Ⅰ 制葯廠高濃度污水預處理原理
我國的污水處理發起步晚、發展快,污水處理採用的工藝主要是生化處理,常見工藝有接觸氧化法、AB法、A/O法、氧化溝、SBR、曝氣生物濾池、導流曝氣生物濾池等。
制葯廢水處理,建議採用導流曝氣生物濾池,導流曝氣生物濾池已在制葯、屠宰、化工、高鹽等廢水處理行業有大量的成功案例。
導流曝氣生物濾池是我國自主知識產權的污水處理新工藝,根據後續處理工藝的不同,它又分為:水解-導流曝氣生物濾池、厭氧-導流曝氣生物濾池、氣浮-導流曝氣生物濾池、快沉-導流曝氣生物濾池、超超聲波-導流曝氣生物濾池、微波-導流曝氣生物濾池、臭氧-導流曝氣生物濾池等。
導流曝氣生物濾池在舊污水處理工程升級改造、脫氮除磷、中水回用方面與其它工藝結合,發展出AB法-導流曝氣生物濾池;A/O法-導流曝氣生物濾池;A2/O法-導流曝氣生物濾池;氧化溝-導流曝氣生物濾池;SBR-導流曝氣生物濾池;生物接觸氧化-導流曝氣生物濾池等多種深度處理工藝。
導流曝氣生物濾池充分借鑒了曝氣生物濾池法、接觸氧化法、生物膜法、間隙曝氣法、人工快濾法、沉降分離法、硝化返硝化法、給水快濾法等八者設計手法,並結合二級或三級污水處理工藝而研製出來的污水處理新工藝、新技術。2005年獲得國家專利。
導流曝氣生物濾池在我國的北京、山東、河北、貴州、山西、四川、內蒙古、黑龍江、江蘇、吉林、河南、湖北、天津、新疆等地已有工程實例,案例涉及生活、醫院、化工、屠宰、食品、亞麻、酒精、制葯、榨菜等領域的污水處理。大量的應用證明:出水水質CODcr一般在20mg/L以下,最低5.95mg/L;BOD5一般在10mg/L以下,最低3.50mg/L;SS一般在20mg/L以下,最低6.55mg/L。
導流曝氣生物濾池使污水在同一個處理池內,完成兩次曝氣,兩次沉澱、兩次過濾,解決其它污水處理需要四個池子才能完成的工藝流程,特別是在連續進水條件下,實現間隙曝氣,活性污泥迴流,整個運行沒有閑置,其優點較處理其它方法較為突出,處理效果尤為顯著。2009年被列為「創新項目」;同年12月又被列為「國家鼓勵發展的環境保護技術」;2010年被列為「國家重點新產品」;12年又被列為十二五期間,國家加大投入在城鎮、村鎮、農村、工業、養殖、以及城市污水處理廠的升級改造、脫氮除磷、中水回用等領域中推薦使用、鼓勵發展的環境保護技術。
Ⅱ 醫葯化工的廢水有什麼處理方法嗎
還是有很多的方法了。
物化法 1.1 吸附法 它是利用帶有許多孔的固體吸收污水中的污染物,進行回收或去除雜質,然後才能凈化污水。在制葯工業廢水處理中,活性炭、吸附樹脂和腐殖酸常用於生產葯物:...
2.
化學方式 在使用化學方法時,有些試劑可能會對水體造成污染,因此在規劃之前,...
3.
生化方式 3.1厭氧生物處理 厭氧處理是我國高濃度有機制葯化工廢水處理的基本途徑,...
4.
結束語 採用適當的處理技術,制葯化工廢水可循環利用,完成能源回收利用。
Ⅲ 針對發酵類制葯廢水,COD 2700,BOD 950,SS 245,色度95 採取什麼樣的工藝流程好點
針對發酵類制葯廢水,如果COD 2700,BOD 950,SS 245,色度95,最好 採用導流曝氣生物濾池+微生物發生器。導流曝氣生物濾池充分借鑒了曝氣生物濾池法、接觸氧化法、生物膜法、間隙曝氣法、人工快濾法、沉降分離法、硝化返硝化法、給水快濾法等八者設計手法,並結合二級或三級污水處理工藝而研製出來的污水處理新工藝、新技術。 導流曝氣生物濾池在我國的北京、山東、河北、貴州、山西、四川、內蒙古、黑龍江、江蘇、吉林、河南、湖北、天津、新疆等地已有工程實例,案例涉及生活、醫院、化工、屠宰、食品、亞麻、酒精、制葯、榨菜等領域的污水處理。大量的應用證明:出水水質CODcr一般在20mg/L以下,最低5.95mg/L;BOD5一般在10mg/L以下,最低3.50mg/L;SS一般在20mg/L以下,最低6.55mg/L。
導流曝氣生物濾池使污水在同一個處理池內,完成兩次曝氣,兩次沉澱、兩次過濾,解決其它污水處理需要四個池子才能完成的工藝流程,特別是在連續進水條件下,實現間隙曝氣,活性污泥迴流,整個運行沒有閑置,其優點較傳統處理方法較為突出,處理效果尤為顯著。2009年8月,被國家科技部列為「創新項目」;2009年12月,該產品被國家環保部列為「國家鼓勵發展的環境保護技術目錄」;2010年5月,被國家科技部、國家環保部、國家商務部、國家質量監督檢驗檢疫總局審查認定為「國家重點新產品」;2012年7月,又被國家環保部列為十二五期間「國家鼓勵發展的環境保護技術」。
微生物發生器主要優點如下:
1、自動化程度高,污水處理效果好
該設備採用三級發生、交替運行、逐級衍生、對數增長技術,致使發生器產生微生物的密度高達達到1.8×1020CFU/ml,高密度微生物釋放進入微生物凈化處理設備後,微生物凈化處理設備中生物量迅速提高到2.0×104mg/L以上,能將污水中的污染物徹底分解成CO2和H2O,從而使污水得到凈化。
2、適應范圍廣
該設備為比較理想的污水生物凈化處理設備,可根據不同種類、不同性質、不同環境的污水處理需要,生成不同種群、不同菌屬、不同溫度、不同污水處理需要的微生物,特別適合城鎮生活污水、農村生活污水、醫療污水、工業廢水、畜禽養殖廢水、高鹽廢水、高氨氮廢水、有毒有害廢水、重金屬廢水、垃圾滲濾液等廢(污)水處理的需要。
該設備還可直接與接觸氧化法、AB法、A/O法、氧化溝、SBR等舊污水處理工程配套,在既不變動污水處理工藝,也不改動土建工程的條件下,實現污水處理升級擴容、污泥減量、脫氮除磷、中水回用等多種用途。該設備還可用於景觀、河道、湖面、河流、鹹水湖、海灣、土地等領域去除微污染,保護公共環境。
3、經濟效益突出
該微設備產生的是高密度優勢微生物菌群,能快速食掉污水中的污染物和淤泥,且不產生臭味,不用污泥脫水機、污泥傳輸機、泥餅外運車、廢氣處理設備和大功率的鼓風曝氣設備,與傳統方法比較,能耗是活性污泥法的1/8,設備投資可節約百分之七十,還可在淺層水池上運轉,從而使污水處理池體積縮小、深度減淺,大大降低了一次投資費用和長期管理費用。
4、管理方便,安全可靠
該設備產生的高密度微生物菌群通過射流進入處理池後,能迅速減少污水中的生物耗氧量(BOD)、化學需氧量(COD)和固體懸浮物(TSS),並有極強的脫氮除磷功能,還能在極短的時間內使5類水轉變成3類以上,7天內消除污水中的臭味,10天內吃掉污水中50%左右的淤泥,每天降解20%的BOD,10-15天內實現達標排放或中水回用。
採用該設備處理污水無污泥膨脹之憂,也不受操作員學歷年齡限制,管理方便,安全可靠。
5、沒有二次污染,營造綠色環境
隨著高密度微生物菌群發生量的不斷增加,污水中的生物耗氧量(BOD)也越來越少,大量的微生物因缺少BOD而失去存活能源自滅,變成二氧化碳和水,未自滅微生物還可成為魚類和浮游生物的餌料,進而形成良性的生態處理凈化過程,沒有臭味、不產生污泥、無二次污染,營造綠色環境。
6、不受氣候影響,完成生化處理
採用傳統的生化法處理污水,受到氣候及水溫變化影響,當溫度每降低10度,微生物的酶促反應速度就降低1-2倍,氣候導致微生物的活性不足,造成污水處理效果不好,不但威脅著北方污水處理廠,對於南方冬天的污水處理廠也是嚴俊的考驗,貴州長城環保科技有限公司生產的專利產品微生物凈化處理設備徹底解決了這一難題,該發生器系統產生的高濃度微生物菌群釋放進入微生物凈化處理系統後,其生物量訊速達到2.0×104mg/L以上,使微生物凈化處理設備中生物濃度較活性污泥提高10倍,填補了因水溫低而導致生物量不足,污水處理效果差的技術難題。
7、解決活性不足,確保水質達標
採用傳統的生化方式處理高濃度、高氨氮、高鹽量、有毒性、重金屬廢水,由於微生物在這些污水中的成活少、數量小、致使污水處理後出水水質差、效果不穩定、難以達標排放。微生物凈化處理設備以獨特的方式徹底解決了這一難題,該微生物發生系統能將生產出的1.8×1020CFU/ml以上的高濃度微生菌群源源不斷地送入微生物凈化處理設備,較其他污水處理提高10倍以上的生物量,強大的微生物菌群加速對污水中污染物的降解和消化,同時微生物凈化反應設備的供氧又顯著加速了污染物被分解成CO2和H2O,硝酸鹽、硫酸鹽成為微生物生長的養分,至使微生物又得到進一步的衍生,即使受天冷、低溫、沖擊負荷影響,和高濃度、高氨氮、高鹽量、有毒性、重金屬抑制,也無法阻止群雄逐鹿、前仆後繼的微生物大軍,形成對污水處理的強大陣容,進而降解和消化污水中污染物,最終實現廢水達標排放或中水回用。
8、革新微污染治理方式
傳統河道治理離不開閘壩、斷水、清淤等處理過程,工程耗資大、工期長、淤泥量大。微生物凈化處理設備直接安裝在景觀、河道、湖面、河流、鹹水湖、海灣、土地等微污染源上游,從源頭切斷和堵住污染源頭,並通過微生物降解污染、吃掉污泥、去除嗅味、除磷脫氮等作用實現徹底治理,為微污染治理提供了可靠的設備
Ⅳ 與制葯廠污水處理有關的論文資料
(二)周期循環延時曝氣活性污泥法(ICEAS)
周期循環延時曝氣活性污泥法(Intermittent Cycle Extended Aeration System,簡稱
圖案2 ICEAS及CASS原理圖
ICEAS)是80年代初在澳大利亞發展起來的。1976年建成世界上第一座ICEAS污水處理廠,隨後在日本、美國、加拿大、澳大利亞等地得到廣泛應用。1986年美國國家環保局正式承認ICEAS工藝屬於革新代用技術(I/A)技術。
ICEAS最大的特點是在SBR池內增加了一個生物選擇器,實現了連續進水(沉澱期、排水期仍連續進水),間歇排水。設置生物選擇器的主要目的是使系統選擇出絮凝性細菌, 其容積約占整個池子的10%。生物選擇器的工藝過程遵循活性污泥的基質積累——再生理論,使活性污泥在選擇器中經歷一個高負荷的吸附階段(基質積累),隨後在主反應區經歷一個較低負荷的基質降解階段,以完成整個基質降解的全過程和污泥再生。
據有關資料介紹,污泥膨脹的直接原因是絲狀菌的過量繁殖。由於絲狀菌比菌膠團的比表面積大,因此,有利於攝取低濃度底物。但一般絲狀菌的比增殖速率比非絲狀菌小,在高底物濃度下菌膠團和絲狀菌都以較大速率降解底物與增殖,但由於膠團細菌比增殖速率較大,其增殖量也較大,從而較絲狀菌占優勢,這樣利用基質作為推動力選擇性地培養菌膠團細菌,使其成為曝氣池中的優勢菌。所以,在ICEAS池進水端增加一個設計合理的生物選擇器,可以有效地抑制絲狀菌的生長和繁殖,克服污泥膨脹,提高系統的運行穩定性。
ICEAS工藝對污染物質的降解是一個時間上的推流過程,集反應、沉澱、排水於一體,是一個好氧—缺氧—厭氧交替運行的過程,並具有一定脫氮除磷效果。
綜上所述,ICEAS工藝流程簡單,具有SBR的優點,實現了連續進水,使其在大型污水處理廠的應用成為現實。該工藝強調延時曝氣,污泥負荷很低(0.04-0.05kgBOD5/kgMLSS.d),因此,使ICEAS工藝投資低(無初沉池、二沉池及污泥迴流設備)的優點在實際工程中無法體現,因此影響了這種工藝的推廣應用
(三)周期循環曝氣活性污泥法(CASS)的提出
1.CASS工藝的提出
CASS(Cyclic Activted Sludge System)與ICEAS在工藝流程上差別不大,只是污泥負荷不同。ICEAS屬周期循環延時曝氣,污泥負荷通常控制在0.04~0.05 kgBOD5/kgMLSS.d以下。 實踐證明,如果以此負荷進行設計,其工程投資與其它生物處理方法相比無任何優勢,而且還要高,先進技術的工藝失去經濟優勢後,應用自然受到很大限制,這正是ICEAS工藝在我國推廣有一定難度的原因所在。本文所述的CASS工藝是結合我們的研究成果和工作實際總結出來的,即在給定的水質條件下達到要求的排放標准,是我們設計參數選擇的依據,實驗研究和應用表明,在負荷為0.1-0.2kgBOD5/kgMLSS.d 或再高一些,CASS的去除效果並不比ICEAS差, 而且有利於形成絮凝性能好的污泥,出水達到排放標准也是可以的(如COD<60mg/L, BOD5<20 mg/L)。當要求更嚴格的排放標准或污水回用時可適當降低負荷。因此,負荷的提高使CASS工藝的工程投資比ICEAS節省。
2.CASS與傳統活性污泥法的比較
建設費用底,省去了初次沉澱池、二次沉澱池及污泥迴流設備,建設費用可節省20%-30%。工藝流程簡潔,污水廠主要構築物為集水池、沉砂池、CASS曝氣池、污泥池,布局緊湊,佔地面積可減少35%。
運轉費用省,由於曝氣是周期性的,池內溶解氧的濃度也是變化的,沉澱階段和排水階段溶解氧降低,重新開始曝氣時,氧濃度梯度大,傳遞效率高,節能效果顯著,運轉費用可節省10—25%。
有機物去除率高,出水水質好,不僅能有效去除污水中有機碳源污染物,而且具有良好的脫氮、除磷功能。
管理簡單,運行可靠,不易發生污泥膨脹,污水處理廠設備種類和數量較少,控制系統簡單,運行安全可靠。
污泥產量低,性質穩定。
3.CASS與SBR的比較
CASS反應池由預反應區和主反應區組成,預反應區控制在缺氧狀態,因此,對難降解有機物的去除效果提高;
CASS進水過程連續,因此進水管道上無電磁閥控制元件,單個池子可獨立運行,而SBR或CAST進水過程是間歇的,應用中一般要2個或2個以上池子交替使用,控制系統復雜程度增加。
CASS每個周期的排水量一般不超過池內總水量的1/3,而SBR則為1/2-3/4,CASS抗沖擊能力較好。
CASS比CAST系統簡單,但脫氮除磷效果不如後者。
(四)CASS與SBR曝氣方式的選擇
由於小區大都是居民居住區,對環境的要求比較高,因此,污水廠建設時應充分考慮噪音擾民問題和污水廠操作人員的工作環境,採用水下曝氣機代替傳統的鼓風機曝氣可有效解決噪音污染。另外,由於CASS工藝獨特的運行方式,採用水下曝氣機可省去復雜的管路及閥門,安裝、維修方便,使用靈活,可根據進出水情況開不同的台數,在保證效果的條件下,達到經濟運行的目的。
(五)CASS與SBR撇水機的選擇
撇水機是CASS工藝的關鍵組成部分,其性能是否穩定可靠直接影響到CASS工藝的正常運行。目前,國內外對撇水機仍在進行研究和開發,按照目前所用的原理撇水機可分為三種類型,即浮球式、旋轉式和虹吸式。撇水機研製的關鍵是解決潷水過程中,堰口、導水軟管和升降控制裝置與水流之間形成的動態平衡,使之可隨排水量的不同調整浮動水堰浸沒的深度,並隨水位均勻地升降,將排水對底層污泥的干擾降低到最低限度,保證出水水質穩定。
我院自主研製開發的撇水機屬絲杠旋轉式,自動撇水裝置主要組成部分是:潷水器、可擾動的軟管、水位控制器、可伸縮推動桿和驅動電機等。其中潷水器又叫自動浮動式水堰,上部為堰口和防止浮渣進入出水的浮筒,下部出水管兼起支撐作用,部分浸沒在水中,通過可伸縮推動桿使方形堰口達到連續均勻地排出反應池中的上清液。實際應用表明,所研製的撇水裝置達到了國內外同類產品的先進水平。具有升降平穩、排水均勻、自動控制、價格低廉等優點,該項研究不僅滿足了工程的需要,而且具有創新,屬專項保密技術之一。
五、處理小區污水主要設計參數
SBR設計參數:污泥負荷0.1~0.15kgBOD5/kgMLSS.d, 污泥齡20~30天
工作周期12小時, 其中, 進水2.5小時(曝氣或不曝氣),反應6小時, 沉澱0.75~1小時, 排水2小時,閑置0.5~0.75小時。出水指標:COD〈50mg/L, BOD5〈20mg/L, SS〈10mg/L
CASS設計參數:污泥負荷0.1~0.2kgBOD5/kgMLSS.d, 污泥齡15~30天
水力停留時間12小時,工作周期4小時,其中曝氣2.5小時, 沉澱0.75小時,排水0.5~0.75小時,出水指標與SBR相近。
六 、污泥處理
污水處理量上千噸時,一般採用濃縮後脫水處理,小規模時一般濃縮後定期用大糞車運至填埋或作農肥。
Ⅳ 制葯廢水處理工藝及管理流程
制葯廢水處理技術研究
制葯工業廢水主要包括抗生素生產廢水、合成葯物生產廢水、中成葯生產廢水以及各類制劑生產過程的洗滌水和沖洗廢水四大類。其廢水的特點是成分復雜、有機物含量高、毒性大、色度深和含鹽量高,特別是生化性很差,且間歇排放,屬難處理的工業廢水。隨著我國醫葯工業的發展,制葯廢水已逐漸成為重要的污染源之一,如何處理該類廢水是當今環境保護的一個難題。
1 制葯廢水的處理方法
制葯廢水的處理方法可歸納為以下幾種:物化處理、化學處理 、生化處理 以及多種方法的組合處理等,各種處理方法具有各自的優勢及不足。
1.1 物化處理
根據制葯廢水的水質特點,在其處理過程中需要採用物化處理作為生化處理的預處理或後處理工序。目前應用的物化處理方法主要包括混凝、氣浮、吸附、氨吹脫、電解、離子交換和膜分離法等。
1.1.1 混凝法
該技術是目前國內外普遍採用的一種水質處理方法,它被廣泛用於制葯廢水預處理及後處理過程中,如硫酸鋁和聚合硫酸鐵等用於中葯廢水等。高效混凝處理的關鍵在於恰當地選擇和投加性能優良的混凝劑。近年來混凝劑的發展方向是由低分子向聚合高分子發展,由成分功能單一型向復合型發展。劉明華等以其研製的一種高效復合型絮凝劑F-1處理急支糖漿生產廢水,在 pH為6.5, 絮凝劑用量為300 mg/L時,廢液的COD、SS和色度的去除率分別達到69.7%、96.4%和87.5%,其性能明顯優於PAC(粉末活性炭)、聚丙烯醯胺(PAM)等單一絮凝劑。
1.1.2 氣浮法
氣浮法通常包括充氣氣浮、溶氣氣浮、化學氣浮和電解氣浮等多種形式。新昌制葯廠採用CAF渦凹氣浮裝置對制葯廢水進行預處理,在適當葯劑配合下,COD的平均去除率在25%左右。
1.1.3 吸附法
常用的吸附劑有活性炭、活性煤、腐殖酸類、吸附樹脂等。武漢健民制葯廠採用煤灰吸附-兩級好氧生物處理工藝處理其廢水。結果顯示, 吸附預處理對廢水的COD去除率達41.1%,並提高了BOD5/COD值。
1.1.4 膜分離法
膜技術包括反滲透、納濾膜和纖維膜,可回收有用物質,減少有機物的排放總量。該技術的主要特點是設備簡單、操作方便、無相變及化學變化、處理效率高和節約能源。朱安娜等採用納濾膜對潔黴素廢水進行分離實驗,發現既減少了廢水中潔黴素對微生物的抑製作用,又可回收潔黴素。
1.1.5 電解法
該法處理廢水具有高效、易操作等優點而得到人們的重視,同時電解法又有很好的脫色效果。李穎採用電解法預處理核黃素上清液,COD、SS和色度的去除率分別達到71%、83%和67%。
1.2 化學處理應用化學方法時,某些試劑的過量使用容易導致水體的二次污染,因此在設計前應做好相關的實驗研究工作。化學法包括鐵炭法、化學氧化還原法(fenton試劑、H2O2、O3)、深度氧化技術等。
1.2.1 鐵炭法
工業運行表明,以Fe-C作為制葯廢水的預處理步驟,其出水的可生化性可大大提高。樓茂興等[9]採用鐵炭—微電解—厭氧—好氧—氣浮聯合處理工藝處理甲紅黴素、鹽酸環丙沙星等醫葯中間體生產廢水,鐵炭法處理後COD去除率達20%,最終出水達到國家《污水綜合排放標准》(GB8978—1996)一級標准。
1.2.2 Fenton試劑處理法
亞鐵鹽和H2O2的組合稱為Fenton試劑,它能有效去除傳統廢水處理技術無法去除的難降解有機物。隨著研究的深入,又把紫外光(UV)、草酸鹽(C2O42-)等引入Fenton試劑中,使其氧化能力大大加強。程滄滄等[10]以TiO2為催化劑,9 W低壓汞燈為光源,用Fenton試劑對制葯廢水進行處理,取得了脫色率100%,COD去除率92.3%的效果,且硝基苯類化合物從8.05 mg/L降至0.41 mg/L。
1.2.3採用該法能提高廢水的可生化性,同時對COD有較好的去除率。如Balcioglu等對3種抗生素廢水進行臭氧氧化處理,結果顯示,經臭氧氧化的廢水不僅BOD5/COD的比值有所提高,而且COD的去除率均為75%以上。
1.2.4 氧化技術
又稱高級氧化技術,它匯集了現代光、電、聲、磁、材料等各相近學科的最新研究成果,主要包括電化學氧化法、濕式氧化法、超臨界水氧化法、光催化氧化法和超聲降解法等。其中紫外光催化氧化技術具有新穎、高效、對廢水無選擇性等優點,尤其適合於不飽合烴的降解,且反應條件也比較溫和,無二次污染,具有很好的應用前景。與紫外線、熱、壓力等處理方法相比,超聲波對有機物的處理更直接,對設備的要求更低,作為一種新型的處理方法,正受到越來越多的關注。肖廣全等[13]用超聲波-好氧生物接觸法處理制葯廢水,在超聲波處理60 s,功率200 w的情況下,廢水的COD總去除率達96%。
1.3 生化處理
生化處理技術是目前制葯廢水廣泛採用的處理技術,包括好氧生物法、厭氧生物法、好氧-厭氧等組合方法。
1.3.1 好氧生物處理
由於制葯廢水大多是高濃度有機廢水,進行好氧生物處理時一般需對原液進行稀釋,因此動力消耗大,且廢水可生化性較差,很難直接生化處理後達標排放,所以單獨使用好氧處理的不多,一般需進行預處理。常用的好氧生物處理方法包括活性污泥法、深井曝氣法、吸附生物降解法(AB法)、接觸氧化法、序批式間歇活性污泥法(SBR法)、循環式活性污泥法(CASS法)等。
(1)深井曝氣法
深井曝氣是一種高速活性污泥系統,該法具有氧利用率高、佔地面積小、處理效果佳、投資少、運行費用低、不存在污泥膨脹、產泥量低等優點。此外,其保溫效果好,處理不受氣候條件影響,可保證北方地區冬天廢水處理的效果。東北制葯總廠的高濃度有機廢水經深井曝氣池生化處理後,COD去除率達92.7%,可見用其處理效率是很高的,而且對下一步的治理極其有利,對工藝治理的出水達標起著決定性作用。
(2)AB法
AB法屬超高負荷活性污泥法。AB工藝對BOD5、COD、SS、磷和氨氮的去除率一般均高於常規活性污泥法。其突出的優點是A段負荷高,抗沖擊負荷能力強,對pH和有毒物質具有較大的緩沖作用,特別適用於處理濃度較高、水質水量變化較大的污水。楊俊仕等採用水解酸化-AB生物法工藝處理抗生素廢水,工藝流程短,節能,處理費用也低於同種廢水的化學絮凝-生物法處理方法。
(3)生物接觸氧化法
該技術集活性污泥和生物膜法的優勢於一體,具有容積負荷高、污泥產量少、抗沖擊能力強、工藝運行穩定、管理方便等優點。很多工程採用兩段法,目的在於馴化不同階段的優勢菌種,充分發揮不同微生物種群間的協同作用,提高生化效果和抗沖擊能力。在工程中常以厭氧消化、酸化作為預處理工序,採用接觸氧化法處理制葯廢水。哈爾濱北方制葯廠採用水解酸化-兩段生物接觸氧化工藝處理制葯廢水,運行結果表明,該工藝處理效果穩定、工藝組合合理。隨著該工藝技術的逐漸成熟,應用領域也更加廣泛。
(4)SBR法
SBR法具有耐沖擊負荷強、污泥活性高、結構簡單、無需迴流、操作靈活、佔地少、投資省、運行穩定、基質去除率高、脫氮除磷效果好等優點,適合處理水量水質波動大的廢水。王忠用SBR工藝處理制葯廢水的試驗表明:曝氣時間對該工藝的處理效果有很大影響;設置缺氧段,尤其是缺氧與好氧交替重復設計,可明顯提高處理效果;反應池中投加PAC的SBR強化處理工藝,可明顯提高系統的去除效果。近年來該工藝日趨完善,在制葯廢水處理中應用也較多,邱麗君等採用水解酸化-SBR法處理生物制葯廢水,出水水質達到GB8978-1996一級標准。
1.3.2厭氧生物處理
目前國內外處理高濃度有機廢水主要是以厭氧法為主,但經單獨的厭氧方法處理後出水COD仍較高,一般需要進行後處理(如好氧生物處理)。目前仍需加強高效厭氧反應器的開發設計及進行深入的運行條件研究。在處理制葯廢水中應用較成功的有上流式厭氧污泥床(UASB)、厭氧復合床(UBF)、厭氧折流板反應器(ABR)、水解法等。
(1)UASB法
UASB反應器具有厭氧消化效率高、結構簡單、水力停留時間短、無需另設污泥迴流裝置等優點。採用UASB法處理卡那黴素、氯酶素、VC、SD和葡萄糖等制葯生產廢水時,通常要求SS含量不能過高,以保證COD去除率在85%~90%以上。二級串聯UASB的COD去除率可達90%以上。
(2)UBF法買文寧等將UASB和UBF進行了對比試驗,結果表明,UBF具有反應液傳質和分離效果好、生物量大和生物種類多、處理效率高、運行穩定性強的特徵,是實用高效的厭氧生物反應器。
(3)水解酸化法
水解池全稱為水解升流式污泥床(HUSB),它是改進的UASB。水解池較之全過程厭氧池有以下優點:不需密閉、攪拌,不設三相分離器,降低了造價並利於維護;可將污水中的大分子、不易生物降解的有機物降解為小分子、易生物降解的有機物,改善原水的可生化性;反應迅速、池子體積小,基建投資少,並能減少污泥量。近年來,水解-好氧工藝在制葯廢水處理中得到了廣泛的應用,如某生物制葯廠採用水解酸化-二段式生物接觸氧化工藝處理制葯廢水,運行穩定,有機物去除效果顯著,COD、BOD5和SS的去除率分別為90.7%、92.4%和87.6%。
1.3.3 厭氧-好氧及其他組合處理工藝
由於單獨的好氧處理或厭氧處理往往不能滿足要求,而厭氧-好氧、水解酸化-好氧等組合工藝在改善廢水的可生化性、耐沖擊性、投資成本、處理效果等方面表現出了明顯優於單一處理方法的性能,因而在工程實踐中得到了廣泛應用。如利民制葯廠採用厭氧-好氧工藝處理制葯廢水,BOD5去除率達98%,COD去除率達95%,處理效果穩定;肖利平等採用微電解-厭氧水解酸化-SBR工藝處理化學合成制葯廢水,結果表明,整個串聯工藝對廢水水質、水量的變化具有較強的耐沖擊能力,COD去除率可達86%~92%,是處理制葯廢水的一種理想的工藝選擇;胡大鏘等在對醫葯中間體制葯廢水的處理中採用水解酸化-A/O-催化氧化-接觸氧化工藝,當進水COD為12 000 mg/L左右時,出水COD達300 mg/L以下;許玫英等採用生物膜-SBR法處理含生物難降解物的制葯廢水,COD的去除率能達到87.5%~98.31%,遠高於單獨的生物膜法和SBR法的處理效果。
此外,隨著膜技術的不斷發展,膜生物反應器(MBR)在制葯廢水處理中的應用研究也逐漸深入。MBR綜合了膜分離技術和生物處理的特點,具有容積負荷高、抗沖擊能力強、佔地面積小、剩餘污泥量少等優點。白曉慧等採用厭氧-膜生物反應器工藝處理COD為25 000 mg/L的醫葯中間體醯氯廢水,選用杭州化濾膜工程公司生產的ZKM-W0.5T型膜組件,系統對COD的去除率均保持在90%以上;Livinggston等利用專性細菌降解特定有機物的能力,首次採用了萃取膜生物反應器處理含3,4-二氯苯胺的工業廢水,HRT為2 h,其去除率達到99%,獲得了理想的處理效果。盡管在膜污染方面仍存在問題,但隨著膜技術的不斷發展,將會使MBR在制葯廢水處理領域中得到更加廣泛的應用。
2 制葯廢水的處理工藝及選擇
制葯廢水的水質特點使得多數制葯廢水單獨採用生化法處理根本無法達標,所以在生化處理前必須進行必要的預處理。一般應設調節池,調節水質水量和pH,且根據實際情況採用某種物化或化學法作為預處理工序,以降低水中的SS、鹽度及部分COD,減少廢水中的生物抑制性物質,並提高廢水的可降解性,以利於廢水的後續生化處理。
預處理後的廢水,可根據其水質特徵選取某種厭氧和好氧工藝進行處理,若出水要求較高,好氧處理工藝後還需繼續進行後處理。具體工藝的選擇應綜合考慮廢水的性質、工藝的處理效果、基建投資及運行維護等因素,做到技術可行,經濟合理。總的工藝路線為預處理-厭氧-好氧-(後處理)組合工藝。如陳明輝等採用水解吸附—接觸氧化—過濾組合工藝處理含人工胰島素等的綜合制葯廢水,處理後出水水質優於GB8978-1996的一級標准。氣浮-水解-接觸氧化工藝處理化學制葯廢水、復合微氧水解-復合好氧-砂濾工藝處理抗生素廢水、氣浮-UBF-CASS工藝處理高濃度中葯提取廢水等都取得了較好的處理效果。
3 制葯廢水中有用物質的回收利用
推進制葯業清潔生產,提高原料的利用率以及中間產物和副產品的綜合回收率,通過改革工藝使污染在生產過程中得到減少或消除。由於某些制葯生產工藝的特殊性,其廢水中含有大量可回收利用的物質,對這類制葯廢水的治理,應首先加強物料回收和綜合利用。如浙江義烏華義制葯有限公司針對其醫葯中間體廢水中含量高達5%~10%的銨鹽,採用固定刮板薄膜蒸發、濃縮、結晶、回收質量分數為30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明顯經濟效益;某高科技制葯企業用吹脫法處理甲醛含量極高的生產廢水,甲醛氣體經回收後可配成福爾馬林試劑,亦可作為鍋爐熱源進行焚燒。通過回收甲醛使資源得到可持續利用,並且4~5年內可將該處理站的投資費用收回[33],實現了環境效益和經濟效益的統一。但一般來說,制葯廢水成分復雜,不易回收,且回收流程復雜,成本較高。因此,先進高效的制葯廢水綜合治理技術是徹底解決污水問題的關鍵。
4 結語
關於處理制葯廢水的研究已有不少報道,但由於制葯行業原料及工藝的多樣性,排放的廢水水質千差萬別,所以制葯廢水並沒有成熟統一的治理方法,具體選擇哪種工藝路線取決於廢水的性質。根據該廢水的特點,一般應通過預處理以提高廢水的可生化性並初步去除污染物,再結合生化處理。目前,開發經濟、有效的復合水處理單元是亟待解決的問題。同時,應加強清潔生產的研究,並在處理前期考慮廢水是否有回收利用的價值和適當的途徑,以達到經濟效益和環境效益的統一。
Ⅵ 制葯廢水的處理方法有哪些
(1)吸附法
該方法是指在不改變污水理化性質的前提下清除污染物,其原理是污染物附著在吸附劑上,由於重力作用致使其下沉形成沉澱。此法中常用的吸附劑為活性炭、天然礦物材料、高爐濾渣等。
由於活性炭顆粒比較小,接觸面積較大,因此吸附效果較好。當然吸附效果和體系的值也有關系,吸附時間越長,吸附效果越好,在需要的情況下可以對吸附劑進行了相應的處理,
(2)混凝法
通過投加化學葯劑,使其產生吸附、中和微粒間電荷、壓縮擴散雙電層而產生的凝聚作用,破壞了廢水中膠體的穩定性,使膠體微粒相互聚合、集結,在重力作用下沉澱,並予以分離除去。
(3)膜分離法
膜分離法是個物理過程,有過濾和濃縮作用,能處理高濃度、生化性差或傳統方法難以處理的制葯廢水。
(4)電解法
電解法是通過藉助外加電流的作用,產生一系列化學反應,使廢水中的有害雜質以轉化的形式而被去除。它是通過兩極產生的新生態的氧和新生態的氫,使廢水中污染物得到凈化。
以上就是關於廢水處理的方法,不會污染環境又可以不會那麼浪費。希望我的回答對你有幫助!
Ⅶ 建議收藏!圖解各種廢水處理技術工藝流程
廢水處理(wastewater treatment methods)就是利用物理、化學和生物的方法對廢水進行處理,使廢水凈化,減少污染,以至達到廢水回收、復用,充分利用水資源。圖解17種污水處理工藝詳細流程圖,建議收藏!甘度,專注於解決中小企業污水處理難題。
工藝流程圖
1、電鍍廢水:電鍍廢水主要來源於電鍍生產過程中,電鍍生產過程中會排放大量的工業廢水,其廢水的排量和廢水性質與電鍍工業的生產方式及用水方式有著密切的關系。根據不同的處理方式可以將電鍍廢水分為四大類,分別是鍍件前處理廢水、鍍槽廢液、鍍件漂洗廢水以及生產過程中的「跑、冒、滴、漏」。
2、澱粉廢水:澱粉廢水是以玉米、馬鈴薯、小麥、大米等農產品為原料生產澱粉或澱粉深加工產品(澱粉糖、葡萄糖、澱粉衍生物等)產生的廢水,一般都屬於高濃度有機廢水,是造成環境污染的主要污染源之一。
3、果汁生產廢水:果汁廢水主要來自沖洗水果、粉碎、榨汁等工序,罐裝工段的洗瓶、滅菌、破瓶損耗和地面沖洗等環節。廢水中含有較高濃度的糖類、果膠、果渣及水溶物和纖維素、果酸、單寧、礦物鹽等。在不同季節有一定差別,處於高峰流量時的果汁廢水,有機物含量也處於高峰。
4、含鉛廢水:目前含鉛廢水的處理工藝,應用較多、較成熟可靠的技術有:離子交換法、沉澱法、吸附法、電解法以及以上工藝的組合。
5、合成革加工廢水:合成革以及人造革行業在回收二甲基甲醯胺(dimethylformamide,DMF) 的過程中,會產生含有DMF的廢水。
6、化工廢水:純凈的水在經過使用後改變了原來的物理性質或化學性質,成為了含有不同種類雜質的廢水。化工廢水就是在化工生產中排放出的工藝廢水、冷卻水、廢氣洗滌水、設備及場地沖洗水等廢水。這些廢水如果不經過處理而排放,會造成水體的不同性質和不同程度的污染,從而危害人類的健康,影響工農業的生產。
7、化纖廢水:化纖廢水是指在化纖生產過程中產生的各類廢水, 如PET廢水、PTA廢水、棉漿粕黑液、粘膠廢水等。
8、焦化廢水:焦化廢水是一種典型的有毒難降解有機廢水。主要來自焦爐煤氣初冷和焦化生產過程中的生產用水以及蒸汽冷凝廢水。指煤煉焦、煤氣凈化、化工產品回收和化工產品精製過程中產生的廢水。
9、酒精生產廢水:酒精廢水是高濃度、高溫度、高懸浮物的有機廢水,酒精工業的污染以水的污染最為嚴重,生產過程中的廢水主要來自蒸餾發酵成熟醪後排出的酒精糟,生產設備的洗滌水、沖洗水,以及蒸煮、糖化、發酵、蒸餾工藝的冷卻水等。
10、垃圾滲濾液廢水:垃圾滲濾液是指來源於垃圾填埋場中垃圾本身含有的水分、進入填埋場的雨雪水及其他水分,扣除垃圾、覆土層的飽和持水量,並經歷垃圾層和覆土層而形成的一種高濃度的有機廢水。
11、磷化廢水:磷化廢水是金屬表面處理的前處理,一般有除油除銹、表調、磷化鈍化。有簡單磷化就是用磷酸與硫酸和硝酸,也有要求高的專用磷化劑(有水劑和粉劑產品),粉劑產品相對產泥較多。噴塗有噴粉和噴漆。如果是噴粉則排放的廢水就是前處理廢水包括磷化廢水。
12、農葯廢水:農葯廢水是指農葯廠在農葯生產過程中排出的廢水。廢水水質水量不穩定。主要分為:含苯廢水、含有機磷廢水、高濃度含鹽廢水、高濃度含酚廢水、含汞廢水。
13、啤酒生產廢水:啤酒廠廢水是指啤酒生產過程中排出的廢水。是啤酒廠的主要污染源。
14、生活污水:生活污水所含的污染物主要是有機物(如蛋白質、碳水化合物、脂肪、尿素、氨氮等) 和大量病原微生物(如寄生蟲卵和腸道傳染病毒等)。存在於生活污水中的有機物極不穩定,容易腐化而產生惡臭。細菌和病原體以生活污水中有機物為營養而大量繁殖,可導致傳染病蔓延流行。因此,生活污水排放前必須進行處理。
15、印染廢水:印染廢水是加工棉、麻、化學纖維及其混紡產品為主的印染廠排出的廢水。印染廢水水量較大,每印染加工1噸紡織品耗水100~200噸,其中80~90%成為廢水。紡織印染廢水具有水量大、有機污染物含量高、鹼性大、水質變化大等特點,屬難處理的工業廢水之一,廢水中含有染料、漿料、助劑、油劑、酸鹼、纖維雜質、砂類物質、無機鹽等。
16、制葯廢水:制葯工業廢水主要包括抗生素生產廢水、合成葯物生產廢水、中成葯生產廢水以及各類制劑生產過程的洗滌水和沖洗廢水四大類。其廢水的特點是成分復雜、有機物含量高、毒性大、色度深和含鹽量高,特別是生化性很差,且間歇排放,屬難處理的工業廢水。
17、屠宰廢水:屠宰廢水來自於圈欄沖洗、淋洗、屠宰及其它廠房地坪沖洗、燙毛、剖解、副食加工、動物殘渣,血水等組成。留存在動物體內的糞便和屠宰過程中所產生的血水,所含氨氮的量是很高的,如未被處理掉就會滲入地下或者流入河流中,對人類賴以生存的水自然造破壞,從而引起藍藻滋生,水中的魚蝦大面積死亡的現象發生。
甘度 | 做好菌種 做好服務
Ⅷ 制葯廠廢水水質COD8000,BOD500,SS600可以選用什麼污水處理工藝
由於制葯廢水具有難降解的特點,單一處理工藝有時不能保證出水效果,因此國內外採用組合工藝處理制葯廢水的研究都比較多。組合工藝主要以化學法和生物法為主體工藝進行展開,達到較好的處理效果。劉香蘭等採用超聲波混凝工藝處理重慶市北碚區大新葯業的制葯廢水,制葯廢水COD為6~9g/L,pH為5左右。在超聲波輻射時間為1000s,PAC投加量為0.3g/L時處理效果最佳,COD和NH3——N的去除率分別為61.24%、58.63%。施加超聲波,可加快廢水中有機物的熱運動、提高比表面積,有機物與混凝劑碰撞形成共沉物的速率提高,從而強化混凝效果。李亞峰等以100mL的硝基苯原水為研究對象,採用微波——Fenton工藝得到優化實驗條件為:微波輻照功率為125W,輻照時間為5min,Fe3+的濃度為20mmol/L,腐殖酸的質量濃度為20mg/L,H2O2的濃度為3.5mmol/L,pH為3~6。此條件下,初始質量濃度為75mg/L的硝基苯降解率達到96.1%,出水質量濃度低於2.0mg/L。Fenton以其氧化快速、省時節能、不帶入新的污染物、礦化度高、操作簡單等優點受到廣大學者的青睞,以Fenton為主體的聯合工藝更是近年來研究的熱點。
單獨採用一般的好氧工藝處理高含量制葯廢水,對有機物含量有一定的限制,有機物含量過高會對好氧微生物有一定抑製作用,也容易出現供氧不足的狀況,曝氣電耗大,氧利用率低,處理效果不理想。微電解——混凝組合工藝預處理制葯廢水,生物處理和活性炭吸附深度處理的研究表明,微電解混凝預處理可減少污染物的毒性,提高廢水可生化性,生物處理去除大部分的COD,活性炭吸附法作為處理進一步去除剩餘的非生物降解的顆粒。預處理後COD和SS的去除率分別為66.9%和98.9%,組合處理工藝的COD去除率達96%,出水水質達到GB8978——1999三級標准各項指標。周俊採用催化氧化預處理+水解酸化+接觸氧化組合工藝處理合成類制葯廢水,進水COD=25g/L,預處理後COD去除率為85%,處理後出水COD≤0.5g/L,pH為6~9,該系統合理的流程組合充分體現工藝設計的合理性和先進性,並能有效的達到處理制葯廢水的目的。
宋吉娜等採用Fenton氧化——混凝沉澱——水解酸化——好氧工藝處理COD為高達16~20g/L的制葯廢水,好氧工藝之前去除了部分COD並提高了可生化性,再與低COD為1.8~2.2g/L的設備清洗排水和生活廢水混合,最後經過好氧工藝處理,出水COD達標。MABR中試實驗系統,包括水解酸化預處理,MABR工藝和活性炭吸附深度處理,用於處理高負荷制葯廢水。對MABR工藝的研究表明,MABR工藝能有效去除98%以上的COD和90%的氨。單膜曝氣的條件下,COD和NH4+——N容積負荷分別能夠達到1311g/(m3・d)和48.2g/(m3・d),氧的利用率可高達45%。深度處理後,MABR系統出水保持穩定,COD低於200mg/L,NH4+——N的質量濃度低於3mg/L。
本文引用來自網頁鏈接
Ⅸ 如何處理制葯廠產生的廢水
少量可以交給有資質的單位處置。水量大的話,建議自建污水處理站,可以參考制葯行業的污水處理設計規范。