❶ 請教ab-8型大孔吸附樹脂的預處理方法
AB-8大孔吸附樹脂
預處理方法1.用無水乙醇1~2BV 過柱,水洗至無醇味即可
方法2. 4%HCl過柱,水洗至中性,4%NaOH過柱,水洗至中性,待用
若對產品純度要求不高,可用方法2即可,若樹脂孔道內未完全洗凈的致孔劑對所吸附組分有影響,建議用醇預處理。
❷ 大孔樹脂預處理及再生
大孔吸附樹脂是一種由有機單體、交聯劑、致孔劑和分散劑等添加劑聚合而成的特殊材料,如D201樹脂。在使用前,需要進行預處理以去除可能存在的有毒有機殘留物。首先,用飽和食鹽水(工業級,約是樹脂量的2倍)浸泡樹脂18-20小時,然後用清水漂洗干凈,直到排出的水清澈無黃色。接著,用2%~4%的氫氧化鈉(或5%的鹽酸)溶液(量與食鹽水相同)浸泡2-4小時(或小流量清洗),清洗至中性後備用。實驗室通常採用95%的乙醇進行預處理,通過加熱迴流或改良索氏提取器洗脫,直至洗脫液蒸干無殘留物。洗凈的樹脂需揮去溶劑後儲存備用。
裝柱時,採用乙醇濕法,邊裝邊用乙醇清洗柱子,直到混合後的乙醇與水無白色混濁昌或。然後用大量蒸餾水沖洗去乙醇,備用。少量乙醇殘留會降低樹脂的吸附性能。
樹脂柱在反復使用後,表面和內部可能積聚非吸附性成分或雜質,影響柱效。此時需要再生,通常用95%的乙醇清洗至無色,再用大量水洗凈醇化部分。如顏色變深,可使用稀酸或稀鹼洗脫後清水沖洗。如有懸浮物,可通過反洗排除,即用水或醇從柱下向上沖洗。若樹脂床緊實或顆粒破碎,需取出樹脂,用水漂洗並重新裝柱。
樣品處理時,可將樣品溶於少量水或先溶於乙醇,然後與樹脂混合,揮去乙醇後加到柱上。洗脫過程中,通常從水開始,逐步提高乙醇濃度,同時結合高效液相色譜法指導。洗脫至無色時,樹脂再生完成,再用水洗凈即可進行下一步操作。在使用過程中,要定期檢查和維護樹脂柱,確保吸附效果。
大孔樹脂(macroporous resin) 又稱全多孔樹脂,聚合物吸附劑,它是一類以吸附為特點,對有嫌中機物具有濃縮、分離作用的高分子聚合物。1964年,Rohm&Haas公司開發了對硼進行選擇性絡合吸附的吸附樹脂Amberlite XE-243,這可看作是最早開發的吸附樹脂。60年代末,日本三菱化成公司也開發生產了Diaion HP系列的大孔吸附耐者伍樹脂。中國吸附樹脂的研究工作開展於1974年,現已有H系列、CHA系列、NKA系列等多個系列產品。
❸ 請教下AB-8大孔吸附樹脂再生的方法~
乙醇--水--氫氧化鈉----水--鹽酸---水
❹ 各類離子交換樹脂的再生方法
離子交換樹脂再生方法:
1、首先將樹脂床裡面的水完全排放。
2、只需要打開進酸/鹼閥、回上排閥,關答閉其他閥門。
3、然後將酸/鹼泵打開,放入酸/鹼液,液面最好超過樹脂20厘米以上,然後打開下排,流速和進酸/鹼速度相同。
4、酸/鹼洗時間一般最好不能低於40分鍾,酸/鹼洗之後可以直接清洗樹脂。
5、打開砂過濾和精密過濾,然後放掉酸/鹼液,再打開上進和下進,清除掉殘留的酸/鹼液。
6、然後關閉樹脂床下進閥,開始進行清洗,清洗時打開樹脂床上排閥,樹脂床內的水必須要超過樹脂,不能讓樹脂失水。清洗至出水接近中性為止。
再生時的注意事項:
1、樹脂再生完之後,需要進行檢測,能夠達到標准之後,再進行正常的使用,防止再生時有其他物質影響樹脂的產水。
2、再生時所用的水,必須是處理過的水,不能直接使用自來水,因為自來水中含有一定的雜質,再生時一般都是使用軟化水或者純水。
3、再生過程中,水必須要超過樹脂,防止樹脂失水。
詳情點擊:網頁鏈接
❺ 大孔樹脂先用酸和先用鹼處理有影響嗎
大孔樹脂先用酸和先用鹼處理有影響的。處理新樹脂的方法再生,先用酒精浸泡,用水洗至無酒精味。後用7%的鹽酸浸泡,後用水洗至pH3左右,接著用氫氧化鈉14%浸泡,陰離子用陽離子處理水洗至pH8左右,陽離子樹脂的話用水洗至pH8左右後還要用7%的鹽酸浸泡,後用水洗至pH3左右。浸泡時間一般在12--24h。
❻ 各類離子交換樹脂的再生方法
1. 針對大孔吸附樹脂的簡單再生方法,可使用不同濃度的溶劑按照極性從大到小進行剃度洗脫,接著用2到3倍的稀酸或稀鹼溶液浸泡洗脫,最後用水洗至pH值中性後即可重新使用。
2. 鈉型強酸性陽樹脂的再生可使用10%的NaCl溶液,其用量應為樹脂交換容量的兩倍。對於氫型強酸性樹脂,再生時應避免硫酸與樹脂吸附的鈣離子反應生成硫酸鈣沉澱,因此建議先通入1到2%的稀硫酸。
3. 氯型強鹼性樹脂主要使用NaCl溶液進行再生,加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出。通常使用的鹼鹽液含10%的NaCl和0.2%的NaOH,每升樹脂用量為150到200克NaCl及3到4克NaOH。OH型強鹼陰樹脂則使用4%的NaOH溶液進行再生。
4. 某些脫色樹脂(特別是弱鹼性樹脂)在微酸性條件下效果更佳。此時,可通過通入稀鹽酸使樹脂pH值降至約6,隨後進行水和正洗、反洗各一次。
5. 陽樹脂的再生過程包括:首先通入鹽酸,在環境溫度下,將4%的樹脂床體積4倍的HCl通過樹脂床,通過時間約2小時;接著進行慢洗,以相同流速和流向,通2倍樹脂體積的除鹽水;最後進行快洗,以運行流速和流向,通除鹽水至pH=5-6,樹脂床即可備用。
6. 陰樹脂的再生過程包括:首先通入氫氧化鈉,在環境溫度下,將4%的樹脂體積4倍量的NaOH通過樹脂床,通過時間約為2小時;接著進行慢洗,以相同流速和流向,通2倍樹脂體積的除鹽水;最後進行快洗,以運行流速和流向,通除鹽水至pH=8,樹脂床即可備用。具體操作可根據樹脂使用情況適當增加酸鹼的濃度和再生時間。
(6)ab大孔樹脂再生擴展閱讀:
1)在水處理領域,離子交換樹脂的需求量占離子交換樹脂產量的90%,主要應用於水中各種陰陽離子的去除。在火力發電廠的純水處理中,離子交換樹脂的消耗量最大,其次是在原子能、半導體、電子工業等領域。
2)在食品工業中,離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如,在製造高果糖漿的過程中,通過離子交換處理可以從玉米澱粉中提取出高果糖漿。
3)在制葯行業,離子交換樹脂對新一代抗菌素的開發及現有抗菌素質量的改進具有重要意義。例如,鏈黴素的開發就是一例。
4)在合成化學和石油化學工業中,離子交換樹脂可作為酸和鹼的催化劑進行酯化、水解、酯交換、水合等反應,具有可反復使用、產品易分離、不腐蝕反應器、不污染環境、反應易控制等優點。
5)在環境保護方面,離子交換樹脂已廣泛應用於許多受關注的環境問題。例如,從電鍍廢液中回收金屬離子,從電影製片廢液中回收有用物質等。
6)在濕法冶金及其他領域,離子交換樹脂可用於從貧鈾礦中分離、濃縮、提純鈾及提取稀土元素和貴金屬。
❼ 怎樣使大孔樹脂再生
樹脂使用一段時間後受到污染導致吸附能力下降,需要再生以恢復其吸附能力。樹脂再生所用的溶劑有乙醇、甲醇、丙酮、異丙醇及稀酸、稀鹼溶液等。樹脂再生分為簡單再生和強化再生。
簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。樹脂經過幾次簡單的再生後,如果吸附性能下降較多時需強化再生。強化再生的方法是先用不同濃度的有機溶劑洗脫後反復用大體積的稀酸、稀鹼溶液交替強化洗脫後,水洗至PH值中性即可使用。
值得指出的是,目前很多科研人員或企業在樹脂再生時,往往未經系統的實驗就直接用95%的乙醇進行洗脫,這實際上是不科學的,其再生效果也會很差。因為不同的中葯提取物,其對樹脂的污染物質也不同,如果污染物質屬水溶性雜質,在95%乙醇中溶解度差,其再生效果也會很差。因此,給據我的經驗及資料報道,應該先進行梯度洗脫,以考察樹脂再生的有機溶劑的濃度,或先採用低濃度的有機溶劑再生,再採用高濃度的有機溶劑再生,這樣能收到較好的效果。另外,對於難再生的樹脂,也可以先採用稀酸或稀鹼浸泡,洗脫後再用不同濃度的有機溶劑洗脫,這樣能取得較好的效果。
❽ 大孔吸收樹脂在現代中葯生產中的應用
大孔吸收樹脂在現代中葯生產中的應用
大孔吸附樹脂是近代發展起來的一類有機高聚物吸附劑,70年代末開始將其應用於中草葯成分的提取分離。中國醫學科學院葯物研究所植化室試用大孔吸附樹脂對糖、生物鹼、黃酮等進行吸附,並在此基礎上用於天麻、赤勺、靈芝和照山白等中草葯的提取分離,結果表明大孔吸附樹脂是分離中草葯水溶性成分的一種有效方法。用此法從甘草中可提取分離出甘草甜素結晶。以含生物鹼、黃酮、水溶性酚性化合物和無機礦物質的4種中葯有效部位的單味葯材(黃連、葛根、丹參、石膏)水提液為樣本,在LD605型樹脂上進行動態吸附研究,比較其吸附特性參數。結果表明除無機礦物質外,其它中葯有效部位均可不同程度的被樹脂吸附純化。不同結構的大孔吸附樹脂對親水性酚類衍生物的吸附作用研究表明不同類型大孔吸附樹脂均能從極稀水溶液中富集微量親水性酚類衍生物,且易洗脫,吸附作用隨吸附物質的結構不同而有所不同,同類吸附物質在各種樹脂上的吸附容量均與其極性水溶性有關。用D型非極性樹脂提取了絞股藍皂甙,總皂甙收率在2.15%左右。用D1300大孔樹脂精製「右歸煎液」,其干浸膏得率在4~5%之間,所得干浸膏不易吸潮,貯藏方便,其吸附回收率以5-羥甲基糖醛計,為83.3%。用D-101型非極性樹脂提取了甜菊總甙,粗品收率8%左右,精品收率在3%左右。用大孔吸附樹脂提取精製三七總皂甙,所得產品純度高,質量穩定,成本低。將大孔吸附樹脂用於銀杏葉的提取,提取物中銀杏黃酮含量穩定在26%以上。江蘇色可賽思樹脂有限公司整理用大孔吸附樹脂分離出的川芎總提物中川芎嗪和阿魏酸的含量約為25%~29%,收率為0.6%。另外大孔吸附樹脂還可用於含量測定前樣品的預分離。
黃酮精製純化
張紀興等對地錦草的提取工藝進行了研究,旨在提高總黃酮的收率,選用D101型大孔樹脂,以地錦草總黃酮含量為考察指標,採用L9(34)正交試驗表,以直接影響地錦草總黃酮收率的上柱量、吸附時間及洗脫液的濃度為實驗因素,每個因素取3個水平。結果10ml樣品液(每1ml75%乙醇液含地錦草干浸膏0.5g)上柱、靜置吸附時間30min、用95%乙醇洗脫地錦草總黃酮為最佳工藝;洗脫液乾燥後的總固體物中的地錦草總黃酮含量大於16%,高於醇提干浸膏的7.61%,且洗脫率大於93%。高紅寧等採用紫外分光光度法測定苦參中總黃酮的含量,使用AB-8型大孔吸附樹脂對苦參總黃酮的吸附性能及原液濃度、pH值、流速、洗脫劑的種類對吸附性能的影響進行了研究,結果AB-8型樹脂對苦參總黃酮的適宜吸附條件為原液濃度0.285mg/ml、pH值4、流速每小時3倍樹脂體積、洗脫劑用50%乙醇時,解吸效果較好,表明AB-8型樹脂精製苦參總黃酮是可行的。麻秀萍等用不同型號的大孔吸附樹脂研究了中葯銀杏葉的提取物銀杏葉黃酮的分離,發現S-8型樹脂吸附量為126.7mg/g,洗脫溶劑的乙醇濃度90%,解吸率52.9%,AB-8型樹脂吸附量102.8mg/g,用溶劑為90%的乙醇解吸,解吸率是97.9%,表明不同型號的樹脂對同一成分的吸附量、解吸率不同。崔成九等用大孔樹脂分離葛根中的總黃酮,將用70%乙醇提取的葛根濃縮液加到大孔樹脂柱上,先用水洗脫,再用70%乙醇洗脫至薄層色譜(TLC)檢查無葛根素斑點為止,結果葛根總黃酮收率為9.92%(占生葯總黃酮的84.58%),高於正丁醇法的5.42%。兩種方法的主要成分基本一致,但用大孔樹脂法分離葛根總黃酮具有收率高、成本低、操作簡便等優點,可供大生產使用。
皂苷精製純化
赤芍為中葯,其主要成分為芍葯苷、羥基芍葯苷、芍葯苷內酯等化合物,簡稱赤芍總苷。姜換榮等用大孔吸附樹脂分離赤芍總苷,芍葯以70%的乙醇迴流提取,減壓濃縮,過大孔吸附樹脂柱,分別用水、20%乙醇洗脫,收集20%乙醇洗脫液,減壓濃縮得赤芍總苷,並用高效液相色譜法(HPLC)對所得赤芍總苷中的芍葯苷含量進行測定,赤芍總苷的收率為5.4%,其中芍葯苷的含量為75%。本法操作簡便,得率穩定,產品質量穩定。金芳等用D101型大孔吸附樹脂吸附含芍葯中葯復方提取液,以排除其他成分的干擾,並將50%乙醇洗脫液用HPLC法測定,結果可以快速准確地測定復方中葯制劑中的芍葯苷含量,且重現性好,回收率較高。臧琛等以中葯抗感冒顆粒中芍葯苷含量為指標,比較了醇沉、超濾及大孔吸附樹脂精製3種方法,結果芍葯苷的含量大小依次為醇沉、大孔樹脂、超濾法。醇沉法含量雖高,但工藝較為復雜,耗時長。陳延清採用HPLC法測定丹參素、芍葯苷的含量,選用7種不同類型的大孔吸附樹脂(X-5,AB-8,NK-2,NKA-2,NK-9,D3520,D101,WLD),精製後提取物的含固率顯著降低,丹參素的損失都很大,X-5,AB-8,WLD3種樹脂對芍葯苷的保留率都在80%以上。7種大孔樹脂在樂脈膠囊的精製中對丹參素保留率都很低,因而對丹參葯材不宜採用;部分類型樹脂對精製芍葯苷類成分可以採用。苟奎斌等採用大孔吸附樹脂,用HPLC法測定肝得寧片中的連翹苷的含量,用DA-101型樹脂吸附樣品,以水洗脫干擾成分,將70%乙醇洗脫液用於含量測定。利用HPLC法檢測大孔樹脂柱處理過的樣品液,操作步驟少,色譜性污染小,柱壓低,具有分離度高、專屬性強及重現性好、靈敏度高等特點。蔡雄等研究D101型大孔吸附樹脂富集、純化人參總皂苷的工藝條件及參數。人參提取液45ml(5.88mg/ml)上大孔樹脂柱(15mm×90mm,乾重2.52g),用蒸餾水100ml、50%乙醇100ml依次洗脫,人參總皂苷富集於50%乙醇洗脫液中,且該法除雜質能力強;通過大孔吸附樹脂富集與純化後,人參總皂苷洗脫率在90%以上,50%乙醇洗脫液乾燥後總固物中人參總皂苷純度可達60.1%。劉中秋等研究了大孔樹脂吸附法富集保和丸中有效成分的工藝條件及參數,以保和丸中的陳皮的主要成分橙皮苷和總固物為評價指標。結果保和丸提取液(500mg/ml)5ml上D101型大孔樹脂柱(15mm×10mm),吸附30min後,先用100ml蒸餾水洗脫除去雜質,然後用100ml50%乙醇洗脫橙皮苷為最佳工藝條件;通過大孔樹脂富集後橙皮苷洗脫率在95%以上,50%乙醇洗脫液乾燥後總固物約為處方量的4%。劉中秋等將D101型大孔樹脂用於分離三七皂苷,結果吸附量為174.5mg/g,用50%乙醇解吸,解吸率達80%,產品純度71%。金京玲用D101型樹脂提取分離蒺藜總皂苷,結果吸附量為6mg/g,用濃度為80%的乙醇解吸,解吸率為96%。劉中秋等研究了中葯毛冬青中的有效成分毛冬青總皂苷的提取分離工藝,選用D101型大孔吸附樹脂,結果吸附量為120mg/g,用50%乙醇解吸,解吸率為95%,產品純度71%。上述結果表明同一型號的樹脂對不同成分的吸附量不同。杜江等將D3520型大孔吸附樹脂用於黃褐毛忍冬總皂苷的提取分離,並與原工藝有機溶劑提取法進行比較,結果總皂苷的純度、得率均明顯高於原法,且工藝簡化、成本降低。
生物鹼精製純化
傳統方法一般用陰離子交換樹脂分離純化生物鹼,解吸時需要用酸、鹼或鹽類洗脫劑,會引入雜質,給後來的分離帶來不便,換用吸附樹脂則可避免此類問題。劉俊紅等將3種大孔吸附樹脂(D101,DA-201,WLD-3)應用於延胡索生物鹼的提取分離,方法是讓延胡索水提取液通過已處理過的樹脂柱,用水洗至流出液無色,然後分別用30%,40%,50%,60%,70%,80%,90%,95%乙醇依次洗脫,收集各段洗脫液,進行薄層鑒別。結果從樹脂上洗脫的延胡索乙素占總生葯量D101型為0.069%,WLD-3型為0.072%,DA-201型為0.053%。樹脂柱用40%乙醇洗脫後除去了干擾性成分,便於用HPLC法測定,保護了色譜柱,且經過大孔吸附樹脂提取分離的延胡索生物鹼成品體積小,相對含量高,產品質量穩定,具有良好的生理活性。羅集鵬等將大孔吸附樹脂用於小檗鹼的富集與定量分析,把黃連粉末以70%甲醇超聲提取30min,加到已處理的大孔樹脂小柱上,用pH值為10~11的水洗脫,再用含0.5%硫酸的50%甲醇80ml洗脫,洗脫液用10%氫氧化鈉調至鹼性後,於水浴上揮去大部分溶劑,並轉移至10ml量瓶中,用水稀釋至刻度,以HPLC法測定,結果小檗鹼與其他生物鹼能很好地分離。表明大孔吸附樹脂對醛式或醇式小檗鹼具有良好的吸附性能,且不易被弱鹼性水解吸,可用於黃連及其制劑尤其是含糖制劑中小檗鹼的富集和水溶性雜質的去除。楊樺等採用大孔吸附樹脂比較並篩選烏頭類生物鹼的提取分離最佳工藝條件,將川烏水提取液制備成8ml/g濃縮液,上柱,測定總生物鹼的含量,結果該方法可分離出樣品中85%以上的烏頭類生物鹼,同時可除去浸膏中總量為82%的水溶性固體雜質。
復方制劑精製純化
饒品昌等用大孔樹脂D1300,通過正交試驗探討了右歸煎液的精製工藝,結果影響精製的主要因素為右歸煎液濃度、流速和徑高比,樹脂最大吸附量為1.10g生葯/ml,吸附回收率為83.34%(以5-羥甲基糖醛計)。晏亦林等將四逆湯提取液上大孔樹脂,水洗後用70%乙醇洗脫,四逆湯精製樣品的TLC測試結果表明,經大孔樹脂處理後3味主要成分基本能檢出,樹脂處理前後樣品的HPLC圖譜峰位、峰形基本相似,但TLC及HPLC圖譜中烏頭鹼特徵峰不明顯。
使用方法
在運用大孔吸附樹脂進行分離精製工藝時,其大致操作步驟為:大孔吸附樹脂預處理——樹脂上柱——葯液上柱——大孔吸附樹脂的解吸——大孔吸附樹脂的清洗、再生。由於每一個操作單元都會影響到大孔吸附樹脂的分離效果,因此對大孔吸附樹脂的精製工藝和分離技術的要求就相對較高。
使用注意事項
該類樹脂在通常的儲存及使用條件下性質十分穩定,不溶於水、酸、鹼及有機溶劑,也不與它們發生化學反應。
搬運、裝卸操作應輕緩,堆放穩定、規則,勿猛烈摔打。如灑落會導致地面濕滑,要注意防止滑倒。
儲存此種材料的儲存溫度請勿高於90℃,最高使用溫度180℃。
濕態0℃以上保存。儲存狀態下請保持包裝密封完好,以防失水;如發生乾燥失水,應以乙醇浸泡干態樹脂約2小時,用清水洗干凈後再重新包裝或使用。
嚴防冬季將球體凍裂。如發現凍結現象,請於室溫下緩慢融化。
運輸或儲存過程中嚴防和有異味、有毒物品及強氧化劑混雜堆放。
前景
大孔吸附樹脂純化技術在中葯制葯工業中是有發展前景的實用新技術之一,盡管它在中葯有效成分的精製純化方面還存在著一些問題。隨著研究的深入以及相關標准、法規的進一步完善,一定會開發出高選擇性的樹脂,以進一步提高中葯有效成分的提取、分離、富集效率。