導航:首頁 > 耗材問題 > 氯胺氧化反滲透膜

氯胺氧化反滲透膜

發布時間:2025-02-13 20:01:52

『壹』 氨氮如何去除

去除氨氮的主要方法有:物理法、化學法、生物法。
物理法含反滲透蒸餾、土壤灌溉等處理技術;化學法含離子交換、氨吹脫、折點加氯、焚燒、化學沉澱、催化裂解、電滲析、電化學等處理技術;生物法含藻類養殖、生物硝化、固定化生物技術等處理技術 。
目前比較實用的方法有:折點加氯法、選擇性離子交換法、氨吹脫法、生物法以及化學沉澱法。
折點氯化法去除氨氮:
折點氯化法是將氯氣或次氯酸鈉通入廢水中將廢水中的NH3-N氧化成N2的化學脫氮工藝。當氯氣通入廢水中達到某一點時水中游離氯含量最低,氨的濃度降為零。當氯氣通入量超過該點時,水中的游離氯就會增多。因此該點稱為折點,該狀態下的氯化稱為折點氯化。處理氨氮廢水所需的實際氯氣量取決於溫度、pH值及氨氮濃度。氧化每克氨氮需要9~10mg氯氣。pH值在6~7時為最佳反應區間,接觸時間為0.5~2小時。 折點加氯法處理後的出水在排放前一般需要用活性碳或二氧化硫進行反氯化,以去除水中殘留的氯。1mg殘留氯大約需要0.9~1.0mg的二氧化硫。在反氯化時會產生氫離子,但由此引起的pH值下降一般可以忽略,因此去除1mg殘留氯只消耗2mg左右(以CaCO3計)。折點氯化法除氨機理如下:
Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O

NHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-
折點氯化法最突出的優點是可通過正確控制加氯量和對流量進行均化,使廢水中全部氨氮降為零,同時使廢水達到消毒的目的。對於氨氮濃度低(小於50mg/L)的廢水來說,用這種方法較為經濟。為了克服單獨採用折點加氯法處理氨氮廢水需要大量加氯的缺點,常將此法與生物硝化連用,先硝化再除微量殘留氨氮。氯化法的處理率達90%~100%,處理效果穩定,不受水溫影響,在寒冷地區此法特別有吸引力。投資較少,但運行費用高,副產物氯胺和氯化有機物會造成二次污染,氯化法只適用於處理低濃度氨氮廢水。

『貳』 目前稀土氯銨廢水的處理還有哪些不足

氨氮廢水是稀土分離廠最難解決的特徵污染物,處理氨氮廢水的方法主要有蒸發濃縮法、折點氯化法、膜法、氨吹脫法等。

蒸發濃縮法適用於銨濃度達80克/升以上的高濃度氯化銨廢水,但要消耗大量的能量,生產出來的氯化銨產品也存在市場銷售困難的問題,因此該方法僅適用於煤炭資源豐富且氯化銨銷路較好的地區。

折點氯化法適用於處理低濃度氨氮廢水,雖然其處理效果穩定,不受水溫影響,投資較少,但是加氯量較大、費用高,副產物氯胺和氯代有機物會造成二次污染,要注意密封和再處理。

反滲透膜法是將低濃度含氨廢水(0.3%)濃縮至6%~7%,然後再通過氨鹼法生產氨水,其淡化水NH4+小於10毫克/升,淡水回用率達90%。日本科學家發明了一種隔膜電滲析—電透析法是處理含銨廢水新技術,氯化銨、硝酸銨廢水經預處理以及隔膜電滲析處理後,濃度得到富集,再經電解透析處理,可回收HCl、HNO3、氨水。目前已投入工業運行。

氨吹脫法通過調節pH值,使NH4+轉化為NH3,然後大量曝氣,促使NH3向空氣中轉移, 因此達到去除水體中NH4+含量的目的。氨吹脫法運行過程中最大的費用是調整pH值消耗的鹼,用石灰雖然成本低但沉渣多難清理,採用純鹼或固鹼成本較高,氨氮含量難以達到排放標准,而且NH3排放到大氣中對環境造成二次污染。

盡管氨氮可以採用不同方法進行處理,但靠一種方法很難達到排放標准,而且造成大量能源消耗,處理成本高,最好的辦法還是從源頭消除氨氮的污染問題,業內研究機構開發了系列無氨氮排放的清潔生產技術,部分已推廣應用。稀土非皂化萃取分離技術是採用氧化鎂或氧化鈣對有機相進行預處理,以此替代氨水或氫氧化鈉,可節約生產成本30%~50%,分離過程不產生氨氮廢水,極大地節約了治理成本,具有很好的經濟效益和社會效益;碳酸鈉沉澱稀土工藝是用碳酸鈉代替碳銨沉澱稀土,也從源頭上消除了氨氮廢水的污染。

『叄』 反滲透膜清洗酸鹼用量

你說的應該是反滲透膜的化學清洗吧。

1、檸檬酸溶液,在高壓或低壓下,用1%-2%的檸檬酸水溶液對陶氏膜進行連續或循環沖洗,這種方法對Fe(OH)3污染有很好的清洗效果。本文介紹了陶氏反滲透膜化學清洗方法。

2、檸檬酸銨溶液,檸檬酸的溶液中加入氨水或配成不同PH值的溶液,也可在檸檬酸銨的溶液中加HCL,調節PH值至2-2.5,例如在190L去離子水中,溶解277g檸檬酸胺,用HCL調節溶液PH值為2.5,用這種溶液在膜系統內循環清洗6小時,效果很好,若將該溶液加溫到35-40℃,清洗效果更好,該溶液對無機物的污染清洗效果均很好,但清洗時間較長。

3、加酶洗滌劑,用加酶洗滌劑處理膜,對有機物污染,特別是對蛋白質,油類等有機物污染特別有效,若在50℃-60℃下清洗效果更好,一般的在運行10天或半個月後用1%的加酶洗滌劑在低壓下對膜進行一次清洗,由於所用加酶洗滌劑濃度較低,所以要求浸漬時間長一些。

4、濃鹽水,對肢體污染嚴懲的膜採用濃鹽水清洗是有效的,這是由於高濃度鹽水能減弱膠體間的相互作用,促進膠體凝聚形成膠團。

5、水溶性乳化液,用於清洗被油和氧化鐵污染的膜十分有效,一般清洗30-60分鍾。

6、雙氧水溶液,例如將0.5L,30%的H2O2用12L去離子水稀釋,然後清洗膜表面,這種方法對有機物污染特別有效。

7、次氯酸鈉和甲醛溶液,對於細菌的污染,要視不同的陶氏膜採取不同的處理措施,對芳香聚醯胺膜可用1%(重量)的甲醛溶液清洗,同時要經常分析反滲透濃水中保持0.2-0.5mg/l的余氯,以防止細菌繁殖。

8、草酸和EDTA溶液, 對於膜上的金屬氧化物沉澱,用草酸和EDTA溶液清洗為好。

『肆』 目前稀土氯銨廢水的處理還有哪些不足

氨氮廢水是稀土分離廠最難解決的特徵污染物,處理氨氮廢水的方法主要有蒸發濃縮法、折點氯化法、膜法、氨吹脫法等。

蒸發濃縮法適用於銨濃度達80克/升以上的高濃度氯化銨廢水,但要消耗大量的能量,生產出來的氯化銨產品也存在市場銷售困難的問題,因此該方法僅適用於煤炭資源豐富且氯化銨銷路較好的地區。

折點氯化法適用於處理低濃度氨氮廢水,雖然其處理效果穩定,不受水溫影響,投資較少,但是加氯量較大、費用高,副產物氯胺和氯代有機物會造成二次污染,要注意密封和再處理。

反滲透膜法是將低濃度含氨廢水(0.3%)濃縮至6%~7%,然後再通過氨鹼法生產氨水,其淡化水NH4+小於10毫克/升,淡水回用率達90%。日本科學家發明了一種隔膜電滲析—電透析法是處理含銨廢水新技術,氯化銨、硝酸銨廢水經預處理以及隔膜電滲析處理後,濃度得到富集,再經電解透析處理,可回收HCl、HNO3、氨水。目前已投入工業運行。

氨吹脫法通過調節pH值,使NH4+轉化為NH3,然後大量曝氣,促使NH3向空氣中轉移, 因此達到去除水體中NH4+含量的目的。氨吹脫法運行過程中最大的費用是調整pH值消耗的鹼,用石灰雖然成本低但沉渣多難清理,採用純鹼或固鹼成本較高,氨氮含量難以達到排放標准,而且NH3排放到大氣中對環境造成二次污染。

盡管氨氮可以採用不同方法進行處理,但靠一種方法很難達到排放標准,而且造成大量能源消耗,處理成本高,最好的辦法還是從源頭消除氨氮的污染問題,業內研究機構開發了系列無氨氮排放的清潔生產技術,部分已推廣應用。稀土非皂化萃取分離技術是採用氧化鎂或氧化鈣對有機相進行預處理,以此替代氨水或氫氧化鈉,可節約生產成本30%~50%,分離過程不產生氨氮廢水,極大地節約了治理成本,具有很好的經濟效益和社會效益;碳酸鈉沉澱稀土工藝是用碳酸鈉代替碳銨沉澱稀土,也從源頭上消除了氨氮廢水的污染。

『伍』 水殺菌有什麼好的辦法

水體均含有微生物,包括細菌、真菌、藻類、病毒、原生動物等。含有微生物的原水若不經過殺菌處理直接進入反滲透膜元件,微生物會在反滲透濃縮作用下,富集在膜元件表面,形成微生物膜,嚴重影響膜元件的產水量和脫鹽率,造成壓力不穩定。而且膜元件出現微生物污染後,進行清洗的效果都不是很好,所以對含微生物的原水,尤其是地表水、海水、廢水,必須在預處理中採取殺菌措施。針對此類水源建議選用抗氧化反滲透膜元件,便於簡化預處理並且不存在膜元件被氧化的風險。常用的殺菌工藝包括物理殺菌和化學殺菌,下面一起來看下吧!

氯消毒是最早被採用的飲用水消毒方式,具有技術成熟穩定、殺菌能力強、持續時間久、成本低廉等眾多優點。目前,我國城鄉集中某供水水廠均採用氯消毒工藝對飲用水進行消毒。

『陸』 超純水機純化前處理系統有哪些

那麼,超純水機純化水有哪些處理系統?
1、預處理-反滲透-水箱-陽床-陰床-混合床-純化內水箱-純水泵容-紫外線殺菌器-精製混床-精密過濾器-用水對象。
2、預處理-一級反滲透-加葯機(PH調節)-中間水箱-第二級反滲透-純化水箱-純水泵-紫外線殺菌器-0.2或0.5μm精密過濾器-用水對象。
3、預處理-反滲透-中間水箱-水泵-EDI裝置-純化水箱-純水泵-紫外線殺菌器-0.2或0.5μm精密過濾器-用水對象。

『柒』 工業廢水如何有效去除氨氮超標

1 高濃度氨氮廢水處理技術

高濃度氨氮廢水是指氨氮質量濃度大於500mg/L
的廢水。伴隨石油、化工、冶金、食品和制葯等工業的發展,以及人民生活水平的不斷提高,工業廢水和城市生活污水中氨氮的含量急劇上升,呈現氨氮污染源多、排放量大,並且排放的濃度增大的特點〔2〕。目前針對高氨氮廢水的處理技術主要使用吹脫法、化學沉澱法等。

1.1 吹脫法

將空氣通入廢水中,使廢水中溶解性氣體和易揮發性溶質由液相轉入氣相,使廢水得到處理的過程稱為吹脫,常見的工藝流程見圖 1。


圖 2 生物脫氮的途徑

用生物法處理含氨氮廢水時,有機碳的相對濃度是考慮的主要因素,維持最佳碳氮比也是生物法成功的關鍵之一。

生物法具有操作簡單、效果穩定、不產生二次污染且經濟的優點,其缺點為佔地面積大,處理效率易受溫度和有毒物質等的影響且對運行管理要求較高。同時,在工業運用中應考慮某些物質對微生物活動和繁殖的抑製作用。此外,高濃度的氨氮對生物法硝化過程具有抑製作用,因此當處理氨氮廢水的初始質量濃度<300
mg/L 時,採用生物法效果較好。

J. Kim 等〔24〕採用小球藻處理美國俄亥俄州辛辛那提磨溪污水處理廠廢水中的氨氮,實驗結果表明,小球藻在經歷24 h 的遲緩期後,在48 h 內氨氮去除率可達50%。

2.3.1 傳統生物硝化反硝化技術

傳統生物硝化反硝化脫氮處理過程包括硝化和反硝化兩個階段。硝化過程是指在好氧條件下,在硝酸鹽和亞硝酸鹽菌的作用下,氨氮可被氧化成硝酸鹽氮和亞硝酸鹽氮;再通過缺氧條件,反硝化菌將硝酸鹽氮和亞硝酸鹽氮還原成氮氣,從而達到脫氮的目的。

傳統生物硝化反硝化法中,較成熟的方法有A/O 法、A2/O 法、SBR
序批式處理法、接觸氧化法等。它們具有效果穩定、操作簡單、不產生二次污染、成本較低等優點。但該法也存在一些弊端,如必須補充相應的碳源來配合實現氨氮的脫除,使運行費用增加;碳氮比較小時,需要進行消化液迴流,增加了反應池容積和動力消耗;硝化細菌濃度低,系統投鹼量大等。

楊小俊等〔25〕通過A/O 膜生物反應器處理某煉油廠氣浮池出水中的氨氮,實驗結果表明,當氨氮和COD 容積負荷分別在0.04~0.08、0.30~0.84 kg/(m3·d)時,處理後水中氨氮質量濃度小於5 mg/L。

2.3.2 新型生物脫氮技術

(1)短程硝化反硝化技術。短程硝化反硝化是在同一個反應器中,先在有氧的條件下,利用氨氧化細菌將氨氧化成亞硝酸鹽,阻止亞硝酸鹽進一步氧化,然後直接在缺氧的條件下,以有機物或外加碳源作為電子供體,將亞硝酸鹽進行反硝化生成氮氣。

短程硝化反硝化與傳統生物脫氮相比具有以下優點:對於活性污泥法,可節省25%的供氧量,降低能耗;節省碳源,一定情況下可提高總氮的去除率;提高了反應速率,縮短了反應時間,減少反應器容積。但由於亞硝化細菌和硝化細菌之間關系緊密,每個影響因素的變化都同時影響到兩類細菌,而且各個因素之間也存在著相互影響的關系,這使得短程硝化反硝化的條件難以控制。目前短程硝化反硝化技術仍處在人工配水實驗階段,對此現象的理論解釋還不充分。

(2)同時硝化反硝化技術。當硝化與反硝化在同一個反應器中同時進行時,即為同時硝化反硝化(SND)。廢水中溶解氧受擴散速度限制,在微生物絮體或者生物膜的表面,溶解氧濃度較高,利於好氧硝化菌和氨化菌的生長繁殖,越深入絮體或膜內部,溶解氧濃度越低,形成缺氧區,反硝化細菌占優勢,從而形成同時硝化反硝化過程。

鄒聯沛等〔26〕對膜生物反應器系統中的同時硝化反硝化現象進行了研究,實驗結果表明,當DO 為1mg/L,C/N=30,pH=7.2
時,COD、NH4+-N、TN 去除率分別為96%、95%、92%,並發現在一定的范圍內,升高或降低反應器內DO 濃度後,TN 去除率都會下降。

同時硝化反硝化法節省反應器,縮短了反應時間,且能耗低、投資省。但目前對於同步硝化反硝化的研究尚處於實驗室階段,其作用機理及動力學模型需做進一步的研究,其工業化運用尚難實現。

(3)厭氧氨氧化技術。厭氧氨氧化是指在缺氧或厭氧條件下,微生物以NH4+ 為電子受體,以NO2- 或NO3- 為電子供體進行的NH4+、NO2- 或NO3- 轉化成N2的過程〔27〕。

何岩等〔28〕研究了SHARON
工藝與厭氧氨氧化工藝聯用技術處理「中老齡」垃圾滲濾液的效果,實驗結果表明,厭氧氨氧化反應器可在具有硝化活性的污泥中實現啟動;
在進水氨氮和亞硝酸氮質量濃度不超過250 mg/L 的條件下,氨氮和亞硝酸氮的去除率分別可達到80%和90%。目前,SHARON
與厭氧氨氧化聯合工藝的研究仍處於實驗室階段,還需要進一步調整和優化工藝條件,以提高聯合工藝去除實際高氨氮廢水中的總氮的效能。

厭氧氨氧化技術可以大幅度地降低硝化反應的充氧能耗,免去反硝化反應的外源電子供體,可節省傳統硝化反硝化過程中所需的中和試劑,產生的污泥量少。但目前為止,其反應機理、參與菌種和各項操作參數均不明確。

2.4 膜技術

2.4.1 反滲透技術

反滲透技術是在高於溶液滲透壓的壓力作用下,藉助於半透膜對溶質的選擇截留作用,將溶質與溶劑分離的技術,具有能耗低、無污染、工藝先進、操作維護簡便等優點。

利用反滲透技術處理氨氮廢水的過程中,設備給予足夠的壓力,水通過選擇性膜析出,可用作工業純水,而膜另一側氨氮溶液的濃度則相應增高,成為可以被再次處理和利用的濃縮液。在實際操作中,施加的反滲透壓力與溶液的濃度成正比,隨著氨氮濃度的升高,反滲透裝置所需的能耗就越高,而效率卻是在下降〔29〕。

徐永平等〔30〕以兗礦魯南化肥廠碳酸鉀生產車間含NH4Cl 的廢水為研究對象,利用反滲透法對NH4Cl
廢水的處理過程進行了研究,實驗裝置採用反滲透膜(NTR-70SWCS4)過濾機。結果表明,在用反滲透膜技術處理氨氮廢水的過程中,氯化銨質量濃度適宜在60
g/L 以下,在該濃度條件下,設備脫氨氮效率較高,一般大於97%,各項技術指標合格,可以用於實際生產操作。

2.4.2 電滲析法

電滲析是在外加直流電場的作用下,利用離子交換膜的選擇透過性,使離子從電解質溶液中分離出來的過程。電滲析法可高效地分離廢水中的氨氮,並且該方法前期投入小,能量和葯劑消耗低,操作簡單,水的利用率高,無二次污染副產物。

唐艷等〔31〕採用自製電滲析設備對進水電導率為2 920 μS/cm,氨氮質量濃度為534.59 mg/L
的氨氮廢水進行處理,通過實驗得到在電滲析電壓為55 V,進水流量為24 L/h
這一最佳工藝參數條件下,可對實驗用水有效脫氮的結論,出水氨氮質量濃度為13 mg/L。

3 不同濃度工業含氨氮廢水的處理方法比較

不同氨氮廢水處理方法優缺點比較見表 4。

通過對以上幾種不同方法的論述,可以看出目前針對工業廢水中高濃度氨氮的處理方法主要使用物理化學方法做預處理,再選擇其他方法進行後續處理,雖能取得較好的處理效果,但仍存在結垢、二次污染的問題。對低濃度的氨氮廢水較常用的方法為化學法和傳統生物法,其中化學法的一些處理技術還不成熟,未在實際生產中應用,因此還無法滿足工業對低濃度氨氮廢水深度處理的要求;
生物法能較好地解決二次污染問題,且能達到工業對低濃度氨氮廢水深度處理的要求,但目前對微生物的選種和馴化還不完全成熟。

『捌』 超濾凈水器的組件有哪些,各個部件的作用是什麼

1、活性碳
吸附異色異味之物質和化學殘留物以及部分重金屬,例如氯、氯胺、氯化專氫、三氯甲烷、漂白屬劑、農葯、除草劑、致癌物。
2、KDF
去除余氯和汞、鉛、鎘等重金屬,同時起到部分抑菌作用。
3、陽離子樹脂
吸附鈣、鎂離子。
4、陶瓷濾芯
過濾微小生物及濾除大腸肝菌、霍亂菌、沙門氏菌、痢疾菌。
5、UF膜
濾除顆粒大於0.01微米之物質 。
---今美自潔式凈水器

『玖』 酸鹼對反滲透膜有無影響

對於正常運行時,pH值應呈中性,即pH值7左右。反滲透膜在pH值7.5-7.8時脫鹽率最高,碳酸鹽內休系的平衡關系,容這個平衡隨著pH值的變化而移動,當pH值小於8時,水中的C032-和HCO3-開始部分轉化為CO2,當pH值小於4時,水中全部C032-和HCO3-都有轉化為CO2。

pH高對反滲透膜有影響嗎?

反滲透膜元件對溶解在水中的CO2是不能脫除的,這些CO2透過膜元件到達產水側後會重新在水中轉化為HCO3-,使產水電導率升高,因此反滲透元件在低pH值條件下運行時表現出的脫鹽率不高.但是,也不能為了排除CO2的干擾而不加限制地提高pH值,這是因為pH值的升高會降低碳酸鹽的溶解度,導致結垢。

因此控制適當的pH值范圍才能確保反滲透的正常運行。

『拾』 現在自來水廠凈水工藝還用氯嗎 如果不用,工藝大概是什麼樣的 有資料的請發出來看看 學習一下

用,我在自來來水廠實習過,源目前大城市供水廠一般都用氯氣消毒,因為氯氣能在長途的水運輸過程中有持續的消毒效果,而相反,臭氧的消毒效果會在較短距離內消失。
不過,目前越來越多數據表明氯氣消毒會帶來氧化水污染,我正在研究的就是這個問題,關於高氯酸在自來水中的含量。
其他的水消毒技術還有,臭氧消毒,紫外線消毒等,臭氧消毒一般適合用於小區內直接飲用水消毒,或者小區內供水消毒,目前使用臭氧發生器產生的消毒成本較高,而且消毒效力不能滿足國內城市供水要求。
而紫外線消毒也有臭氧消毒的缺點,成本高,效力不持續。
目前除了氯氣消毒確實沒有一種消毒方式適合國內的供水系統……

閱讀全文

與氯胺氧化反滲透膜相關的資料

熱點內容
油過濾器芯材質 瀏覽:851
水性漆水簾櫃廢水產生濃度 瀏覽:41
印染廢水除氨氮 瀏覽:554
污水管檢修口在櫃體內怎麼設計 瀏覽:376
魔凡奇凈水器是哪個廠家生產 瀏覽:817
小米凈水器後期哪個成本低 瀏覽:941
什麼牌子反滲透凈水器好 瀏覽:52
2597樹脂多少錢一公斤 瀏覽:356
蒸餾時冷凝管的作用作業幫 瀏覽:894
除去水垢碳酸鈣 瀏覽:450
卧式污水提升泵類型 瀏覽:462
蘇州排水處理 瀏覽:909
神秘時代4蒸餾器 瀏覽:820
蒸餾時的器材 瀏覽:238
蛋白粉用開水沖回怎樣 瀏覽:925
zqx系列過濾器 瀏覽:74
焦油污水用什麼葯劑變清水 瀏覽:823
怎樣給暖瓶除垢 瀏覽:911
武漢窗式凈化器多少錢一台 瀏覽:978
怎麼在自動飲水機里打水 瀏覽:198