Ⅰ 除去發酵液中蛋白質的常用方法有哪些
一。蛋白質沉澱方法
1.中性鹽鹽析法
⑴在一定的 pH值及溫度條件下,改變鹽的濃度(即離子強度)達到沉澱的目的,稱為「Ks」分級鹽析法。
(Ks鹽析:固定pH, 溫度,改變鹽濃度)
⑵在一定的離子強度下,改變溶液的pH值及溫度,達到沉澱的目的,稱為「β」分級鹽析法。
(β鹽析:固定離子強度,改變pH及溫度。)
2.等電點沉澱法
蛋白質等電點沉澱法是基於不同蛋白質離子具有不同等電點這一特性,依次改變溶液pH值的辦法,將雜蛋白沉澱除去,最後獲得目標產物。
3.有機溶劑沉澱法
許多能與水互溶的有機溶劑如乙醇、丙酮、甲醇和乙腈,常用於低鹽濃度下沉澱蛋白質。
4.非離子型聚合物沉澱法
20世紀60年代非離子型聚合物開始用於分離血纖維蛋白原和免疫球蛋白,從此高相對分子質量非離子聚合物沉澱蛋白質的方法被廣泛使用,如:聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、葡聚糖等。
5.金屬沉澱法
能與羧基、胺基等含氮化合物以及含氮雜環化合物強烈結合的金屬離子,如:Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+、Cd2+;
能與羧酸結合而不與含氮化合物結合的金屬離子,如:Ca2+、Ba2+、Mg2+、Pb2+;
與巰基化合物強烈結合的金屬離子,如:Hg2+、Ag+、Pb2+。
實際使用時,金屬離子的濃度常為0.02 mol/L。
6.親和沉澱
初始階段:將一個目標蛋白質與鍵合在可溶性載體上的親和配體絡合成沉澱;
所得沉澱物用一生中適當的緩沖溶液進行洗滌,洗去可能存在的雜質;
用一種適當的試劑將目標蛋白質從配體中離解出來。
7.選擇性變性沉澱法
(1)例如對於α-澱粉酶等熱穩定性好的酶,可以通過加熱進行熱處理,使大多數雜蛋白受熱變性沉澱而被除去。
(2)根據欲分離物質所含雜質的特性,通過改變pH值或加進某些金屬離子等使雜蛋白變性沉澱而被除去。
8.反膠束萃取蛋白質
菌體細胞提取
固液分離是生物產品生產中的重要單元操作。培養基、發酵液、某些中間產品和半成品等都需進行固液分離。發酵液由於種類多、粘度大及成分復雜,其固液分離最為困難。
固液分離的方法很多,生物工業中常規的方法有分離篩、重力沉降、浮選分離、離心分離和過濾等,其中用於發酵液固液分離的方法主要是離心分離和過濾。
二。超濾膜濾去。
Ⅱ 陶瓷膜過濾器都能應用在哪些領域
如果具體化應用,在項目中陶瓷膜過濾器應用已包括但不限於以下:
1,催化劑回收。解決了傳統工藝難以避免的催化劑浪費或進入下游工序影響產品品質問題。
2,納米粉體洗滌。如銀粉洗滌後電導率達到良好預期20μs以下,且運行穩定,可大大提高傳統人工生產效率。
3,高純溶劑脫水。如乙腈脫水可以達到99.5%,目前已是成熟穩定應用。還有醇類,醚類,酮類,酯類等。
4,用於油水分離。如煤化工油水分離領域,可以離水中的乳化油和超細催化劑顆粒,對於乳化油脫除率可以達到90%以上,而催化劑脫除率更是高達99%,都已經是成熟應用。
5,化纖工業鹼液回用。如化纖工業廢鹼液(半纖維素含量35-55g/L,NaOH含量180-220g/L),經陶瓷膜綜合工藝處理可回用也解決環保排放問題。
6,植物提取領域應用。如洋姜菊粉提取、藍莓花青素提取、紫薯花青素提取、苦蕎黃酮提取、甜菊葉中的甜菊糖提取、甘蔗青汁脫水純化(原糖、白糖)、羅漢果提取、葛根提取等。
7、生物醫葯發酵行業。林可黴素鹼化液純化、L-色氨酸脫色處理、右旋糖酐鐵脫鹽除雜以及蘇氨酸項目應用等。同時在現代抗生素工業生產中,還可替代傳統精製技術如吸附、沉澱、溶媒萃取、離子交換等。
8、氯鹼行業應用。在氯鹼行業鹽水精製工藝過程中,陶瓷膜應用有著傳統精製及過濾技術難以達到的優勢。還可以用於鹵水真空制鹽,所產的固體鹽品質高於澄清工藝產品,作為高品質食用鹽或氯鹼鹽使用。
9、新能源太陽能行業金剛線切割液的硅粉回收。這也是一項新的應用。回收了硅粉,為光伏企業帶來投資收益,同時還極大輔助解決了環保排放問題。
10、調味品保健酒、食品行業。如飲料行業、醬油、保健酒過濾澄清,以及骨湯澄清、濃縮等工藝應用。陶瓷膜超濾設備可直接處理醬油、食醋等調味品生產的原液,取代傳統多步過濾過程。
總之各類物料體系、涉及到的分離、濃縮、提取等生產工藝中都會用到陶瓷膜工藝,已經應用的應該只是一小部分,所以說陶瓷膜分離以後是大趨勢,取代傳統!
目前成熟度微孔陶瓷膜可以做到最高2nm孔徑,多用於研究院物料實驗如精細化除雜何濃縮。而2-50nm陶瓷納濾膜技術如眾所熟知的南京博濾工業可提供5nm膜管及成套膜分離設備已達到高穩定水平,成熟應用於工業生產和植物提取領域。以上全部,但建議樓主多查詢文獻資料,並結合走訪現場應用多做深入了解學習。
Ⅲ 陶瓷膜的應用
陶瓷膜的研究始於20世紀40年代,其發展可分為3個階段:用於鈾的同位素分離的核工業時期,以無機微濾膜和超濾膜為主的液體分離時期,以及以膜催化反應為核心的全面發展的時期。20世紀80年代初期成功地在法國的奶業和飲料(葡萄酒、啤酒、蘋果酒)業推廣應用後,陶瓷膜分離技術和產業地位逐步確立,應用也已拓展至食品工業、生物工程、環境工程、化學工程、石油化工、冶金工業等領域,成為苛刻條件下精密過濾分離的重要新技術。1998年網上公布的膜和膜設備生產廠家及經營公司達452家,其中金屬膜廠50家,陶瓷膜生產廠94家。
因開發時期較晚且成本高昂,無機分離膜領域所佔的市場份額還比較小,1997年美國無機膜市場銷售額為1億美元,其中陶瓷膜佔80%左右,僅占膜市場的9%。另據估計,2004年世界陶瓷膜的市場銷售額約超過100億美元,無機膜的市場佔有率佔12%。由於陶瓷膜在精密過濾分離中的成功應用,其市場銷售額以30%的年增長率發展。
我國無機膜的研究始於20世紀80年代末,通過國家自然科學基金以及各部委的支持,以南京工業大學為代表的陶瓷膜研究團隊已經能在實驗室規模製備出無機微濾膜及超濾膜等,反應用膜以及微孔膜也正在開發中。進入90年代,原國家科委(現科學技術部)對無機陶瓷膜的工業化技術組織了科技攻關,推進了陶瓷微濾膜的工業化進程。國家「863」計劃也將「無機分離催化膜」項目列入其中。截至20世紀初,我國已初步實現了多通道陶瓷濾膜的工業化生產,並在相關的工業過程中獲得了成功的應用。2002年第七屆國際無機膜大會在中國召開,標志著我國的無機膜研究與工業化工作已進到國際領先水平。
經過十多年的發展,我國的無機陶瓷膜行業已經具備世界領先的技術,行業內領先企業的技術實力和產品品質已經達到了國際一流的水平。行業內企業從無到有,企業產值也從起初的百萬元已經發展到數億元的規模,2010-2012年國內無機陶瓷膜成套裝備安裝面積合計約為12萬平方米。據測算,2012年全年,我國的無機陶瓷膜及成套裝備的市場總量約為5~6億元人民幣規模,其中國內生產企業的市場份額約為70%,已經在生物發酵、食品飲料、化工和水處理領域的應用具備一定的規模。
Ⅳ 生物樣品中蛋白質的處理方法有哪些
① 鹽析法
一般來說,所有固體溶質都可以在溶液中加入中性鹽而沉澱析出,這一過程叫鹽析。在生化制備中,許多物質都可以用鹽析法進行沉澱分離,如蛋白質、多肽、多糖、核酸等,其中以蛋白質沉澱最為常見,特別是在粗提階段。
鹽析法分為兩類,第一類叫Ks分段鹽析法,在一定PH和溫度下通過改變離子強度實現,用於早期的粗提液;第二種叫b分段鹽析法,在一定離子強度下通過改變PH和溫度來實現,用於後期進一步分離純化和結晶。
② 有機溶劑沉澱法
有機溶劑的沉澱機理是降低水的介電常數,導致具有表面水層的生物大分子脫水,相互聚集,最後析出。該法優點在於:1)分辨能力比鹽析法高,即蛋白質或其它溶劑只在一個比較窄的有機溶劑濃度下沉澱;2)沉澱不用脫鹽,過濾較為容易;3)在生化制備中應用比鹽析法廣泛。其缺點是對具有生物活性的大分子容易引起變性失活,操作要求在低溫下進行。總體來說,蛋白質和酶的有機溶劑沉澱法不如鹽析法普遍。
有機溶劑的選擇首先是能和水混溶,使用較多的有機溶劑是乙醇、甲醇、丙酮,還有二甲基甲醯胺、二甲基亞碸、乙腈和2-甲基-2,4戊二醇等。
③ 其他沉澱法
一.等電點沉澱法
兩性電解質分子上的凈電荷為零時溶解度最低,不同的兩性電解質具有不同的等電點,以此為基礎可進行分離。如工業上生產胰島素時,在粗提液中先調PH8.0去除鹼性蛋白質,再調PH3.0去除酸性蛋白質。
利用等電點除雜蛋白時必須了解制備物對酸鹼的穩定性,不然盲目使用十分危險。 不少蛋白質與金屬離子結合後,等電點會發生偏移,故溶液中含有金屬離子時,必須注意調整PH值。 等電點法常與鹽析法、有機溶劑沉澱法或其他沉澱方法聯合使用,以提高其沉澱能力。
二.生成鹽復合物沉澱法
1.金屬復合鹽法
許多有機物質包括蛋白在內,在鹼性溶液中帶負電荷,能與金屬離子形成沉澱。根據有機物與它們之間的作用機制,可分為羧酸、胺及雜環等含氮化合物類,如銅鋅鎘;親羧酸疏含氮化合物類,如概鎂鉛;親硫氫基化合物類,如汞銀鉛。 蛋白質-金屬離子復合物的重要性質是它們的溶解度對溶液的介電常數非常敏感,調整水溶液的介電常數(如加入有機溶劑),即可沉澱多種蛋白。
2. 有機鹽法
含氮有機酸如苦味酸、苦酮酸、鞣酸等能與有機分子的鹼性功能團形成復合物而沉澱析出。但此法常發生不可逆的沉澱反應,故用於制備蛋白質時,需採用較溫和的條件,有時還需加入一定的穩定劑。
3.無機復合鹽法
如磷鎢酸鹽、磷鉬酸鹽等。
以上鹽類復合物都具有很低的溶解度,極易沉澱析出。若沉澱為金屬復合鹽,可通以H2S使金屬變成 硫化物而除去,若為有機酸鹽或磷鎢酸鹽,則加入無機酸並用乙醚萃取,把有機酸和磷鎢酸等移入乙醚中除去,或用離子交換法除去。值得注意的是此類方法常使蛋白質發生不可逆沉澱,應用時必須謹慎。
三. 選擇性變性沉澱
其原理是利用蛋白質、酶和核酸等生物大分子對某些物理或化學因素敏感性不同,有選擇地使之變性沉澱,以達到分離提純的目的。
此方法可分為:1)利用表面活性劑(三氯乙酸)或有機溶劑引起變性;2)利用對熱的不穩定性,加熱破壞某些組分,而保存另一些組分;3)酸鹼變性。
四.非離子多聚物沉澱法
非離子多聚物是六十年代發展起來的一類重要沉澱劑,最早用於提純免疫球蛋白、沉澱一些細菌和病毒,近年來逐漸廣泛應用於核酸和酶的分離提純。這類非離子多聚物包括不同分子量的聚乙二醇、NPEO、葡聚糖、右旋糖酐硫酸鈉等,其中應用最多的是聚乙二醇。
用非離子多聚物沉澱生物大分子和微粒,一般有兩種方法:1)選用兩種水溶性非離子多聚物組成液液兩相體系,不等量分配,而造成分離。此方法基於不同生物分子表面結構不同,有不同分配系數。並外加離子強度、PH值和溫度等影響,從而擴大分離效果。2)選用一種水溶性非離子多聚物,使生物大分子在同一液相中,由於被排斥相互凝聚而沉澱析出。該方法操作時先離心除去大懸浮顆粒,調整溶液PH值和溫度至適度,然後加入中性鹽和多聚物至一定濃度,冷貯一段時間,即形成沉澱。