塘通過太陽能的光合作用以及各種食物鏈原理將污水中的有機物進行分解或是轉化,然後再通過食物鏈作用將物質一層一層的轉移,使用這種方式將污水凈化。這個方法之所以使用較多並且效果不錯就是因為採用這種方法,污水得到凈化的同時,水生植物和生物等也得到了食物,可以進行回收。這種污水處理方法不僅維護方便、成本低,更大的好處是可以獲得經濟效益。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
㈣ 污水處理技術有哪些(污水處理的方法匯總)
隨著國家對環保的重視,以及工業水處理的技術發展,以下簡述現如今的工業廢水處理的新技術。
膜技術
膜分離法常用的有微濾、納濾、超濾和反滲透等技術。由於膜技術在處理過程中不引入其他雜質,可以實現大分子和小分子物質的分離,因此常用於各種大分子原料的回收,如利用超濾技術回收印染廢水的聚乙烯醇漿料等。目前限制膜技術工程應用推廣的主要難點是膜的造價高、壽命短、易受污染和結垢堵塞等。伴隨著膜生產技術的發展,膜技術將在廢水處理領域得到越來越多的應用。
磁分離技術
磁分離技術是近年來發展的一種新型的利用廢水中雜質顆粒的磁性進行分離的水處理技術。對於水中非磁性或弱磁性的顆粒,利用磁性接種技術可使它們具有磁性。磁分離技術應用於廢水處理有三種方法:直接磁分離法、間接磁分離法和微生物—磁分離法。目前研究的磁性化技術主要包括磁性團聚技術、鐵鹽共沉技術、鐵粉法、鐵氧體法等,具有代表性的磁分離設備是圓盤磁分離器和高梯度磁過濾器。目前磁分離技術還處於實驗室研究階段,還不能應用於實際工程實踐。
Fenton及類Fenton氧化法
典型的Fenton試劑是由Fe2催化H2O2分解產生?OH,從而引發有機物的氧化降解反應。由於Fenton法處理廢水所需時間長,使用的試劑量多,而且過量的Fe2將增大處理後廢水中的COD並產生二次污染。近年來,人們將紫外光、可見光等引入Fenton體系,並研究採用其他過渡金屬替代Fe2,這些方法可顯著增強Fenton試劑對有機物的氧化降解能力,減少Fenton試劑的用量,降低處理成本,統稱為類Fenton反應。Fenton法反應條件溫和,設備較為簡單,適用范圍廣;既可作為多帶帶處理技術應用,也可與其他方法聯用,如與混凝沉澱法、活性碳法、生物處理法等聯用,作為難降解有機廢水的預處理或深度處理方法。
電化學(催化)氧化
電化學(催化)氧化技術通過陽極反應直接降解有機物,或通過陽極反應產生羥基自由基(?OH)、臭氧等氧化劑降解有機物。電化學(催化)氧化包括一維、二維和三維電極體系。由於三維電極體系的微電場電解作用,目前備受推崇。三維電極是在傳統的二維電解槽的電極間裝填粒狀或其他碎屑狀工作電極材料,並使裝填的材料表面帶電,成為第三極,且在工作電極材料表面能發生電化學反應。與二維平板電極相比,三維電極具有很大的比表面,能夠增加電解槽的面體比,能以較低電流密度提供較大的電流強度,粒子間距小而物質傳質速度高,時空轉換效率高,因此電流效率高、處理效果好。三維電極可用於處理生活污水,農葯、染料、制葯、含酚廢水等難降解有機廢水,金屬離子,垃圾滲濾液等。
鐵碳微電解處理技術
鐵碳微電解法是利用Fe/C原電池反應原理對廢水進行處理的良好工藝,又稱內電解法、鐵屑過濾法等。鐵炭微電解法是電化學的氧化還原、電化學電對對絮體的電富集作用、以及電化學反應產物的凝聚、新生絮體的吸附和床層過濾等作用的綜合效應,其中主要是氧化還原和電附集及凝聚作用。鐵屑浸沒在含大量電解質的廢水中時,形成無數個微小的原電池,在鐵屑中加入焦炭後,鐵屑與焦炭粒接觸進一步形成大原電池,使鐵屑在受到微原電池腐蝕的基礎上,又受到大原電池的腐蝕,從而加快了電化學反應的進行。此法具有適用范圍廣、處理效果好、使用壽命長、成本低廉及操作維護方便等諸多優點,並使用廢鐵屑為原料,也不需消耗電力資源,具有「以廢治廢」的意義。目前鐵碳微電解填料己經廣泛應用於印染、農葯/制葯、重金屬、石油化工及油分等廢水以及垃圾滲濾液處理,取得了良好的效果。關於本公司研發生產的TPFC鐵碳填料處理各類廢水的效果可以查看TPFC鐵碳微電解填料處理各種廢水的處理效果。
臭氧氧化
臭氧是一種強氧化劑,與還原態污染物反應時速度快,使用方便,不產生二次污染,可用於污水的消毒、除色、除臭、去除有機物和降低COD等。多帶帶使用臭氧氧化法造價高、處理成本昂貴,且其氧化反應具有選擇性,對某些鹵代烴及農葯等氧化效果比較差。為此,近年來發展了旨在提高臭氧氧化效率的相關組合技術,其中UV/O3、H2O2/O3、UV/H2O2/O3等組合方式不僅可提高氧化速率和效率,而且能夠氧化臭氧多帶帶作用時難以氧化降解的有機物。由於臭氧在水中的溶解度較低,且臭氧產生效率低、耗能大,因此增大臭氧在水中的溶解度、提高臭氧的利用率、研製高效低能耗的臭氧發生裝置成為研究的主要方向。
濕式(催化)氧化
濕式(催化)氧化法是在高溫(150~350℃)、高壓(0.5~20MPa)、催化劑作用下,利用O2或空氣作為氧化劑(添加催化劑),(催化)氧化水中呈溶解態或懸浮態的有機物或還原態的無機物,達到去除污染物的目的。濕式空氣(催化)氧化法可應用於城市污泥和丙烯腈、焦化、印染等工業廢水及含酚、氯烴、有機磷、有機硫化合物的農葯廢水的處理。
等離子體水處理技術
低溫等離子體水處理技術,包括高壓脈沖放電等離子體水處理技術和輝光放電等離子體水處理技術,是利用放電直接在水溶液中產生等離子體,或者將氣體放電等離子體中的活性粒子引入水中,可使水中的污染物徹底氧化、分解。水溶液中的直接脈沖放電可以在常溫常壓下操作,整個放電過程中無需加入催化劑就可以在水溶液中產生原位的化學氧化性物種氧化降解有機物,該項技術對低濃度有機物的處理經濟且有效。此外,應用脈沖放電等離子體水處理技術的反應器形式可以靈活調整,操作過程簡單,相應的維護費用也較低。受放電設備的限制,該工藝降解有機物的能量利用率較低,等離子體技術在水處理中的應用還處在研發階段。
超聲波氧化
頻率在15~1000kHz的超聲波輻照水體中的有機污染物是由空化效應引起的物理化學過程。超聲波不僅可以改善反應條件,加快反應速度和提高反應產率,還能使一些難以進行的化學反應得以實現。它集高級氧化、焚燒、超臨界氧化等多種水處理技術的特點於一身,加之操作簡單,對設備的要求較低,在污水處理,特別是在降解廢水中毒性高、難降解的有機污染物,加快有機污染物的降解速度,實現工業廢水污染物的無害化,避免二次污染的影響上具有重要意義。近年來利用超聲波直接處理或強化處理有機廢水的研究日益增多,內容涉及降解機理、動力學、中間產物、影響因素、系統優化等方面。
輻射技術
20世紀70年代起,隨著大型鈷源和電子加速器技術的發展,輻射技術應用中的輻射源問題逐步得到改善。利用輻射技術處理廢水中污染物的研究引起了各國的關注和重視。與傳統的化學氧化相比,利用輻射技術處理污染物,不需加入或只需少量加入化學試劑,不會產生二次污染,具有降解效率高、反應速度快、污染物降解徹底等優點。而且,當電離輻射與氧氣、臭氧等催化氧化手段聯合使用時,會產生「協同效應」。因此,輻射技術處理污染物是一種清潔的、可持續利用的技術,被國際原子能機構列為21世紀和平利用原子能的主要研究方向。
打賞支持
相關問題
如何確定水解酸化停留時間,以及污水達到酸化的程度和效果?
二沉池在污水處理中的作用是什麼?
二沉池出水為什麼會有絮體流出?
為什麼曝氣池會出現黑色粘稠性泡沫?
污水廠除臭一般選擇哪些工藝?
查看全部
相關文章
污水處理技術有哪些?(污水處理的方法匯總)
污水處理好氧池異常狀況分析和解決辦法(MBR污水處理)
二沉池出水問題及解決辦法(二沉池在污水處理中的作用)
污水處理中如何用好次氯酸鈉?(次氯酸鈉知識介紹)
MBR,MBBR和FBBR的區別(MBR,MBBR和FBBR的特點)
生物膜污水處理特徵(生物膜污水處理工藝方面的特徵)
冬季污水處理廠防凍應急預案(冬季正常生產,防凍措施總結)
常見水處理葯劑及種類(水處理劑的應用領域)
查看全部
熱門問題
如何知道我們企業是否需要申領排污許可證?
請問大家,關於工業生產過程排放和碳酸鹽的含量問題 ?
請問,這種情況如何計算電力排放量?
廢電池有哪些資源化技術?
廢棄電腦如何資源化?
查看全部
熱門文章
潛水排污泵的安裝方式(排污泵的安裝方法)
地埋式污水處理(3種形式及其優缺點介紹)
玻璃纖維布用途(有什麼特點)
曝美國欲從委內瑞拉和伊朗進口石油(頁岩油不給力)
代表建議把第三衛生間建好建到位(城市公廁標配)
查看更多
標簽: 污水處理 技術
㈤ 鍘屾哀姘ㄦ哀鍖栧湪鍩庡競奼℃按涓繪祦澶勭悊宸ヨ壓涓鐨勫簲鐢錛
鍘屾哀姘ㄦ哀鍖栧伐鑹哄凡緇忓箍娉涘簲鐢ㄤ簬渚ф祦澶勭悊錛屼絾鍦ㄤ富嫻佹潯浠朵笅搴旂敤鏃訛紝灝氬瓨鍦ㄤ竴瀹氶毦搴︺傚湪涓繪祦搴旂敤鏃訛紝闇瑕佸厛瀵規薄姘磋繘琛岄勫勭悊錛屾秷闄ょ⒊銆佺7鐨勫獎鍝嶏紝鐒跺悗鍐嶉氳繃鎺у埗娓╁害銆佹憾瑙f哀絳夊洜緔犳潵淇濋殰鍘屾哀姘ㄦ哀鍖栬繃紼嬬殑鏈夋晥榪涜屻傚獎鍝嶅帉姘ф皚姘у寲鍦ㄤ富嫻佸伐鑹轟腑搴旂敤鐨勫洜緔犲寘鎷娓╁害銆乸H鍜岃繘姘碈/N絳夛紝榪橀渶鑰冭檻奼℃償褰㈡併丯OB鎶戝埗絳夐棶棰橈紝浠ヤ繚璇佷富嫻佸伐鑹鴻繍琛岀殑紼沖畾鎬с傛ゅ栵紝鍘屾哀姘ㄦ哀鍖栧湪渚ф祦鏉′歡涓嬬殑鍚鍔ㄥ強涓繪祦鏉′歡鏃剁殑紼沖畾榪愯岋紝鍧囬渶閫氳繃澶氬洜緔犳帶鍒舵潵瀹炵幇銆
鍘屾哀姘ㄦ哀鍖(anaerobic ammonium oxidation錛孉na-mmox)鐨勫彂鐜頒負奼℃按鑴辨愛鎻愪緵浜嗕竴縐嶆柊鐨勬柟寮忋備笌浼犵粺鐨勭濆寲/鍙嶇濆寲鑴辨愛宸ヨ壓鐩告瘮錛孉nammox鍙浠ュ噺灝100%鐨勬湁鏈虹⒊婧愭姇鍔犻噺錛岄檷浣60%鐨勬洕姘旈噺錛屼駭娉ラ噺涔熶細鍑忓皯90%銆傝繖浜涗紭鍔垮惛寮曚簡鍥藉唴澶栧ぇ閲忕戠爺浜哄憳瀵瑰叾榪涜岀爺絀訛紝榪涜屾帹鍔ㄤ簡浠Anammox涓哄熀紜鐨勮劚姘宸ヨ壓鐨勫彂灞曪紝鐗瑰埆鏄鍦ㄥ瀮鍦炬笚婊ゆ恫銆佹薄娉ユ秷鍖栨恫銆佸伐涓氬簾姘寸瓑渚ф祦鍩庡競搴熸按澶勭悊涓鍧囧彇寰椾簡杈冨ソ鐨勬晥鏋溿
涓庝晶嫻佺浉姣旓紝鍩庡競奼℃按涓繪祦鍏鋒湁鏇翠綆姘ㄦ愛璐ㄩ噺嫻撳害(9鍀67mg/L)錛屾洿浣庤繍琛屾俯搴(鍐瀛10鍀16鈩)鐨勭壒鐐廣傝繖鎰忓懗鐫錛屽湪涓繪祦鏉′歡涓嬫皚姘у寲鑿(AOB)鐨勭敓闀塊熺巼姣斾簹紜濋吀鐩愭哀鍖栬弻(NOB)浣;鍚屾椂錛屾父紱繪皚(FA)鍜屾父紱諱簹紜濋吀(FNA)瀵筃OB鐨勬姂鍒跺皢涓嶅嶅瓨鍦ㄣ
NOB鐨勫炴畺浼氬艱嚧澶ч儴鍒嗙殑姘ㄨ漿鍖栦負NO3-錛岃岄潪N2錛屼笉鑳芥彁楂樻薄姘翠腑鎬繪愛鐨勫幓闄ょ巼銆傝屼笖錛屽煄甯傛薄姘翠腑鐨勬湁鏈虹墿浼氫績榪涘紓鍏誨井鐢熺墿鐨勫炴畺錛屽湪鏈夋満鐗╁瓨鍦ㄦ椂錛屽帉姘ф皚姘у寲鑿(AnAOB)鐨勭敓闀塊熺巼姣斿紓鍏昏弻鎱錛屼粠鑰屾姂鍒朵簡AnAOB鐨勭敓闀匡紝榪涜屽獎鍝嶆薄姘村勭悊鏁堟灉銆
姝ゅ栵紝鍦ㄥ煄甯傛薄姘村勭悊榪囩▼涓錛屾俯搴︺佹愛嫻撳害銆佹湁鏈虹墿嫻撳害絳夊洜緔犻殢瀛h妭鑰屽彉鍖栵紝涔熶細褰卞搷宸ヨ壓鎬ц兘銆傚洜姝わ紝灝咥nammox搴旂敤浜庡煄甯傛薄姘翠富嫻佸勭悊宸ヨ壓鏃訛紝甯擱渶瑕佸規薄姘磋繘琛屽墠澶勭悊銆
1鍓嶅勭悊鏂瑰紡鍙婁綔鐢
鍩庡競奼℃按涓閫氬父娣鋒潅鏈夋償娌欍佹偓嫻鐗┿佹湁鏈虹墿絳夌墿璐錛屽墠涓よ呬細瀵規薄姘村勭悊鍘傜殑綆¤礬銆佹瀯絳戠墿閫犳垚褰卞搷錛岃屾湁鏈虹墿浼氫績榪涘紓鍏昏弻鐨勫炴畺錛屼粠鑰屽獎鍝岮nammox宸ヨ壓鐨勬ц兘銆傛ゅ栵紝奼℃按涓鐨勭7涔熶細鎶戝埗AnAOB銆傜爺絀惰〃鏄庯紝褰撴按涓紓>620mg/L鏃訛紝棰楃矑奼℃償鍜屾偓嫻奼℃償鐨勬瘮鍘屾哀姘ㄦ哀鍖栨椿鎬(SAA)浼氭槑鏄懼彈鍒版姂鍒躲
Anammox宸ヨ壓鏈夎兘婧愬洖鏀剁敋鑷充駭鑳界殑娼滃姏錛屽彲浠ラ氳繃澶氱駭紕蟲愛紓峰垎紱伙紝鍒嗗埆瀵瑰悇鐗╄川榪涜屽勭悊錛屽疄鐜拌祫婧愮殑楂樻晥鍥炴敹銆傚洜姝わ紝涓轟簡淇濊瘉AnAOB鏇村ソ鍦扮敓闀跨箒孌栵紝鍚屾椂瀹炵幇紕熾佺7絳夎祫婧愬拰鑳芥簮鐨勫洖鏀訛紝闇瑕佸瑰煄甯傛薄姘磋繘琛岀⒊姘紓峰垎紱匯
Anammox鍦ㄤ晶嫻佸簲鐢ㄦ椂錛屽叾榪涙按甯鎬負奼℃償鍘屾哀娑堝寲娑詫紝褰撻噰鐢ㄤ袱孌靛紡閮ㄥ垎浜氱濆寲/鍘屾哀姘ㄦ哀鍖(partial nitritation Anammox錛孭N/A)宸ヨ壓(瑙佸浘1)鏃訛紝鍘熸按鍏堣繘鍏ョ濆寲鍙嶅簲鍣錛岄氳繃鎺у埗紜濆寲鍙嶅簲鍣ㄧ殑榪愯屾潯浠訛紝瀹炵幇鐭紼嬬濆寲銆
鍥1涓ゆ靛紡Anammox宸ヨ壓
緇忚繃娌夋穩奼犲悗錛屾竻娑茶繘鍏ュ帉姘ф皚姘у寲鍙嶅簲鍣錛屽嚭姘村洖鍒板煄甯傛薄姘翠富嫻併傝屼富嫻丄nammox鐨勮繘姘撮渶閫氳繃鏍兼爡銆佹矇鐮傛睜甯歌勫勭悊鍚庯紝鍐嶈繘琛岄勫勭悊錛屽嵆紕蟲愛紓峰垎紱(瑙佸浘2)錛屾垨閲囩敤渚ф祦瀵岄泦銆佷富嫻佸己鍖栫殑鏂瑰紡(瑙佸浘3)錛岄氳繃鍘屾哀姘ㄦ哀鍖栬弻鐨勮ˉ緇欙紝紜淇濆勭悊鏁堟灉銆
鍥2棰勫勭悊鐨勪富嫻丄nammox宸ヨ壓
鍥3Strass奼℃按澶勭悊鍘侫nammox宸ヨ壓
紕蟲崟鎹夊彲浠ラ噰鍙栧氱嶆柟寮忋俋iaojinLi絳夌敤娣峰悎鍘屾哀鍙嶅簲鍣ㄥ硅繘姘磋繘琛屽帉姘ч勫勭悊錛屽幓闄や簡92%鐨凜OD錛屼嬌PN/A榪涙按COD涓22mg/L銆備絾娣峰悎鍘屾哀鍙嶅簲鍣ㄤ腑浼氱Н緔紜閰哥洂榪樺師鑿岋紝灝嗚繘姘翠腑鐨勭~閰哥洂榪樺師涓虹~鍖栫墿銆
紜鍖栫墿涓鏂歸潰浼氬瑰井鐢熺墿鐩存帴閫犳垚姣掔悊褰卞搷錛屽彟涓鏂歸潰鍙浠ヤ綔涓哄弽紜濆寲緇嗚弻鐨勭數瀛愬彈浣擄紝褰卞搷Anammox鎬ц兘銆侻.Laureni絳夊皢鍩庡競奼℃按榪涜屽垵娌夊悗錛屾帴鍏ュソ姘SBR鍙嶅簲鍣(12L錛孲RT涓1d)浠ュ幓闄COD錛岀粨鏋滆〃鏄庯紝鍑烘按NH4+-N涓(21鹵5)mg/L錛屾畫浣欐籆OD涓(69鹵19)mg/L錛孋OD鍘婚櫎鐜囪揪鍒80%浠ヤ笂銆
涔熸湁鐮旂┒璁や負錛屽彲浠ヨ仈鍚2縐嶅勭悊鏂瑰紡錛屽嵆奼℃按鍦ㄨ繘鍏ュ帉姘ф秷鍖栨典箣鍓嶏紝鍏堥氳繃浣庢薄娉ュ仠鐣欐椂闂(SRT)鐨勫ソ姘ф碉紝瀹炵幇浜х敳鐑風殑鏈澶у寲銆傝嵎鍏伴箍鐗逛腹Dokhaven奼℃按澶勭悊鍘傞噰鐢ˋ-B宸ヨ壓璁捐★紝BOD鍦ˋ孌(HRT=1h錛孲RT=0.3d)涓閫氳繃楂樿礋鑽峰弽搴斿櫒鍘婚櫎錛屼嬌奼℃按涓澶ч儴鍒嗙⒊杞鍖栬繘鍏ユ薄娉ワ紝浠ュ緱鍒版渶澶у寲鐨勪駭鐢茬兎閲忋
鍙﹀栵紝閲囩敤鐭紼嬪弽紜濆寲鑰﹀悎Anammox宸ヨ壓澶勭悊瀹為檯鐢熸椿奼℃按鏃訛紝鐭紼嬪弽紜濆寲涓嶄粎鍙浠ユ秷鑰楁薄姘翠腑鐨勬湁鏈虹墿錛岃繕鑳藉皢NO3-榪樺師涓篘O2-錛屾弧瓚矨nammox鐨勮繘姘磋佹眰銆
棰勫厛灝嗘薄姘翠腑鐨勭7榪涜屽幓闄ゆ垨鍥炴敹錛岃兘浣垮悗緇瑼nammox宸ヨ壓鍙栧緱鏇村ソ鐨勮劚姘鏁堟灉錛屽父鐢ㄧ殑鏂規硶鏈夌敓鐗╅櫎紓峰拰鍖栧﹂櫎紓楓傜敓鐗╅櫎紓鋒槸鍒╃敤鑱氱7鑿屽瑰師姘翠腑鐨勭7榪涜屽幓闄わ紝鍖栧﹂櫎紓峰垯閲囩敤鎶曞姞FeCl3銆丄lCl3絳夊寲瀛﹂櫎紓瘋嵂鍓傜殑鏂規硶錛屽皢紓蜂粠奼℃按涓娌夋穩鍒嗙匯
鑽峰叞楣跨壒涓笵okhaven奼℃按澶勭悊鍘傜殑宸ヨ壓嫻佺▼涓錛屽湪A孌墊姇鍔燜eCl3錛屾湁鏁堝湴灝嗚繘姘翠腑鐨勭7闄嶄綆涓1mg/L錛屼負B孌電殑Anammox宸ヨ壓鍒涢犱簡鏈夊埄鏉′歡銆
2涓繪祦Anammox鐨勫簲鐢ㄥ強鍏跺獎鍝嶅洜緔
鍦ㄤ笘鐣岃寖鍥村唴錛屼互Anammox涓哄熀紜宸ヨ壓鐨勬薄姘村勭悊鍘傝秴榪110搴э紝鍏朵腑綰75%鐢ㄤ簬渚ф祦鍩庡競奼℃按澶勭悊銆傚敖綆″凡鏈堿nammox涓繪祦搴旂敤鐨勫疄闄呮堜緥錛屼絾澶氭暟闇瑕佽繘涓姝ヤ紭鍖栥傜洿鎺ュ簲鐢ㄤ互Anammox涓哄熀紜宸ヨ壓鐨勬柟娉曞勭悊鍩庡競搴熸按錛屼緷鐒墮潰涓寸潃榪涙按姘ㄦ愛嫻撳害浣庛佸勭悊娓╁害浣庛佽繘姘存按璐ㄦ嘗鍔ㄣ佽兘鍚﹂暱鏈熺ǔ瀹氳繍琛岀殑鎸戞垬錛屽洜姝わ紝浠嶉渶鍋氳繘涓姝ョ殑鐮旂┒銆
琛1鍒楀嚭浜嗕笉鍚屾潯浠朵笅(娓╁害銆乸H銆丆/N絳)涓嶅悓鍙嶅簲鍣ㄤ腑涓繪祦Anammox鐨勮劚姘鎬ц兘錛岀敤浠ユ瘮杈冧笉鍚屽洜緔犲笰nammox宸ヨ壓榪愯岀殑褰卞搷銆
琛1涓繪祦Anammox鐨勭爺絀朵笌搴旂敤
2.1娓╁害
鍩庡競奼℃按涓繪祦娓╁害涓鑸涓10鍀20鈩冨乏鍙籌紝浣庝簬AnAOB(25鍀40鈩)鐢熼暱鐨勬渶閫傚疁娓╁害錛岃繖浼氬獎鍝岮nammox鐨勬ц兘銆傚湪PN/A宸ヨ壓涓錛岀煭紼嬬濆寲孌典篃浼氬彈鍒版俯搴︾殑褰卞搷錛岃繖鏄鍥犱負AOB鍦ㄤ綆娓╂潯浠朵笅媧繪т細鍙楀埌鎶戝埗錛岄檷浣庢皚姘鐨勮漿鍖栫巼錛屽苟涓擜OB鐨勬椿鍖栬兘楂樹簬NOB錛屽艱嚧NO2-鐨勭Н緔涓嶈凍錛屾棤娉曚負Anam-mox鍙嶅簲鎻愪緵瓚沖熺殑搴曠墿銆
鐒惰岋紝鏈夌爺絀跺彂鐜幫紝褰揂nammox鐢遍珮娓(30鈩)鍚戜綆娓(10鈩)鍙樺寲鏃訛紝AnAOB浼樺娍鑿屽睘鐢盋a.Bro-cadia杞鍙樹負Ca.Kuenenia錛岃存槑鏌愪簺AnAOB鍙浠ュ湪浣庢俯涓嬭繘琛屾湁鏁堢殑Anammox榪囩▼銆俈.Kouba絳夊湪21鍀23鈩冩潯浠朵笅錛屾垚鍔熻繍琛屼簡涓孌靛紡鐭紼嬬濆寲鍘屾哀姘ㄦ哀鍖朚BBR鍙嶅簲鍣錛屽苟榪涗竴姝ラ檷浣庢俯搴︼紝鍦12.5鈩冪殑鏉′歡涓嬶紝閫氳繃鎵規¤瘯楠岃瘉鏄嶢nAOB涔熷叿鏈夎緝寮虹殑媧繪с擭RR=40g/(m3•d)銆曪紝鑰屼綆娓╁圭煭紼嬬濆寲鐨勫獎鍝嶆洿涓烘樉钁楋紝浠庤屾彁鍑篈OB鐨勪綆媧繪ф槸鎶戝埗PN/A浣庢俯榪愯岀殑鍘熷洜錛岃繖鍙浠ラ氳繃涓ゆ靛紡PN/A榪涜屾敼鍠勩
M.Laureni絳夐噰鐢⊿BR鍙嶅簲鍣ㄨ繘琛屼竴孌靛紡PN/A璇曢獙錛屾帶鍒舵俯搴︾敱29鈩冮樁姊寮忛掑噺鑷12.5鈩冿紝鍙戠幇鍦15鍀12.5鈩冩椂錛屽弽搴斿櫒鑴辨愛鎬ц兘鐨勫急鍖栫▼搴︽洿涓烘樉钁楋紝璇存槑娓╁害綰挎у彉鍖栨椂錛屽井鐢熺墿鐨勬椿鎬у皢鍙戠敓澶嶆潅鐨勫彉鍖栵紝榪欎笌J.A.SanchezGuillen絳夌殑璇曢獙緇撴灉鐩鎬竴鑷淬傚彟澶栵紝M.Tomaszewski絳夊湪鐮旂┒涓鍙戠幇錛岄殢鐫娓╁害鐨勯檷浣庯紝AnAOB鏈閫傚疁鐨刾H鑼冨洿鍑忓皬錛屽嵆鍦ㄤ綆娓╂潯浠朵笅錛岄傚綋鍦版彁楂榩H鍙浠ユ彁楂楢nammox宸ヨ壓鐨勮劚姘鏁堢巼銆
2.2鏈夋満鐗
2.2.1鏈夋満鐗╃殑褰卞搷
涓鑸璁や負錛屾湁鏈虹墿浼氫績榪涘紓鍏誨井鐢熺墿鐨勫炴畺錛岃繖浜涘井鐢熺墿浼氬崰鎹瓵nAOB鐢熷瓨絀洪棿錛屼粠鑰屽獎鍝嶈劚姘鎬ц兘銆備絾涓嶅悓鐨勬湁鏈虹墿瀵笰nammox鐨勫獎鍝嶄笉鍚屻傜爺絀跺彂鐜幫紝鐢查唶銆佷箼閱囩瓑閱囩被浼氭姂鍒禔nammox榪囩▼;钁¤悇緋栥佺敳閰哥洂絳夊瑰叾鎬ц兘涓嶄細閫犳垚褰卞搷;鑰屼箼閰哥洂銆佷笝閰哥洂涓嶄粎涓嶅獎鍝嶏紝榪樺彲浠ヨ獳nAOB鍒╃敤銆
濡侰a.Brocadiafulgida鑳藉熶互涔欓吀浣滅數瀛愪緵浣擄紝Ca.Anammoxoglobuspropionicus鍙浠ュ埄鐢ㄤ笝閰搞傛昏岃█涔嬶紝鏈夋満鐗╁笰nammox鐨勬姂鍒朵笌淇冭繘灝氶渶榪涗竴姝ョ爺絀訛紝榪欏笰nammox鍦ㄤ富嫻佸伐鑹轟腑鐨勫簲鐢ㄥ叿鏈夐噸瑕佹剰涔夈
2.2.2紕蟲愛姣旂殑褰卞搷
瀵逛簬鍏ㄧ▼鑷鍏昏劚姘宸ヨ壓錛屽湪榪涙按C/TN<0.5鏃訛紝鍙浠ヨ幏寰楄緝濂界殑鑴辨愛鎬ц兘錛屼篃鏈夎や負0.7涓洪傚悎Anammox宸ヨ壓鐨凜/N銆斻傚綋璋冩暣C/N鍦ㄦ渶浣寵寖鍥翠箣鍐呮椂錛屽彲浠ヤ繚璇佺郴緇熼暱鏈熷勪簬紼沖畾鐘舵併備絾鏈夌爺絀跺彂鐜幫紝鍦ㄨ緝楂樼殑C/N鏉′歡涓嬩篃鍙鑳藉疄鐜板弽搴斿櫒鐨勫惎鍔ㄤ笌姝e父榪愯屻
F.Persson絳夊湪涓孌靛紡PN/AMBBR鍙嶅簲鍣ㄤ腑錛岃冨療浜嗕笉鍚岀殑C/NH4+-N瀵瑰弽搴斿櫒鑴辨愛鎬ц兘鐨勫獎鍝嶃傜粨鏋滆〃鏄庯紝褰撹繘姘碈/NH4+-N鍗囬珮鑷1.12鏃訛紝鑴辨愛鏁堟灉鏄庢樉涓嬮檷銆
浣嗗疄楠屼篃鍙戠幇錛屾愛鍘婚櫎璐熻嵎騫墮潪闅忕潃C/NH4+-N鐨勫崌楂樿岀粷瀵歸檷浣庯紝濡傜2闃舵典笌絎1闃舵電浉姣旓紝C/NH4+-N涓婂崌錛屼絾姘鍘婚櫎璐熻嵎澧炲姞錛岃繖鍙鑳戒笌榪涙按姘ㄦ愛嫻撳害瓚沖熼珮鎴朇/NH4+-N灝氫綆錛岃繕涓嶈凍浠ュ獎鍝嶇郴緇熺殑鑴辨愛鎬ц兘鏈夊叧銆
A.Malovanyy絳夊湪1涓涓璇昅BBR鍙嶅簲鍣ㄤ腑鍙戠幇浜嗙浉浼肩殑鐜拌薄錛屽綋C/TN鐢1.19鍙樹負2.31鏃訛紝姘鍘婚櫎鏁堢巼鐢35%涓嬮檷鑷19%錛岃屽綋C/TN涓1.61鏃訛紝姘鍘婚櫎鏁堢巼涓40%銆傝繖璇存槑鍦ㄤ綆娓┿佷綆姘ㄦ愛嫻撳害鐨勪富嫻佹潯浠朵笅錛岀浉杈冧簬渚ф祦鏉′歡C/TN瀵圭郴緇熻劚姘鎬ц兘鐨勫獎鍝嶆洿澶с傛墍浠ワ紝蹇呴』灝藉彲鑳藉湴闄嶄綆涓繪祦奼℃按涓鏈夋満鐗╁惈閲忋
2.2.3紕崇殑鍘婚櫎
紕崇殑鍘婚櫎鏁堟灉涓嶄粎鍏崇郴鍒拌兘鍚︿負AnAOB钀ラ犻傚疁鐨勭幆澧冿紝榪樹細褰卞搷鑳芥簮鐨勫洖鏀躲傚湪奼℃按澶勭悊榪囩▼涓鍘婚櫎鍚紕蟲湁鏈虹墿錛岄氬父閲囩敤鐨勬柟娉曟湁鍒濇矇奼犲勭悊銆佸寲瀛﹀己鍖栧垵綰у勭悊銆侀珮璐熻嵎媧繪ф薄娉ユ硶鎴栧嚑縐嶆柟娉曠殑鑱斿悎絳夈
鎹鏂囩尞鎶ラ亾錛岀敤楂樿礋鑽鋒椿鎬ф薄娉ユ硶瀵圭敓媧繪薄姘磋繘琛屽墠澶勭悊錛屽彲閮ㄥ垎鍘婚櫎姘翠腑鐨凜OD錛屼粠鑰屽緱鍒頒綆C/TN鐨勫嚭姘淬備互涔嬩綔涓篈nammox宸ヨ壓鐨勮繘姘達紝鑳藉熺『淇濊緝楂樼殑鎬繪愛鍘婚櫎鏁堢巼銆(80鹵4)%銆曘侫.Malovanyy絳夊湪瀹為獙瀹よ繍琛屾潯浠朵笅錛岄噰鐢║ASB鍙嶅簲鍣ㄥ勭悊鍩庡競奼℃按錛岄檷浣庝簡姘翠腑COD鐨勯噺錛屽嚭姘碈OD騫沖潎涓61mg/L銆
浠ユゅ嚭姘翠綔涓篈nammox涓哄熀紜宸ヨ壓鐨凪BBR鍙嶅簲鍣ㄨ繘姘達紝璇ュ弽搴斿櫒紼沖畾榪愯屼簡21涓鏈堛俌andongYang絳夐噰鐢ㄥ己鍖栫敓鐗╅櫎紓峰弽搴斿櫒錛屽湪浣嶩RT銆佷綆SRT鐨勮繍琛屾潯浠朵笅錛屼嬌奼℃按COD浠237.5mg/L闄嶈嚦56.1mg/L錛屼繚璇佷簡鍚庣畫鍙嶅簲鍣ㄧ殑澶勭悊鏁堟灉銆
2.3婧惰В姘
鍦≒N/A緋葷粺閲岋紝涓鑸璁や負婧惰В姘(DO)鐨勫瓨鍦ㄤ細淇冭繘NOB鐨勭敓闀匡紝鍏朵笌AnAOB絝炰簤搴曠墿錛屼粠鑰屽獎鍝岮nammox鍙嶅簲鎬ц兘銆俋uemingChen絳夐噰鐢ㄨ啘鐢熺墿鍙嶅簲鍣ㄥ垎鍒澶勭悊妯℃嫙涓繪祦鍜屼晶嫻佸惈姘搴熸按錛屽彂鐜伴殢姘ц〃闈㈣礋鑽風殑澧炲ぇ錛孨OB鐨勯噺鍧囧炲姞銆備絾YandongYang絳夊湪涓繪祦鏉′歡涓嬬殑鐮旂┒涓鍙戠幇錛屼繚鎸佷竴瀹氱殑奼℃償嫻撳害銆侀傚綋鍦板崌楂楧O鍙浠ユ彁楂樿劚姘鎬ц兘錛屽綋DO鐢0.15mg/L澧炶嚦0.3mg/L鏃訛紝姘鍘婚櫎璐熻嵎鍙鎻愰珮鍒0.105kg/(m3•d)銆傚彟澶栵紝奼℃償鐨勫艦鎬佷笉鍚岋紝瀵笵O鐨勯傚簲鑳藉姏涔熶笉灝界浉鍚屻傚湪棰楃矑奼℃償鍜岀敓鐗╄啘涓錛屽ソ姘ц弻涓庡帉姘ц弻浼氬嚭鐜板垎灞傜殑鎯呭喌錛屽嵆濂芥哀鑿屽垎甯冨湪澶栧眰姘ф皵杈冨氱殑閮ㄥ垎錛岃屽帉姘ц弻鍒嗗竷鍦ㄧ浉瀵瑰唴灞傘
涓繪祦鏉′歡涓嬶紝姘翠腑鐨凢A涓嶈凍浠ユ姂鍒禢OB鐨勬椿鎬э紝鐗瑰埆鏄闀挎湡澶勫湪浣庢哀鏉′歡鏃訛紝NOB瀵規哀鐨勭珵浜夎佹瘮AOB寮猴紝榪欎篃瀵艱嚧緋葷粺涓鏇村規槗浜х敓紜濋吀鐩愯岄潪姘姘斻備絾E.Isanta絳夊彂鐜幫紝涓嶅悓灞炵殑NOB瀵規哀鐨勪翰鍜屽姏涓嶅悓銆侱O杈冧綆鏃訛紝紜濆寲鏉嗚弻鐨勬椿鎬у急浜嶢OB錛岃繖涓篘OB鐨勬姂鍒舵彁渚涗簡鍙鑳姐備笉榪囷紝濡備綍鍦ㄥ惎鍔ㄩ樁孌典嬌紜濆寲鏉嗚弻鍦ㄨ弻緹ゅ唴鍗犳瘮鏈澶э紝闇瑕佽繘涓姝ョ爺絀躲
2.4緋葷粺鏋勬垚
PN/A宸ヨ壓鐨勭郴緇熸瀯鎴愭湁涓孌靛紡鍜屼袱孌靛紡2縐嶏紝鍦ㄥ凡鎶曞叆鐢熶駭鐨勪互PN/A涓哄熀紜宸ヨ壓鐨勬薄姘村勭悊鍘備腑錛屼竴孌靛紡鍗犳瘮榪90%錛屽叾涓昏佸簲鐢ㄤ簬渚ф祦銆備竴孌靛紡鍩哄緩璐圭敤浣庯紝涓姘у寲姘銆佷竴姘у寲浜屾愛鎺掓斁閲忓皯錛屽彲浠ラ檷浣庡瑰ぇ姘旂殑奼℃煋紼嬪害銆
浣嗕竴孌靛紡鐨勮繍琛岄氬父鍙楀埌DO鍜孨O2-鐨勫獎鍝嶏紝DO闇鎺у埗鍦ㄨ緝浣庢祿搴;NOB娑堣桸O2-浼氶犳垚Anammox榪囩▼搴曠墿涓嶈凍銆備袱孌靛紡鏄鍦2涓鍙嶅簲鍣ㄥ唴鍒嗗埆榪涜岀煭紼嬬濆寲鍜孉nammox榪囩▼錛屼笖鍙瀵圭煭紼嬬濆寲孌佃繘琛屾洕姘旓紝Anammox鍙浠ュ湪緙烘哀鏉′歡涓嬭繍琛岋紝閬垮厤浜哊OB絝炰簤NO2-銆傚彟澶栵紝鍦ㄥ勭悊楂樻皚姘搴熸按鏃訛紝涓ゆ靛紡鐩稿逛簬涓孌靛紡宸ヨ壓榪愯屾垚鏈杈冧綆錛屽彲浠ヤ竴瀹氱▼搴︿笂琛ュ伩楂樺熀寤烘姇鍏ャ
涓孌靛紡PN/A鍦ㄤ晶嫻佷笂鐨勫簲鐢ㄥ凡鏃ユ笎鎴愮啛錛屼絾鍩庡競奼℃按涓繪祦鍏鋒湁娓╁害浣庛佹皚姘嫻撳害浣庛佹愛璐熻嵎涓嶇ǔ瀹氫互鍙婂嚭姘存按璐ㄨ佹眰涓ヨ嫑絳夌壒寰侊紝鍥犳ゅ叾鍦ㄤ富嫻佷笂鐨勫簲鐢ㄥ皢闈涓存洿澶х殑鎸戞垬銆備袱孌靛紡宸ョ▼涓婂簲鐢ㄧ浉瀵硅緝灝戱紝鍩哄緩鎴愭湰鍋忛珮絳夌粡嫻庡洜緔犲彲鑳介檺鍒跺叾鍦ㄤ富嫻佹潯浠朵笅鐨勫簲鐢ㄣ
3銆丄nammox鍦ㄤ富嫻佸勭悊宸ヨ壓涓鐨勭ǔ瀹氳繍琛
鐢變簬AnAOB鐢熼暱閫熺巼姣擜OB鎱錛屾墍浠ュ湪PN/A鍚鍔ㄩ樁孌碉紝AnAOB鐨勫瘜闆嗘槸闄愬埗姝ラゃ傚ぇ澶氭暟Anammox宸ヨ壓鐨勫惎鍔ㄦ槸浠庨傚疁鐨勬俯搴﹀拰杈冮珮鐨勬皚姘嫻撳害鏉′歡涓嬪紑濮嬬殑錛岀1搴х敓浜ц勬ā鐨勫帉姘ф皚姘у寲奼℃按澶勭悊鍘傜殑鍚鍔ㄨ繘姘翠負鍘屾哀娑堝寲娑層
鍦ㄥ疄楠屽ゅ煿鍏諱腑錛屽弽搴斿櫒澶氭帴縐嶇嶆償錛岃繍琛屾潯浠墮噰鐢ㄩ樁姊寮忛掑噺鐨勬柟寮忥紝閫愭笎紼沖畾鍦伴檷浣庢俯搴﹀拰姘ㄦ愛嫻撳害錛屼嬌AnAOB鍦ㄤ笉鍒╃殑榪愯屾潯浠朵笅鏈夎緝寮虹殑媧繪с傚逛簬縐嶆償鎺ョ嶏紝鏈夌爺絀朵漢鍛樻彁鍑轟簡鈥滅敓鎬佸啘鍦衡濇傚康錛屽嵆鍙浠ヤ粠鈥滃啘鍦衡濅腑鎻愬彇閮ㄥ垎濉鏂欙紝鐢ㄤ互鍙嶅簲鍣ㄧ殑蹇閫熷惎鍔ㄣ
Anammox鍦ㄤ富嫻佹按澶勭悊宸ヨ壓涓鐨勭ǔ瀹氳繍琛屼細鍙楀埌奼℃償褰㈡併丏O銆佹俯搴︺乸H絳夊氱嶅洜緔犵殑褰卞搷銆傛薄娉ュ艦鎬佷笉鍚岋紝浼氶犳垚寰鐢熺墿縐嶇被涓嶅悓錛岃繘鑰屽獎鍝嶄富嫻佸伐鑹虹殑紼沖畾榪愯屻俆.Lotti絳夌爺絀跺彂鐜幫紝鎮嫻奼℃償涓瑼nAOB鐨勯噺寰涔庡叾寰錛岃屽湪棰楃矑奼℃償涓瀛樺湪鍒嗗眰緇撴瀯錛屽嵆棰楃矑奼℃償鐨勫栧眰涓篈OB絳夊ソ姘ц弻錛屽唴灞傚寘瑁圭潃AnAOB銆傚悓鏍鳳紝鍦ㄧ敓鐗╄啘涓婁篃浼氱敱琛ㄥ強閲屽嚭鐜板垎灞傜粨鏋勩
姝ゅ栵紝鎮嫻奼℃償涓嶆槗鍦ㄧ郴緇熶腑鎸佺暀錛岃岄楃矑奼℃償銆佺敓鐗╄啘鏈夊埄浜庡井鐢熺墿鍦ㄤ綋緋諱腑鐨勫瓨鐣欍傝繖琛ㄦ槑錛岀敓鐗╄啘鍜岄楃矑奼℃償鍦ㄤ富嫻丄nammox搴旂敤涓鏇存湁浼樺娍銆
鍊煎緱涓鎻愮殑鏄錛屽綋棰楃矑奼℃償綺掑緞<400渭m鏃訛紝CandidatusJettenia鍦ㄦ薄娉ヤ腑鍗犱富瀵煎湴浣嶏紝璇存槑璇ュ睘瀵逛簬鑴辨愛鍙鑳芥湁閲嶈佺殑浣滅敤銆侻.Ali絳夐噰鐢ㄥ嚌鑳跺滻瀹氭硶鍥哄畾寰鐢熺墿錛屽叾涓庨楃矑奼℃償鐩告瘮錛屽彲鍦ㄧ煭鏃墮棿鍐呭揩閫熸彁楂樻愛鍘婚櫎璐熻嵎錛岃ユ柟娉曟瀬澶у湴淇冭繘浜咥nAOB鍦ㄧ敓鐞嗐佺敓鍖栫瓑鏂歸潰鐨勭爺絀躲
DO浼氫績榪汵OB絳夊紓鍏誨井鐢熺墿鐨勫炴畺錛屼負浜嗙淮鎸佽繍琛岀ǔ瀹氾紝涓鏂歸潰闇瀵笵O榪涜岀簿紜鎺у埗錛屽彟涓鏂歸潰闇娣樻礂鍑轟互緄鐘跺艦鎬佸瓨鍦ㄧ殑NOB奼℃償錛屽湪浣撶郴涓浠呯暀涓嬮楃矑褰㈡佺殑AOB銆丄nAOB錛屼互闄嶄綆寮傚吇寰鐢熺墿瀵瑰伐鑹虹ǔ瀹氭х殑褰卞搷銆
AnAOB鍦ㄤ綆娓╂潯浠(10銆20鈩)涓嬮暱鏈熷煿鍏誨悗錛屽彲浠ラ傚簲榪欎竴娓╁害鏉′歡錛屼絾娓╁害浠ュ強pH鐨勫彉鍖栦細瀵圭ǔ瀹氱殑浣撶郴閫犳垚鍐插嚮銆傛俯搴﹀獎鍝嶆晥搴斾細闅忔俯搴︾殑闄嶄綆鑰岃秺鍙戞槑鏄撅紝榪欒〃鏄庡湪浣庢俯鏉′歡涓嬶紝Anam-mox鏇存槗澶辯ǔ銆
鎵浠ュ湪宸ヨ壓鍚鍔ㄤ互鍙婄ǔ瀹氳繍琛岄樁孌碉紝娓╁害搴旈愮駭闃舵寮忛掑噺銆傛ゅ栵紝鍦ㄤ綆娓╂潯浠朵笅錛岄傚綋鍦版彁楂榩H鍙浠ヤ繚鎸佺郴緇熺殑鎬ц兘銆侼.Morales絳夎や負錛岀敓鐗╅噺瓚婂ぇ錛岃秺鏈夊埄浜庢姷鎶楁俯搴︾瓑涓嶅埄鏉′歡鐨勫獎鍝嶃
鍙瑙侊紝鍗曞洜緔犵殑鍙樺寲鍗充細瀵笰nammox鎬ц兘閫犳垚褰卞搷銆傚洜姝わ紝涓轟簡鏇村ソ鍦板湪涓繪祦宸ヨ壓涓緇存寔Anam-mox榪囩▼錛岄渶瑕佽繘琛屽氬洜緔犳帶鍒訛紝浠ュ厖鍒嗕繚璇佺郴緇熺殑紼沖畾鎬с
4緇撹
(1)鍘屾哀姘ㄦ哀鍖栧湪奼℃按涓繪祦澶勭悊宸ヨ壓涓搴旂敤鐨勯檺鍒跺洜緔犱富瑕佹湁浣庢俯銆佷綆姘ㄦ愛嫻撳害銆佽緝楂樼殑C/N浠ュ強NOB鐨勭敓闀跨瓑銆傚皢鍘屾哀姘ㄦ哀鍖栧簲鐢ㄤ簬涓繪祦宸ヨ壓鏃訛紝閫氬父闇瑕侀氳繃棰勫勭悊鏉ヨ繘琛岀⒊姘紓峰垎紱伙紝灝藉彲鑳介檷浣庢湁鏈虹墿鍜岀7瀵笰nammox榪囩▼鐨勫獎鍝嶏紝鍚屾椂瀹炵幇璧勬簮鍜岃兘婧愮殑鍥炴敹銆
(2)鍘屾哀姘ㄦ哀鍖栧湪涓繪祦宸ヨ壓涓鐨勭ǔ瀹氳繍琛岋紝鍙浠ラ氳繃鍏堝湪渚ф祦鏉′歡涓嬪瑰帉姘ф皚姘у寲鑿岃繘琛屽煿鍏匯佸炴畺錛岃幏寰椾竴瀹氶噺鐨凙nammox鐢熺墿閲;鐩稿圭ǔ瀹氫箣鍚庯紝鍐嶉檷浣庢俯搴︺佽繘姘存皚姘嫻撳害絳;鍦ㄦ俯搴︺佹皚姘嫻撳害閫愭搴﹂掑噺鏃訛紝搴斿悎鐞嗘帶鍒舵搴︾殑澶у皬鍜岀ǔ瀹氭椂闂淬傜敱浜庡崟鍥犵礌鐨勫彉鍖栧嵆浼氶犳垚緋葷粺鐨勫け紼籌紝鍥犳わ紝閫氳繃娓╁害銆乸H絳夊氬洜緔犳帶鍒跺彲浠ョ淮鎸佹洿濂界殑涓繪祦Anammox紼沖畾鎬с
(3)褰撲粖Anammox鍦ㄦ薄姘翠富嫻佸伐鑹轟腑鐨勫簲鐢ㄥ氫負涓孌靛紡PN/A緋葷粺錛岄楃矑奼℃償銆佺敓鐗╄啘鐩稿逛簬緄鐘舵薄娉ユ洿閫傚疁AnAOB鍦ㄧ郴緇熶腑鐨勭敓闀垮拰鎸佺暀錛屼篃鍏鋒湁鏇村己鐨勮愬啿鍑繪с傚洜姝わ紝涓繪祦鍘屾哀姘ㄦ哀鍖栫殑鍙戝睍搴旂潃閲嶄簬閲囩敤榪2縐嶆薄娉ュ艦寮忋
鏇村氬叧浜庡伐紼/鏈嶅姟/閲囪喘綾葷殑鏍囦功浠e啓鍒朵綔錛屾彁鍗囦腑鏍囩巼錛屾偍鍙浠ョ偣鍑誨簳閮ㄥ畼緗戝㈡湇鍏嶈垂鍜ㄨ錛https://bid.lcyff.com/#/?source=bdzd
㈥ 廢水處理的技術
【技術概述】
微電解技術是處理高濃度有機廢水的一種理想工藝,該工藝用於高鹽、難降解、高色度廢水的處理不但能大幅度地降低cod和色度,還可大大提高廢水的可生化性。
該技術是在不通電的情況下,利用微電解設備中填充的微電解填料產生「原電池」效應對廢水進行處理。當通水後,在設備內會形成無數的電位差達1.2V 的「原電池」。「原電池」以廢水做電解質,通過放電形成電流對廢水進行電解氧化和還原處理,以達到降解有機污染物的目的。在處理過程中產生的新生態[?O H] 、[H] 、[O]、Fe2+ 、Fe3+等能與廢水中的許多組分發生氧化還原反應,比如能破壞有色廢水中的有色物質的發色基團或助色基團,甚至斷鏈,達到降解脫色的作用;生成的Fe2+ 進一步氧化成Fe3 +,它們的水合物具有較強的吸附- 絮凝活性,特別是在加鹼調pH 值後生成氫氧化亞鐵和氫氧化鐵膠體絮凝劑,它們的絮凝能力遠遠高於一般葯劑水解得到的氫氧化鐵膠體,能大量絮凝水體中分散的微小顆粒、金屬粒子及有機大分子.其工作原理基於電化學、氧化- 還原、物理以及絮凝沉澱的共同作用。該工藝具有適用范圍廣、處理效果好、成本低廉、處理時間短、操作維護方便、電力消耗低等優點,可廣泛應用於工業廢水的預處理和深度處理中。
【技術特點】
⑴反應速率快,一般工業廢水只需要半小時至數小時;
⑵作用有機污染物質范圍廣,如:含有偶氟、碳雙鍵、硝基、鹵代基結構的難除降解有機物質等都有很好的降解效果;
⑶工藝流程簡單、使用壽命長、投資費用少、操作維護方便、運行成本低、處理效果穩定。處理過程中只消耗少量的微電解填料。填料只需定期添加無需更換,添加時直接投入即可。
⑷廢水經微電解處理後會在水中形成原生態的亞鐵或鐵離子,具有比普通混凝劑更好的混凝作用,無需再加鐵鹽等混凝劑,COD去除率高,並且不會對水造成二次污染;
⑸具有良好的混凝效果,色度、COD去除率高,同量可在很大程度上提高廢水的可生化性。
⑹該方法可以達到化學沉澱除磷的效果,還可以通過還原除重金屬;
⑺對已建成未達標的高濃度有機廢水處理工程,用該技術作為已建工程廢水的預處理,即可確保廢水處理後穩定達標排放。也可將生產廢水中濃度較高的部分廢水單獨引出進行微電解處理。
⑻該技術各單元可作為單獨處理方法使用,又可作為生物處理的前處理工藝,利於污泥的沉降和生物掛膜
【適用廢水種類】
⑴.染料、化工、制葯廢水;焦化、石油廢水; ------上述廢水處理水後的BOD/COD值大幅度提高。
⑵. 印染廢水;皮革廢水;造紙廢水、木材加工廢水;
------對脫色有很好的應用,同時對COD與氨氮有效去除。
⑶. 電鍍廢水;印刷廢水;采礦廢水;其他含有重金屬的廢水;
------可以從上述廢水中去除重金屬。
⑷. 有機磷農業廢水;有機氯農業廢水;
------大大提高上述廢水的可生化性,且可除磷,除硫化物
新型填料
【技術概述】
它由多元金屬合金融合催化劑並採用高溫微孔活化技術生產而成,屬新型投加式無板結微電解填料。作用於廢水,可高效去除COD、降低色度、提高可生化性,處理效果穩定持久,同時可避免運行過程中的填料鈍化、板結等現象。本填料是微電解反應持續作用的重要保證,為當前化工廢水的處理帶來了新的生機。
【鐵炭原電池反應】
陽極:Fe - 2e →Fe2+ E(Fe / Fe2+)=0.44V
陰極:2H﹢ + 2e →H2 E(H﹢/ H2)=0.00V
當有氧存在時,陰極反應如下:
O2 + 4H﹢ + 4e → 2H2O E (O2)=1.23V
O2 + 2H2O + 4e → 4OH﹣ E(O2/OH﹣)=0.41V 電鍍和金屬加工業廢水中鋅的主要來源是電鍍或酸洗的拖帶液。污染物經金屬漂洗過程又轉移到漂洗水中。酸洗工序包括將金屬(鋅或銅)先浸在強酸中以去除表面的氧化物,隨後再浸入含強鉻酸的光亮劑中進行增光處理。
該廢水中含有大量的鹽酸和鋅、銅等重金屬離子及有機光亮劑等,毒性較大,有些還含致癌、致畸、致突變的劇毒物質,對人類危害極大。因此,對電鍍廢水必須認真進行回收處理,做到消除或減少其對環境的污染。
電鍍混合廢水處理設備由調節池、加葯箱、還原池、中和反應池、pH調節池、絮凝池、斜管沉澱池、廂式壓濾機、清水池、氣浮反應,活性炭過濾器等組成。
電鍍廢水處理採用鐵屑內電解處理工藝,該技術主要是利用經過活化的工業廢鐵屑凈化廢水,當廢水與填料接觸時,發生電化學反應、化學反應和物理作用,包括催化、氧化、還原、置換、共沉、絮凝、吸附等綜合作用,將廢水中的各種金屬離子去除,使廢水得到凈化。 重金屬廢水主要來自礦山、冶煉、電解、電鍍、農葯、醫葯、油漆、顏料等企業排出的廢水。如果不對重金屬廢水處理,就會嚴重污染環境。廢水處理中重金屬的種類、含量及存在形態隨不同生產企業而異。除重金屬在廢水處理中顯得很重要。
由於重金屬不能分解破壞,而只能轉移它們的存在位置和轉變它們的物理和化學形態,達到除重金屬的目的。例如,廢水處理過程中,經化學沉澱處理後,廢水中的重金屬從溶解的離子形態轉變成難溶性化合物而沉澱下來,從水中轉移到污泥中;經離子交換處理後,廢水中的重金屬離子轉移到離子交換樹脂上,經再生後又從離子交換樹脂上轉移到再生廢液中。
因此,廢水處理除重金屬原則是:
除重金屬原則一:最根本的是改革生產工藝.不用或少用毒性大的重金屬;
除重金屬原則二:是採用合理的工藝流程、科學的管理和操作,減少重金屬用量和隨廢水流失量,盡量減少外排廢水量。重金屬廢水處理應當在產生地點就地處理,不同其他廢水混合,以免使處理復雜化。更不應當不經除重金屬處理直接排入城市下水道,以免擴大重金屬污染。
廢水處理除重金屬的方法,通常可分為兩類:
除重金屬方法一:是使廢水中呈溶解狀態的重金屬轉變成不溶的金屬化合物或元素,經沉澱和上浮從廢水中去除.可應用方法如中和沉澱法、硫化物沉澱法、上浮分離法、電解沉澱(或上浮)法、隔膜電解法等廢水處理法;
除重金屬方法二:是將廢水中的重金屬在不改變其化學形態的條件下進行濃縮和分離,可應用方法有反滲透法、電滲析法、蒸發法和離子交換法等。這些廢水處理方法應根據廢水水質、水量等情況單獨或組合使用。 陶瓷膜也稱GT膜,是以無機陶瓷原料經特殊工藝制備而成的非對稱膜,呈管狀或多通道狀。陶瓷膜管壁密布微孔,在壓力作用下,原料液在膜管內或膜外側流動,小分子物質(或液體)透過膜,大分子物質(或固體顆粒、液體液滴)被膜截留從而達到固液分離、濃縮和純化之目的。
在膜科學技術領域開發應用較早的是有機膜,這種膜容易制備、容易成型、性能良好、價格便宜,已成為應用最廣泛的微濾膜類型。但隨著膜分離技術及其應用的發展,對膜的使用條件提出了越來越高的要求,需要研製開發出極端條件膜固液分離系統,和有機膜相比,無機陶瓷膜具有耐高溫、化學穩定性好,能耐酸、耐鹼、耐有機溶劑、機械強度高,可反向沖洗、抗微生物能力強、可清洗性強、孔徑分布窄,滲透量大,膜通量高、分離性能好和使用壽命長等特點。
無機陶瓷膜在廢水處理中應用最大的障礙主要有二個方面,其一是製造過程復雜,成本高,價格昂貴;其二是膜通量問題,只有克服膜污染並提高膜的過濾通量,才能真正推廣應用到水處理的各個領域。
特點
⑴獨有的雙層膜結構:滌餌DEAR無機陶瓷膜系統在在膜過濾層表面,通過溶膠一凝膠法制備TiO2溶膠,採用浸漬提拉法在陶瓷膜上塗敷納米TiO2光催化材料,使陶瓷膜表面具有「自潔」功能,減緩有機在膜表面積累和堵塞,一方面降低膜污染,另一方面提高陶瓷膜管強度和膜過濾通量,提高膜通量穩定性;Al2O3—ZrO2復合膜結構:使膜管機械性能更加優良,由於材料本身的性能缺陷或制備過程中存在的一些實際問題,單一無機膜材料一般不能滿足實際需要,因此無機負載復合分離膜的研製得到迅速發展,滌餌DEAR無機陶瓷膜採用整體復合技術,通過溶膠凝膠法,制備Al2O3—ZrO2復合膜,由於含ZrO2材料與Al2O3、SiO2和TiO2等材料相比具有更好的機械強度、化學耐久性和抗鹼侵蝕等特性,滌餌DEAR®;無機陶瓷膜具有更強的機械強度和熱穩定性,而且復合膜的孔徑分布窄,呈單峰。
⑵可實現在線反沖,膜通量穩定:由於復合陶瓷膜獨特結構和機械性能,能有效承受0.4mp以下的反沖壓力,可實現在線反沖,從而獲得穩定的膜通量,克服了無機膜系統在水處理應用中價格高、易污染、膜通量小、設備龐大等問題,使無機陶瓷膜系統在水處理中應用成為可能。滌餌DEAR無機陶瓷膜是專為污水處理設計的,其最大特點是膜通量大,其運行膜通量是有機膜10-100倍,是普通多孔陶瓷膜的50-10倍、機械強度高、耐污染、可實現在線反沖。
技術參數
膜層厚度:50—60μm,膜孔徑0.01-0.5μm;
氣孔率:44—46%;
過濾壓力:1.0 Mpa,反沖壓力:0.4 Mpa以下;
膜材質:雙層膜,外膜TiO2;內膜Al2O3—ZrO2復合膜
應用領域
中水回用;
工業廢水回用:
工廠化養殖原水解毒處理;
發電廠、化工廠等大型冷卻循環水旁濾系統;
油田采出水回用處理;
軋鋼乳化液廢液處理;
金屬表面清洗液再生處理。
㈦ 污水處理中主流工藝和側流工藝的區別
這兩個不是一個意思的。
所謂主流工藝,就是常規的、有代表性的處理工版藝。例如A2O,CASS都是主流權工藝。
側流工藝是一種專門的工藝名稱。通俗理解就是一種液體分離系統。在常規工藝里添加一個有足夠停留時間的停留池。然後上清液和下層濃縮液分別用不同的方法進行處理,然後再匯合後進入下個操作單元,就是常規的測流工藝