導航:首頁 > 耗材問題 > 強鹼性離子交換樹脂催化

強鹼性離子交換樹脂催化

發布時間:2025-02-19 13:33:45

1. 酯交換反應的催化劑

在鹼性催化劑催化的酯交換反應中,真正起活性作用的是甲氧陰離子,如下圖所示。甲氧陰離子攻擊甘油三酯的羰基碳原子,形成一個四面體結構的中間體,然後這個中間體分解成一個脂肪酸甲酯和一個甘油二酯陰離子,這個陰離子與甲醇反應生成一個甲氧陰離子和一個甘油二酯分子,後者會進一步轉化成甘油單酯,然後轉化成甘油。所生成的甲氧陰離子又循環進行下一個的催化反應。
鹼性催化劑是目前酯交換反應使用最廣泛的催化劑。使用鹼性催化劑的優點是反應條件溫和、反應速度快。有學者估計,使用鹼催化劑的酯交換反應速度是使用同當量酸催化劑的4000倍。鹼催化的酯交換反應甲醇用量遠比酸催化的低,因此工業反應器可以大大縮小。另外,鹼性催化劑的腐蝕性比酸性催化劑弱很多,在工業上可以用價廉的碳鋼反應器。除了上述優點外,使用鹼性催化劑還有以下缺點:鹼性催化劑對游離脂肪酸比較敏感,因此油脂原料的酸值要求比較高。對於高酸值的原料,比如一些廢棄油脂,需要經過脫酸或預酯化後才能進行鹼催化的酯交換反應。 已經工業化的鹼性催化劑主要有兩類:易溶於甲醇的KOH、NaOH、NaOCH3等催化的液相反應,以及固體鹼催化的多相反應。 絕大多數的生物柴油工業生產裝置都採用液相催化劑,用量為油重的0.5~2.0%。甲醇鈉與氫氧化鈉(或鉀)用作酯交換催化劑時還有所不同。當使用甲醇鈉為催化劑時,原料必須經嚴格精製,少量的游離水或脂肪酸都影響甲醇鈉的催化活性,國外工藝中要求兩者的含量都不超過0.1%;但其產物中皂的含量很少,有利於甘油的沉降分離及提高生物柴油收率。而氫氧化鈉(或鉀)為催化劑對原料的要求相對不嚴格,原料中可含少量的水和游離脂肪酸,但這會導致生成較多的脂肪皂,影響甘油的沉降分離速度,同時會導致甘油相中溶解較多的甲酯,從而降低生物柴油的收率。一般說來,以氫氧化鈉(或鉀)為催化劑,油脂原料的酸值不要超過2 mg KOH/g,催化劑的用量為油脂重量的0.5~2.0%。即使油脂原料的酸值較高,超過2 mg KOH/g,理論上還可以使用氫氧化鈉(或鉀)催化劑,但需要加入過量的催化劑以中和游離脂肪酸。這種條件下皂的生成量高,甘油沉降分離困難,且甘油相中溶解的甲酯量較高,因此不宜採取。對於氫氧化鈉和氫氧化鉀,當用作酯交換催化劑時也有所不同。
1)在對粗產物進行沉降分離過程中,催化劑主要存在於甘油相中。由於KOH的分子量大於NaOH,因此會提高甘油相的密度,加速甘油相的沉降分離。
2)使用KOH為催化劑皂的生成量要比使用NaOH時少,這會減少甲酯在甘油相中的溶解。國外一項研究表明,以KOH為催化劑催化葵花籽油酯交換,分離後的甘油相中,甲酯的摩爾含量為3%,而以NaOH為催化劑時的摩爾含量為6%。
3)以KOH為催化劑,產物用磷酸中和可生成磷酸二氫鉀,這是一種優質肥料,不僅可以減少廢物的排放,同時還會增加經濟效益。與其相比,鈉鹽只能作為廢物處理。NaOH為催化劑的優點是其價格便宜。
除此之外,國內外還在開發有機鹼催化劑,比如胺類等。當以有機胺為催化劑時,在常壓低溫下經過6~10h的反應,可以達到比較高的轉化率,但產物中甘油單酯和二酯的含量很高,而甘油的量很低,難以工業應用;當提高反應壓力和溫度時,反應過程中又有可能生成醯胺,降低產品質量。因此,以有機鹼為酯交換催化劑還需要有做大量的研究工作來證明其可行性。
固體鹼催化劑最近幾年正在工業化。與液鹼催化劑相比,使用固體催化劑可以大大提高甘油相的純度,降低甘油精製的成本,「三廢」排放少,產物不含皂,提高生物柴油收率;但反應速度慢,需要較高的溫度和壓力,較高的醇油比,且對游離脂肪酸和水比較敏感,原料需嚴格精製。法國石油研究院開發的Esterfip-H工藝是第一個將固體鹼為催化劑成功應用於工業生成的生物柴油生成工藝,其催化劑是具有尖晶石結構的雙金屬氧化物,已經建成16萬噸/年的生成裝置。另外,德國波鴻的魯爾大學也開發了一種固體鹼催化劑,這種固體鹼催化劑是一種氨基酸的金屬絡合物,催化酯交換反應的溫度為125℃,高於液鹼催化劑的反應溫度(60℃左右)。將建設1噸/小時的工業示範裝置。日本正在開發強鹼性陰離子樹脂催化劑,已取得很大進展。不過陰離子樹脂只能在低溫(60℃以下)操作,否則很快失活,而低溫下酯交換活性又比較低,所以限制了其工業應用。由於樹脂容易再生,因此若將來能開發出耐高溫的強鹼性樹脂,則具有一定的工業化前景。除此之外,國內外正在開發的固體鹼催化劑還包括粘土、分子篩、復合氧化物、碳酸鹽以及負載型鹼(土)金屬氧化物等。 酸催化酯交換的反應機理如下圖所示。質子先與甘油三酯的羰基結合,形成碳陽離子中間體。親質子的甲醇與碳陽離子結合並形成四面體結構的中間體,然後這個中間體分解成甲酯和甘油二酯,並產生質子催化下一輪反應。甘油二酯及甘油單酯也按這個過程反應。
與鹼催化相比,酸性催化劑可以加工高酸值原料,因為在酸性催化劑存在下,游離脂肪酸會與甲醇發生酯化反應生成甲酯。因此酸性催化劑非常適合加工高酸值的油脂。另外,對於長鏈或含有支鏈的脂肪醇與油脂的酯交換,一般也用酸性催化劑。但是,酸催化酯交換的反應速度非常慢,且需要比較高的反應溫度和醇油比。在酸催化反應中,如反應溫度較高,可能副反應,生成副產物如二甲醚、甘油醚等。另外,在酸催化中,水對催化劑活性的影響非常大。據報道,硫酸催化大豆油與甲醇酯交換的反應中,若大豆油中加入0.5%的水,則酯交換轉化率由95%降到90%。如果加入5%的水,則轉化率僅為5.6%。在酯交換過程中生成的碳陽離子容易與水反應生成碳酸,從而降低生物柴油收率。當油脂中游離脂肪酸含量高時應注意這一問題,因為酸性催化劑會催化游離脂肪酸與甲醇酯化,從而產生一定量的水,影響反應進程,一步酯交換反應難以達到滿意的轉化率。以高酸值的油脂如廢棄油脂為原料時,為了避免產生的水的影響,工業上常常採用邊反應邊脫水的方法,或採用間歇操作,把水分出去後再補充甲醇繼續反應。
在工業應用中,最常用的酸性催化劑是濃硫酸和磺酸或其混合物。兩者相比,硫酸價格便宜,吸水性強,這有利於脫除酯化反應生成的水,缺點是腐蝕性強,且較容易與碳碳雙鍵反應,導致產物的顏色較深。磺酸催化劑的催化活性比硫酸弱,但在生成過程中產生的問題少,且不攻擊碳碳雙鍵。
強酸型陽離子交換樹脂和磷酸鹽是兩種典型的酯交換酸性固體酸催化劑,但它們都需要比較高的反應溫度和較長的反應時間,且酯交換的轉化率比較低,使用說明短,因此限制了工業應用。其它固體酸催化劑如硫酸鋯、硫酸錫、氧化鋯及鎢酸鋯等也有人在研究。
另外,據2005年11月的Nature報道,日本東京工業大學正在開發從天然有機物如糖、澱粉、纖維素等生產固體酸催化劑。其制備方法是先把有機物如葡萄糖、蔗糖在低溫(>300℃)下進行不完全碳化,然後進行磺化反應,引進磺酸基,得到磺化的非定形碳催化劑。此種催化劑具有價格便宜、酯化活性高、使用壽命長的特點,但還沒發現用於酯交換反應方面的報道。
在國外的生物柴油生成裝置中,很少用酸催化的酯交換工藝。酸性催化劑主要被用來對酸值較高的油脂進行預酯化,然後再進行鹼催化的酯交換。我國現有的生物柴油廠主要以高酸值的廢棄油脂為原料,規模小,使用的催化劑大多是液體酸,也有少數開發使用固體酸。使用固體酸催化劑對高酸值的植物油進行預酯化,然後再用鹼催化酯交換制備生物柴油,是一條較好的工藝路線。

2. 離子交換樹脂再生方法

陽樹脂:酸--(水洗)-鹼(水洗)--酸;陰樹脂:鹼--(水洗)-酸(水洗)--鹼。鹽酸濃度4-6%;氫氧化鈉濃度4%,每種洗滌方式是從柱子下往上反洗,使用量約3倍樹脂體積,洗脫時間6小時以上。

3. 陰離子交換樹脂具體分類

離子交換樹脂因其交換能力的不同特性,可以被細分為幾個類別:


1. 強鹼型陰離子交換樹脂:這類樹脂的主要特點是含有強反應基,如四面體銨鹽官能基-N+(CH3)3。在氫氧形式下,其可以快速釋放氫氧離子進行交換。它們能與所有陰離子進行交換,用於去除雜質。其強鹼性來源於季胺基(四級胺基)-NR3OH,能在水中離解出OH-,顯現出強鹼性。正電基團與溶液中的陰離子結合,產生陰離子交換作用。這類樹脂的離解性強大,適用於各種pH環境,再生通常使用強鹼如NaOH。


2. 弱鹼型陰離子交換樹脂:含有弱鹼性基團,如伯胺基-NH2、仲胺基-NHR或叔胺基-NR2,它們在水中釋放出OH-,呈現弱鹼性。它們通常吸附整個其他酸分子,工作條件通常為中性或酸性(pH1~9),再生使用Na2CO3或NH4OH。


關於陰離子的吸附順序,強鹼性陰離子樹脂的吸附優先順序是:SO42- > NO3- > Cl- > HCO3- > OH-,而弱鹼性樹脂的吸附順序則為:OH- > 檸檬酸根3- > SO42- > 酒石酸根2- > 草酸根2- > PO43- > NO2- > Cl- > 醋酸根- > HCO3-。




(3)強鹼性離子交換樹脂催化擴展閱讀

離子交換樹脂一般呈現多孔狀或顆粒狀,其大小約為0.1~1mm,其離子交換能力依其交換能力特徵可分:強鹼型陰離子交換樹脂、弱鹼型陰離子交換樹脂、對陰離子的吸附。

4. 強鹼陰離子交換樹脂

離子交換樹脂交換能力依其交換能力特徵可分:
1. 強鹼型陰離子交換樹脂:主要是含有較強的反應基如具有四面體銨鹽官能基之-N+(CH3)3,在氫氧形式下,-N+(CH3)3OH-中的氫氧離子可以迅速釋出,以進行交換,強鹼型陰離子交換樹脂可以和所有的陰離子進行交換去除。
這類樹脂含有強鹼性基團,如季胺基(亦稱四級胺基)-NR3OH(R為碳氫基團),能在水中離解出OH-而呈強鹼性。這種樹脂的正電基團能與溶液中的陰離子吸附結合,從而產生陰離子交換作用。
這種樹脂的離解性很強,在不同pH下都能正常工作。它用強鹼(如NaOH)進行再生。
2. 弱鹼型陰離子交換樹脂:這類樹脂含有弱鹼性基團,如伯胺基(亦稱一級胺基)-NH2、仲胺基(二級胺基)-NHR、或叔胺基(*胺基)-NR2,它們在水中能離解出OH-而呈弱鹼性。這種樹脂在多數情況下是將溶液中的整個其他酸分子吸附。它只能在中性或酸性條件(如pH1~9)下工作。它可用Na2CO3、NH4OH進行再生。
3 . 對陰離子的吸附
強鹼性陰離子樹脂對無機酸根的吸附的一般順序為:
SO42- NO3- Cl- HCO3- OH-
弱鹼性陰離子樹脂對陰離子的吸附的一般順序如下:
OH- 檸檬酸根3- SO42- 酒石酸根2- 草酸根2- PO43- NO2- Cl- 醋酸根- HCO3-

5. 離子交換樹脂吸附選擇

離子交換樹脂在溶液中對不同離子的吸附具有選擇性。陽離子的吸附遵循高價離子優先原則,低價離子吸附較弱。在同價同類離子中,直徑較大的離子被吸附較強。例如,鐵離子(Fe3+)、鋁離子(Al3+)、鉛離子(Pb2+)、鈣離子(Ca2+)、鎂離子(Mg2+)、鉀離子(K+)、鈉離子(Na+)、氫離子(H+)的吸附順序為:Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+。



陰離子的吸附遵循強鹼性陰離子樹脂優先吸附無機酸根的順序為:SO42-> NO3- > Cl- > HCO3- > OH-。弱鹼性陰離子樹脂對陰離子的吸附順序為:OH-> 檸檬酸根3- > SO42- > 酒石酸根2- > 草酸根2- > PO43- >NO2- > Cl- > 醋酸根- > HCO3-。



糖液脫色時,使用強鹼性陰離子樹脂吸附擬黑色素(還原糖與氨基酸反應產物)和還原糖的鹼性分解產物,而對焦糖色素的吸附較弱。這是因為前者通常帶負電,焦糖的電荷較弱。



樹脂的選擇性與交聯度和孔隙結構有關。交聯度高的樹脂選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。在稀溶液中,選擇性較大,在濃溶液中較小。


(5)強鹼性離子交換樹脂催化擴展閱讀

離子交換樹脂是帶有官能團(有交換離子的活性基團)、具有網狀結構、不溶性的高分子化合物。通常是球形顆粒物。

閱讀全文

與強鹼性離子交換樹脂催化相關的資料

熱點內容
參觀造紙廠污水處理心得體會 瀏覽:312
維修廢水水質 瀏覽:752
創維反滲透凈水器m5怎麼樣 瀏覽:46
本田雅閣汽車空調濾芯怎麼換 瀏覽:169
脲醛樹脂固化劑潛伏期材料 瀏覽:233
降解有機廢水的氧化劑 瀏覽:20
草缸上的水垢怎麼清理 瀏覽:455
番茄廢水污泥培養的優化研究 瀏覽:311
沁園凈水機外面的透明芯如何更換 瀏覽:421
車內空氣凈化器濾芯怎麼換 瀏覽:480
社區飲水機1塊錢多少升 瀏覽:952
廢水緩沖箱 瀏覽:134
ubuntu裝回win7用u盤 瀏覽:200
污廢水處理工怎麼查 瀏覽:418
廢水中銻的國標測定 瀏覽:364
泔水等廢水清理工程施工方案 瀏覽:890
蒸餾水中不能養魚 瀏覽:331
為什麼有的濾芯特別便宜 瀏覽:299
回奶好硬可以用吸 瀏覽:506
污水與自來水間隔多少米 瀏覽:144