導航:首頁 > 廢水知識 > 廢鹼水回用系統

廢鹼水回用系統

發布時間:2024-07-05 16:43:25

⑴ 什麼工藝能夠去除廢水總氮

總氮去除工復藝方法有很制多,要達到好的脫氮效果,首先對自己的總氮水質情況及脫氮要求有明確的目標,再去選擇合適的工藝,如IDN-BMP總氮處理集成裝備,核心技術為蒙特利復合桿菌+CFD 模擬模擬+專利脫氣裝置+超細纖維絲生物巢,脫氮效率高,輕松達到脫氮要求,詳情請咨詢蘇州湛清環保科技有限公司。

⑵ 氯鹼化工綜合廢水處理回用

氯鹼化工綜合廢水處理及回用具體內容是什麼,下面中達咨詢為大家解答。
採用NaC1溶液和電解飽和的方法支取氫氣、氯氣、氫氧化鈉,應以此為原料對化工產品進行生產的工業為氯鹼化工。在石油化學、冶金工業、紡織工業、輕工業等行業領域廣泛應用到氯鹼化工產品。氯鹼化工最主要的產品是燒鹼,現階段,常用的使用燒鹼的方法是離子交換膜法,該方法具有無污染、低能耗的特點。在生產氯鹼化工時,需要使用大量的水。而PVC、氯鹼生產過程中產生的各種廢水是氯鹼化工生產廢水的主要來源。乾燥工序廢水、氯乙烯合成廢水、電石渣廢水等均為在PVC生產過程中產生。鹼蒸發工藝冷凝液、各工序酸鹼廢水、螯合樹脂再生廢水、化鹽工序鹽水等均在氯鹼生產過程中產生。
1 氯鹼化工廢水特徵及危害
氯鹼工業廢水特點如下:第一,酸鹼、鹽、金屬催化劑等有毒有害污染物多;第二,難生物降解物質多,污染物濃度高,可生化性能低;第三,副產物多、水質成分較為復雜,生產化工產品對壓強、溫度等諸多條件要求嚴格,生產過程較為復雜,各種溶劑和輔料等物質存在於排出的廢水中;第四,生產中諸多工序需要大量的水,同時具有很大的水資源可循環利用潛力。氯鹼化工廢水中還有高有機物廢水及高濃度的鹽,若未採取相關措施進行有效處理直接排放的話危害極大,如農業生產用水、生活飲用水、水體生物等。除了外海農作物、土壤外,含鹽量高的廢水增高了地下水硬度,從而對人體產生危害。對工業設備而言,高鹽度水具有很強的腐蝕性,從很大程度上縮短了工業設備使用壽命。
2 氯鹼化工廢水處理
2.1 好氧生物處理
在生產氯鹼化工的過程中會排出酸性廢水,酸性廢水會對構築物和排水管產生腐蝕,因此需要對其進行及時處理,採用生物接觸氧化法深度處理二沉池出水,該處理工藝具有生物膜法和活性污泥法的優點,處理效果較為穩定、耐沖擊負荷、管理簡單,在生物濾池的基礎上添加曝氣發展、演變而來。
2.2 焚燒法
採用焚燒技術來處理高濃度的有機廢水,在預處理廢水後,可將有機廢水熱值提升,從而使焚燒處理的成本降低。採用蒸發工藝能夠轉化有機物的含鹽有機廢水,使其成為不含鹽的有機廢水蒸汽。含有高沸點有機物含鹽廢水中的鹼金屬鹽類和有機物不能完全被單獨蒸發預處理分離。利用萃取技術預處理蒸發殘液後,再焚燒處理脫鹽後的有機物,從焚燒對象中將鹽質完全脫離,從而分離了無機鹽和有機物。
2.3 反滲透
苦鹹水淡化中成熟運用反滲透淡化技術,該技術也能夠在脫鹽處理高濃度廢水。在某化工廠的廢水處理中應用了優化後的反滲透過程,經過工藝脫鹽,工廠廢水中還有的大量Cl-和Ca2+,脫鹽後,大幅降低了Cl-的濃度質量。
2.4 電化學法
高鹽度導電性高,對紫膠合成樹脂排放的高鹽度有機廢水採用電解絮凝法進行處理,可提升廢水透明度,將廢水中有機污染物去除。在生產染料中間體的過程中,高鹽度有機廢水會產生,對於除去廢水中有機物而言,電化學法效果很好。
3 生產廢水回用
3.1 處理、回用思路
氯鹼生產廢水很大一部分為鹼性高、鹽度大、有機物濃度大的廢水,回收處理後可以用於鍋爐煙氣脫硫除塵,或者可作為水合肼生產及PVC生產用水,部分廢水可用於強氯精、三氯氫硅尾氣的吸收。廢水經過收集後,一般廢水進入廢水處理系統調節池、沉澱池進行預處理,處理廢水工藝原則如下:技術成熟可靠、設備操作管理方便,污泥含水率應控制在一定范圍內,使其易於處理,生化處理前應進行除鹽處理。為負荷廠區環保標准、應與廠區整體規劃相符;在提升管理水平、自動控制處理過程的基礎上,靈活採用有效的廢水處理方式將設備和裝置的處理能力最大限度地發揮出來,並根據進水水質調整處理設施運行方式和參數,以此節約成本,擴大效益,降低運行費用。處理工藝應保持可靠、穩定,並且長期運行中,確保排水和廢水回用率。
3.2 回用方法
在PVC生產中,經過預處理澄清工藝處理的廢水,與乙炔發生工序所產生的電石渣廢水可以實現工序用水的循環,從而實現減少新鮮用水量,降低用水成本。另外,鹼性廢水能夠吸收一部分呈酸性的鍋爐煙氣,有機污染物濃度的高低對此工序無影響,因此在混合了PVC工序產生的電石渣廢水後,完全可用於鍋爐煙氣脫硫除塵以降低環保運行成本。此外,鹼性水能夠吸收呈酸性的三氯氫硅尾氣,且具有很大的用水量,因此三氯氫硅尾氣可用於PVC廢水中強鹼廢水處理和外排廢水處理;當鹼性缺乏時,三氯氫硅尾氣吸收用水的鹼性也可通過投加固廢電石渣的方式實施,通過這樣的方式,可以對一部分外排廢水量進行控制、減少了部分廢水排放量,還將三氯氫硅尾氣吸收的水量減少了,實現廢廢利用。檢修空冷器用水以及三氯氫硅合成爐的用水量大、且需要新鮮水。該部分對鹽度沒有特別要求,鹽度高、不含其他污染物是濃水站的特點,所以新鮮水可由濃水取代,從而實現了對空冷器、三氯氫硅合成爐的檢修。該方法既能夠控制、降低空冷器、三氯氫硅合成爐的新鮮水量,還回收了直接排放的濃水。廢水處理及回收減少了廢水的排放量以及新鮮水的使用量,同時有助於污水處理系統對負荷的控制、節約了水資源。
4 結束語
為了達到廢水回收利用的目的,文章提出處理、回收廢水的幾種方式。在生產氯鹼化工時,需要使用大量的水,而氯鹼生產過程中產生的各種廢水經過處理後部分可以作為氯鹼化工生產用水的來源,從而降低新鮮用水使用量,節約用水成本。採用生物接觸氧化法深度處理二沉池出水,該處理工藝具有生物膜法和活性污泥法的優點,利用萃取技術預處理蒸發殘液後,再焚燒處理脫鹽後的有機物,從焚燒對象中將鹽質完全脫離,從而分離了無機鹽和有機物。廢水處理及回收減少了廢水的排放量以及新鮮水的使用量,同時有助於污水處理系統對負荷的控制。三氯氫硅尾氣可用於PVC廢水中強鹼廢水處理和外排廢水處理,當廢水鹼性不夠時,三氯氫硅尾氣吸收用水的鹼性可通過投加電石渣的方式實施。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd

⑶ 電鍍廢水回用

沒什麼辦法,廢水的鹽分太高,膜法(我猜測是RO反滲透系統,不知道是不是)回回收率不答能太高,不然膜結垢問題會很嚴重,影響到膜的壽命。
如果非要回收大部分水的話,可在後面增加苦鹹水膜系統、納濾系統甚至海水淡化系統,只是性價比太低,投資於效益比例嚴重失調,得不償失的

補充:膜法處理其實有他的局限性,濃度太高的話,選膜的要求也高,而且能耗很大,出水水質未必合格。比如樓下所說的濃水回到集水箱,是不可行的,即使加強化學清洗也不行,濃水必須要排放,一旦濃水濃縮過度,連排放標准都達不到,很麻煩的。
所以你的問題,沒辦法解決,畢竟那麼高的回收率對於現階段的膜技術來說還是有難度的

⑷ 濃水與中水有什麼區別么

濃水與中水有什麼區別么?

濃水與中水區別大致如下:

1、濃水一般認為是指反滲透(RO)脫鹽處理過程中產生的高含鹽的廢水。

2、濃水是普通水處理為高純水過程中,產生的高鹽廢水,就是說普通水=濃水+脫鹽水。

3、濃水由於含高濃度的含鹽量,再生利用價值不大。(如海水淡化產生的廢水。)

4、而「中水」是指污水經適當處理後,達到一定的水質指標,滿足某種使用要求,可以進行有益使用的水。

5、「中水」也叫再生水。從經濟的角度看,「中水」的處理成本最低,從環保的角度看,污水再生利用有助於改善生態環境,實現水生態的良性迴圈。

濃水的處理方式

1、中間處理
中間處理是RO濃水處理中常見的處理方式仿慎之一,這類處理方式以降低一段濃水中各類過飽和難溶鹽、有機物以及高分子生物聚合物等能夠致膜的污染物濃度為目標,以降低其污染物結構趨勢以及二段膜污染為主要處理方式。中間處理能提高RO處理系統的產水率,同時降低RO濃水在進水量中所佔的比例。也能在很大程度上減少RO濃水後續處理所產生的費用。
2、迴圈處理
迴圈處理這種處理方式主要針對於某些配備有二級污水處理設施的再生水廠,RO濃水經過特定的預處理程式後迴流至污水處理廠內的生物處理區域內,經過一段時間的生物處理,徹底使其凈化。這類迴圈處理方法能實現RO濃水的最小量甚至零排放,對環境及水迴圈的影響最小。同時,迴圈處理也能節約污水處理廠大批量處理濃水的執行費用及投資,實現ro濃水回用。
3、廠外排放處理
這類處理方式主要適用於附近有其他城市污水處理廠或城市排水管道盯櫻系統的小型再生水廠,但在排放前需將RO濃水進行初步處理,使其主要污染指標高於城市污水處理廠或城市排水管道的限值。

溴水和濃溴水有什麼區別

濃度不同,溴水低,濃溴水高。顏色不同。見上
氧化性活潑性不同,濃的強。與其他物質反應需條件不同
濃的易達到。

軟水與DI水有什麼區別?

軟水
軟水(soft water)指的是不含或含較少可溶性鈣、鎂化合物的水。軟水不易與肥皂產生浮 渣,而硬水相反。
優勢
軟水沏茶,具有泉水的口感,較之自來水感覺更佳更好;
軟水沐浴、梳洗使您頭發光滑,面板細膩;
軟水飲用,預防結石病發病率,維護健康;
軟水洗衣,節省各種洗滌劑50%~80%;
軟水降低衣物的磨損,使衣物洗後松軟,色澤保持更長久;
軟水減少熱水器維修維護;
軟水降低管道的維修維護;
軟水減少潔具污垢的產生。
DI水
DI水:即去離子水,將水通過陰陽離子交換樹脂床,通過交換,去除水中陰,陽離子,所出水為去離子水,一般用於化學實驗室用水需要。

河水與海水有什麼區別?

海納百川

凈水與純水有什麼區別

純水一般稱呼純凈水,基本不保留水中的礦物質,PH值在6-7之間,為弱酸性,一般用於透析等醫療用水,或實驗室,電子化工等特殊用水,由於水質污染嚴重,為保障飲水安全,也用於日常飲水。是衛生,安全的飲用水。但從健康角度分析,缺乏水的自然活性,缺少礦物質,不是健康水。
凈水是把日常飲用水通過深度凈化,去除水中余氯,重金屬,細菌。等有害物質,保留礦物質等微量元素,保持水的自然活性,水質達到直飲水標准,可直接飲用,是安全,衛生,純凈,健康的飲用水

鐵水與鋼水有什麼區別?

以上各位所說的「鐵水」,是按化學元素的「鐵」定義的。
但在鋼鐵廠里所說的鐵,和鐵水都是指含碳量高的生鐵,和生鐵水。
「發現他們老在鋼水裡加入鐵水」,你誤解了!
煉鋼工人是把含碳量高的鐵水加到煉鋼爐里,經過冶煉,按要求加入適當的合金成份,保留適當的碳,除掉多餘的碳,和有害的雜質。最後成為具有特定成份的鋼

鹼水與梘水有什麼區別

沒多大區別,主要成分是一樣的,都是碳酸鈉和碳酸鉀,遇水分解出氫氧根離子,呈鹼性。
鹼水是天然鹼,主要的成分是碳酸鈉和碳酸鉀。梘水,也稱鹼水,或稱食用梘水,是一種復配食品新增劑,是食品工藝中的材料,廣式糕點常見的傳統輔料。正在使用的梘水已不是草木灰了,而是人們根據草木灰的成分和原理,用碳酸鉀和碳酸鈉作為主要成分,再輔以碳酸鹽或聚合磷酸鹽,配製而成的鹼性混合物,在功能上與草木灰梘水相同,故仍稱為梘水。如果僅用碳酸鉀和碳酸鈉配成梘水,則性質很備則敬不穩定,長期貯存時易失效變質。一般都加入10%的磷酸鹽或聚合磷酸鹽,以改良保水性、粘彈性、酸鹼緩沖性及金屬封鎖力。

純水與凈水有什麼區別

你好;純水一般稱呼純凈水,基本不保留水中的礦物質,PH值在6-7之間,為弱酸性,一般用於透析等醫療用水,或實驗室,電子化工等特殊用水。凈水是把日常飲用水通過深度凈化,去除水中余氯,重金屬,細菌.等有害物質,保留礦物質等微量元素,保持水的自然活性,水質達到直飲水標准,可直接飲用,是安全,衛生,純凈,健康的飲用水

⑸ 污泥處理污水中如何去除氨氮

根據廢水中氨氮濃度的不同,可將廢水分為3類:

高濃度氨氮廢水(NH3-N>500mg/l);

中等濃度氨氮廢水(NH3-N:50-500mg/l);

低濃度氨氮廢水(NH3-N<50mg/l)。

然而高濃度的氨氮廢水對微生物的活性有抑製作用,制約了生化法對其的處理應用和效果,同時會降低生化系統對有機污染物的降解效率,從而導致處理出水難以達到要求。

去除氨氮的主要方法有:物理法、化學法、生物法。物理法有反滲透、蒸餾、土壤灌溉等處理技術;化學法有離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法有藻類養殖、生物硝化、固定化生物技術等處理技術。

目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。

1.折點氯化法除氨氮

折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。

折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:

Cl2+H2O→HOCl+H++Cl-

NH4++HOCl→NH2Cl+H++H2O

NHCl2+H2O→NOH+2H++2Cl-

NHCl2+NaOH→N2+HOCl+H++Cl-

折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。

2.選擇性離子交換化除氨氮

離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性,能成功地去除原水和二級出水中的氨氮。

沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。

3.空氣吹脫法與汽提法除氨氮

空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。

汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。

吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。

4.生物法除氨氮

生物法去除氨氮是指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。

硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:

亞硝化:2NH4++3O2→2NO2-+2H2O+4H+

硝化:2NO2-+O2→2NO3-

硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLS•d);泥齡在3~5天以上。

在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:

6NO3-+2CH3OH→6NO2-+2CO2+4H2O

6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-

反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。

常見的生物脫氮流程可以分為3類:

⑴多級污泥系統

多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;

⑵單級污泥系統

單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在缺氧池,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;

⑶生物膜系統

將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。

常規生物處理高濃度氨氮廢水是要存在以下條件:

為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;

硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。

5.化學沉澱法除氨氮

化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。

化學沉澱法處理NH3-N主要原理是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

⑹ 怎樣利用化學法除氨氮

化學法除氨氮是根據廢水中污染物的性質,必要時投加某種化工原料(氨氮專去除劑SN-1),屬在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。選擇合適的化工原料也很重要。

⑺ 板式換熱器的作用

板式換熱器結構緊湊,操作非常方便,並且清洗也非常簡單,只需要打開壓緊螺栓就可以進行清洗,這是管式換熱器無法比擬的。

傳熱系數很高,所以成為了現在大部分城市裡集中供暖工程中的主導換熱產品,適用於水-水換熱系統和,汽-水換熱系統以及日常居民生活熱水供應系統,對提高管理水平,合理分配熱能起到了非常大的作用。



(7)廢鹼水回用系統擴展閱讀:

可拆卸板式換熱器是由許多沖壓有波紋薄板按一定間隔,四周通過墊片密封,並用框架和壓緊螺旋重疊壓緊而成,板片和墊片的四個角孔形成了流體的分配管和匯集管,同時又合理地將冷熱流體分開,使其分別在每塊板片兩側的流道中流動,通過板片進行熱交換。

只要增加或減少幾張板,即可達到增加或減少換熱面積的目的;改變板片排列或更換幾張板片,即可達到所要求的流程組合,適應新的換熱工況,而管殼式換熱器的傳熱面積幾乎不可能增加。

⑻ 如何利用化學法去除氨氮

折點氯化法去除氨氮
折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮污水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。
折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:
Cl2+H2O→HOCl+H++Cl-
NH4++HOCl→NH2Cl+H++H2O
NHCl2+H2O→NOH+2H++2Cl-
NHCl2+NaOH→N2+HOCl+H++Cl-
折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。
2. 選擇性離子交換化去除氨氮
離子交換是指在固體顆粒和液體的界面上發生的離子交換過程。離子交換法選用對NH4+離子有很強選擇性的沸石作為交換樹脂,從而達到去除氨氮的目的。沸石具有對非離子氨的吸附作用和與離子氨的離子交換作用,它是一類硅質的陽離子交換劑,成本低,對NH4+有很強的選擇性。
O.Lahav等用沸石作為離子交換材料,將沸石作為一種把氨氮從廢水中分離出來的分離器以及硝化細菌的載體。該工藝在一個簡單的反應器中分吸附階段和生物再生階段兩個階段進行。在吸附階段,沸石柱作為典型的離子交換柱;而在生物再生階段,附在沸石上的細菌把脫附的氨氮氧化成硝態氮。研究結果表明,該工藝具有較高的氨氮去除率和穩定性,能成功地去除原水和二級出水中的氨氮。
沸石離子交換與pH的選擇有很大關系,pH在4~8的范圍是沸石離子交換的最佳區域。當pH<4時,H+與NH4+發生競爭;當pH>8時,NH4+變為NH3而失去離子交換性能。用離子交換法處理含氨氮10~20mg/L的城市污水,出水濃度可達1mg/L以下。離子交換法具有工藝簡單、投資省去除率高的特點,適用於中低濃度的氨氮廢水(<500mg/L),對於高濃度的氨氮廢水會因樹脂再生頻繁而造成操作困難。但再生液為高濃度氨氮廢水,仍需進一步處理。
3. 空氣吹脫法與汽提法去除氨氮
空氣吹脫法是將廢水與氣體接觸,將氨氮從液相轉移到氣相的方法。該方法適宜用於高濃度氨氮廢水的處理。吹脫是使水作為不連續相與空氣接觸,利用水中組分的實際濃度與平衡濃度之間的差異,使氨氮轉移至氣相而去除廢水中的氨氮通常以銨離子(NH4+)和游離氨(NH3)的狀態保持平衡而存在。將廢水pH值調節至鹼性時,離子態銨轉化為分子態氨,然後通入空氣將氨吹脫出。吹脫法除氨氮,去除率可達60%~95%,工藝流程簡單,處理效果穩定,吹脫出的氨氣用鹽酸吸收生成氯化銨可回用於純鹼生產作母液,也可根據市場需求,用水吸收生產氨水或用硫酸吸收生產硫酸銨副產品,未收尾氣返回吹脫塔中。但水溫低時吹脫效率低,不適合在寒冷的冬季使用。
用該法處理氨氮時,需考慮排放的游離氨總量應符合氨的大氣排放標准,以免造成二次污染。低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。該方法比較適合處理高濃度氨氮廢水,但吹脫效率影響因子多,不容易控制,特別是溫度影響比較大,在北方寒冷季節效率會大大降低,現在許多吹脫裝置考慮到經濟性,沒有回收氨,直接排放到大氣中,造成大氣污染。
汽提法是用蒸汽將廢水中的游離氨轉變為氨氣逸出,處理機理與吹脫法一樣是一個傳質過程,即在高pH值時,使廢水與氣體密切接觸,從而降低廢水中氨濃度的過程。傳質過程的推動力是氣體中氨的分壓與廢水中氨的濃度相當的平衡分壓之間的差。延長氣水間的接觸時間及接觸緊密程度可提高氨氮的處理效率,用填料塔可以滿足此要求。塔的填料或充填物可以通過增加浸潤表面積和在整個塔內形成小水滴或生成薄膜來增加氣水間的接觸時間汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與吹脫法類似,對氨氮的去除率可達97%以上。但汽提塔內容易生成水垢,使操作無法正常進行。
吹脫和汽提法處理廢水後所逸出的氨氣可進行回收:用硫酸吸收作為肥料使用;冷凝為1%的氨溶液。
4. 生物法去除氨氮
生物法去除氨氮是在指廢水中的氨氮在各種微生物的作用下,通過硝化和反硝化等一系列反應,最終形成氮氣,從而達到去除氨氮的目的。生物法脫氮的工藝有很多種,但是機理基本相同。都需要經過硝化和反硝化兩個階段。
硝化反應是在好氧條件下通過好氧硝化菌的作用將廢水中的氨氮氧化為亞硝酸鹽或硝酸鹽,包括兩個基本反應步驟:由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽的反應。由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽的反應。亞硝酸菌和硝酸菌都是自養菌,它們利用廢水中的碳源,通過與NH3-N的氧化還原反應獲得能量。反應方程式如下:
亞硝化: 2NH4++3O2→2NO2-+2H2O+4H+
硝化 : 2NO2-+O2→2NO3-
硝化菌的適宜pH值為8.0~8.4,最佳溫度為35℃,溫度對硝化菌的影響很大,溫度下降10℃,硝化速度下降一半;DO濃度:2~3mg/L;BOD5負荷:0.06-0.1kgBOD5/(kgMLSS•d);泥齡在3~5天以上。
在缺氧條件下,利用反硝化菌(脫氮菌)將亞硝酸鹽和硝酸鹽還原為氮氣而從廢水中逸出由於兼性脫氮菌(反硝化菌)的作用,將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成N2的過程,稱為反硝化。反硝化過程中的電子供體是各種各樣的有機底物(碳源)。以甲醇為碳源為例,其反應式為:
6NO3-+2CH3OH→6NO2-+2CO2+4H2O
6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH-
反硝化菌的適宜pH值為6.5~8.0;最佳溫度為30℃,當溫度低於10℃時,反硝化速度明顯下降,而當溫度低至3℃時,反硝化作用將停止;DO濃度<0.5mg/L;BOD5/TN>3~5。生物脫氮法可去除多種含氮化合物,總氮去除率可達70%~95%,二次污染小且比較經濟,因此在國內外運用最多。其缺點是佔地面積大,低溫時效率低。
常見的生物脫氮流程可以分為3類:
⑴多級污泥系統
多級污泥系統通常被稱為傳統的生物脫氮流程。此流程可以得到相當好的BOD5去除效果和脫氮效果,其缺點是流程長,構築物多,基建費用高,需要外加碳源,運行費用高,出水中殘留一定量甲醇;
⑵單級污泥系統
單級污泥系統的形式包括前置反硝化系統、後置反硝化系統及交替工作系統。前置反硝化的生物脫氮流程,通常稱為A/O流程。與傳統的生物脫氮工藝流程相比,該工藝特點:流程簡單、構築物少,只有一個污泥迴流系統和混合液迴流系統,基建費用可大大節省;將脫氮池設置在去碳源,降低運行費用;好氧池在缺氧池後,可使反硝化殘留的有機污染物得到進一步去除,提高出水水質;缺氧池在前,污水中的有機碳被反硝化菌所利用,可減輕其後好氧池的有機負荷。此外,後置式反硝化系統,因為混合液缺乏有機物,一般還需要人工投加碳源,但脫氮的效果高於前置式,理論上可接近100%的脫氮效果。交替工作的生物脫氮流程主要由兩個串聯池子組成,通過改換進水和出水的方向,兩個池子交替在缺氧和好氧的條件下運行。它本質上仍是A/O系統,但利用交替工作的方式,避免了混合液的迴流,其脫氮效果優於一般A/O流程。其缺點是運行管理費用較高,必須配置計算機控制自動操作系統;
⑶生物膜系統
將上述A/O系統中的缺氧池和好氧池改為固定生物膜反應器,即形成生物膜脫氮系統。此系統中應有混合液迴流,但不需污泥迴流,在缺氧的好氧反應器中保存了適應於反硝化和好氧氧化及硝化反應的兩個污泥系統。
由於常規生物處理高濃度氨氮廢水還存在以下:
為了能使微生物正常生長,必須增加迴流比來稀釋原廢水;
硝化過程不僅需要大量氧氣,而且反硝化需要大量的碳源,一般認為COD/TKN至少為9。
5. 化學沉澱法去除氨氮
化學沉澱法是根據廢水中污染物的性質,必要時投加某種化工原料,在一定的工藝條件下(溫度、催化劑、pH值、壓力、攪拌條件、反應時間、配料比例等等)進行化學反應,使廢水中污染物生成溶解度很小的沉澱物或聚合物,或者生成不溶於水的氣體產物,從而使廢水凈化,或者達到一定的去除率。
化學沉澱法處理NH3-N是始於20世紀60年代,在90年代興起的一種新的處理方法,其主要原理就是NH4+、Mg2+、PO43-在鹼性水溶液中生成沉澱。
在氨氮廢水中投加化學沉澱劑Mg(OH)2、H3PO4與NH4+反應生成MgNH4PO4•6H2O(鳥糞石)沉澱,該沉澱物經造粒等過程後,可開發作為復合肥使用。整個反應的pH值的適宜范圍為9~11。pH值<9時,溶液中PO43-濃度很低,不利於MgNH4PO4•6H2O沉澱生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反應將在強鹼性溶液中生成比MgNH4PO4•6H2O更難溶於水的Mg3(PO4)2的沉澱。同時,溶液中的NH4+將揮發成游離氨,不利於廢水中氨氮的去除。利用化學沉澱法,可使廢水中氨氮作為肥料得以回收。

閱讀全文

與廢鹼水回用系統相關的資料

熱點內容
污水泡沫對人體有什麼危害 瀏覽:250
日本排入廢水最新消息 瀏覽:238
社區緊急聯系搶修污水外流怎麼辦 瀏覽:239
不銹鋼蜂蜜化晶過濾器 瀏覽:278
香港蒸餾水廣告古天樂 瀏覽:489
三聚異氰胺樹脂 瀏覽:396
超濾膜正沖洗 瀏覽:914
qq音樂播放器音質會提升嗎 瀏覽:761
河北污水排水管多少錢 瀏覽:37
污水水池要做什麼實驗 瀏覽:487
小米凈水廢水怎麼排 瀏覽:430
什麼水不會起水垢 瀏覽:577
純凈水比普通水有什麼好處 瀏覽:766
溫度降低半透膜 瀏覽:762
我國園區污水處理廠 瀏覽:753
聚三氟氯乙烯樹脂f2314 瀏覽:803
小米空氣凈化器怎麼用更好 瀏覽:567
污水令水藻增加 瀏覽:896
商用凈水器怎麼盈利 瀏覽:81
凈水機出為啥排廢水 瀏覽:629