① 超濾膜能去除水中有機物嗎
超濾膜能否去除水中的有機物?
答案是否定的。超濾可以很容易的去除水中的有機物,這是一種誤解。
1、關於水中有機物的形態
按形態來分,水中有機物也和水中無機物一樣,可以分為懸浮態、膠態和溶解態三大類。
對溶解態有機物的定義,是依據測定方法來理解。目前普遍應用的測定方法是將水樣通過0.45μm(或0.15μm)濾膜過濾,通過濾膜後的水中有機物作為溶解態有機物,沒有通過濾膜的有機物作為懸浮態和膠態有機物。有人選用0.15μm濾膜,這是因為在無濁度水制備中將透過0.15μm濾膜的水作為零濁度水。試驗表明,水通過0.45μm或0.15μm濾膜後,對水中有機物量影響不大,所以目前一般均將通過0.45μm濾膜的水中有機物作為溶解態有機物。
根據這種觀點,水分析中測定的COD,也可以分為懸浮態和膠態有機物的COD和溶解態有機物的COD二部分。原水都是先經過混凝、澄清、過濾之後才作為離子交換的進水,反滲透的進水在過濾之後還要再經過二次混凝或細砂過濾,這樣的水,應該說其中的懸浮態和膠態有機物已大部分去除,水的COD中大部分是溶解態有機物的COD。試驗表明,原水在混凝、澄清、過濾階段,對水中溶解態有機物去除甚微,有時甚至為0,而對水中懸浮態和膠態有機物去除率可以達到90%以上。
所以,我們籠統講某種處理方法可以去除水中多少有機物,即COD去除率為多少是不確切的,也不全面的。水處理中面臨的困難不是總的有機物(COD)的去除率能提高到多少,因為在懸浮態和膠態有機物含量高的水中,應用一般的混凝、澄清、過濾的方法,就可以把總有機物(COD)去除率提高到很高的數值。
因此,反滲透(或離子交換)進水中的有機物主要是溶解態有機物,反滲透(或離子交換)進水的COD指標也主要是指溶解態有機物的COD。要使反滲透(或離子交換)進水的COD達到標准,其主要任務也是降低水中溶解態有機物的量。
② bodcod對超濾膜的使用有影響嗎bodcod在什麼范圍才可以進超濾膜
bodcod反映的是水中有機物污染的程度,說明溶解性有機物的含有情況,這兩個數值高肯定對膜不好,影響使用壽命,因此在進入膜前應加設預處理設施盡可能降低溶解性有機物對膜的影響。
③ 為什麼採用微錯流方式工作的超濾膜可以一定程度降低膜污染
1、概述
通常所說的膜污染是指在MBR運行過程中,細胞混合液中的微生物菌群及其代謝產物、固體顆粒、膠體粒子、溶解性大分子等由於與膜存在物理化學作用、機械作用而引起在膜表面或膜內孔吸附、沉積造成膜孔徑變小或堵塞,使膜產生透過流量和分離特性的不可逆變化的現象[1]。
膜污染根據污染物與膜的作用性質和來源可分為物理污染、化學污染、微生物污染三種。物理污染指原水中的大顆粒無機物(如常見的碳酸鈣和硫酸鈣,還有硫酸鋇、鍶及硅酸等結垢性物質)和部分難降解的大分子有機物、未溶解的蛋白顆粒等在膜表面沉積而形成濾餅的可逆性膜污染;化學污染指細菌胞外聚合物EPS、溶解性有機物及蛋白、多糖類粘性物溶解形成的微細膠體等物質在膜表面與膜發生了不可逆的相互作用而形成的無法消除的膜孔變小和堵塞;微生物污染是由微生物及其代謝產物組成的粘泥(腐殖質、聚糖脂、微生物代謝產物)分層附著於膜表面,易造成膜不可逆阻塞的污染[3]。
從形態上對膜污染進行分類,使我們能更好地理解膜污染形成的空間層次。通常,膜污染從形成的形態上分為膜面凝膠層、污泥層和膜孔堵塞三種污染類型。膜面凝膠層污染(即濾餅),主要是水透過後被載留下來的部分活性污泥、膠體物質和部分濃縮的溶解性有機物,在過濾壓差和透過水流的作用下,堆積在膜表面而形成的可逆性膜面污染。這類污染在閉端膜過濾中佔有很大的比重(約80%~90%),且發展迅速,是膜污染水力控制的主要對象。污泥層污染是由膜表面滋生的大量的微生物及其代謝產物組成的粘泥(粘性多糖類、多肽類和蛋白質分子等),在過濾膜表面形成的一層生物膜而造成膜通量減小的污染。膜孔堵塞污染主要是溶解性大分子有機物質(多為低分子量的肽類),如溶解性微生物產物(SMP)和胞外聚合物(EPS)透過凝膠層,被膜孔內表面吸附或結晶,從而堵塞孔道,使膜通量減少的一種不可逆污染,此類污染一般發展較為緩慢。一般來說,膜污染是由上述三種形態共同構成的,膜表面污泥層的沉積,凝膠層的增厚和膜內表面微生物的滋生是膜污染的主要原因,其中污泥沉積是膜污染的主要構成部分,而污泥顆料在膜表面沉積與否,與膜面液體錯流流速、膜通量和污泥濃度等MBR運行條件密切相關。
2、膜污染的影響因素
盡管目前在膜污染機制方面還沒有達成共識,但對不同的具體環境下膜污染影響因素可歸納為以下3個方面:微生物特性、運行條件與膜自身的結構性質,如圖1-3所示,這些都會直接影響膜污染。
圖1-3 膜污染影響因素
Fig.1-3 Influencing factor of membrane fouling
2.1微生物特性
生物反應器中污泥質量濃度(MLSS)對膜通量有顯著影響。Fane等[2]早在1981年就報道膜污染與MLSS呈線性增長的關系,而後Shmizu等[23]研究發現,通量的下降同MLSS 的增加呈對數關系的。另一些研究者卻認為污泥質量濃度本身並不影響過濾特性,真正的影響因素是污泥的特性、顆粒大小、表面電荷等[1]。
新近的研究發現微生物代謝產物包括胞外聚合物(EPS)和溶解性微生物產物(SMP)對膜污染有重要影響。EPS和SMP主要是微生物細胞分泌的黏性物質,成分復雜,包括多糖、蛋白質、脂類、核酸等高分子物質。一些學者認為EPS質量濃度與膜污染呈線性關系的,EPS減少40%,濾餅的流體阻力也相應地減少40%。WontaeLee等發現膜污染與蛋白質比例呈正比,同時蛋白質的表面特性能影響微生物絮體的表面特性[4]。近年來,以SMP為主要成分的溶解性物質對膜污染的影響越來越引起人們的重視。分置式膜-生物反應器中,循環泵產生的剪切力對污泥絮體有較強的破壞作用,致使污泥絮體釋放出大量的SMP等溶解性物質,從而增加了膜污染,形成了很大的膜過濾阻力。Wisniewski C等用微濾膜過濾城市污水處理廠的污泥,考察不同膜面流速下污泥粒徑分布和溶解性物質對膜污染的影響時,得出了溶解性物質引起的膜污染幾乎構成了50%的膜過濾阻力[5]。
2.2運行條件
在一體式MBR中,曝氣有兩個作用:一是提供微生物所需的氧氣,二是產生錯流速率,減少膜面污泥層的形成。Hong S.P觀察到在較高曝氣量下產生的剪切力會加快污染物脫離膜的運動速度,並指出有臨界曝氣量存在。當超過它時,通量增加就不明顯,而且太大的曝氣量會提供過量的溶解氧,不利於反硝化作用[6]。Ueda等報道降低曝氣量可能會增加膜過濾壓差(TMP)作用,在短期運行中,降低曝氣量可能會使初始通量恢復,但長期運行時,較低曝氣量會導致混合液污染物質在膜面上的快速累積[7]。水力停留時間(HRT)和污泥停留時間(SRT)都不是直接引起膜污染的因素,只是二者的變化會引起反應器內污泥特性的改變,從而間接的對膜污染產生影響。
間歇出水可以有效地減少污染物在膜表面的沉積,在反應器的空曝氣階段,由於對料液的抽吸作用消失,膜表面的污染物質向主體料液中的反向運動佔主導因素,氣液兩相流可以將已經沉積在膜表面的污染物質剪切下來,從很大程度上改善膜污染狀況。空曝氣時間越長,緩解膜污染的效果越好,但這樣會引起膜利用率的下降和運行費用的升高,因此必須根據具體的情況綜合考慮經濟性的因素確定最佳的出水和空曝氣的時間比。
2.3膜的結構和性質
膜的性質包括膜的材質、孔徑大小、孔隙率、粗糙度、疏水性等,這些都會直接影響膜污染。膜孔徑對膜污染的影響與進水的顆粒大小有關,目前大多數的MBR工藝採用011~014μm的膜孔徑,完全截留以微生物絮體為主的活性污泥。Shimizu等研究了膜生物反應器中膜孔分布在0.01~1.6μm 的一系列膜的過濾性能,結果表明孔徑分布在 0.05~0.2μm的膜具有最大的通量[8]。常採用的膜材料有陶瓷和聚合物,陶瓷膜機械性能好,壽命長,由於製造成本較高,工程中使用較多的是聚合物膜。Choo等研究結果表明在同樣運行條件下,聚偏氟乙烯膜的污染趨勢明顯小於聚碸膜、纖維素膜,而且膜孔徑在0.1μm附近時混合液對膜的污染趨勢最小[9]。膜材料的憎水性對膜污染有很重要的影響,ChangI S等比較了憎水性超濾膜和親水性超濾膜,得出憎水性超濾膜膜面更容易吸附溶解性物質,表現出更大的污染趨勢[10]。
Shoji等研究表明,膜表面粗糙度的增加使膜表面吸附污染物的可能性增加,但同時也增加了膜表面的擾動程度,阻礙了污染物在膜表面的沉積。因此,粗糙度對膜通量的影響是兩方面因素綜合作用的結果,可通過在膜表面形成動態膜來減小膜表面粗糙度,從而改善膜污染。
3、膜污染的控制方法
根據上文所提到的膜污染影響因素,目前國內外膜污染控制方法的研究主要從以下幾個方面入手:
3.1 改善混合液特性
一方面,可以在工藝中增加相應的預處理組件,如預過濾去除膠體、固體懸浮物及鐵銹等或改變溶液pH值等,以除去一些能與膜相互作用的溶質。另一方面,改善影響膜污染的污泥特性參數MLSS的可濾性和控制MLSS的濃度。改善MLSS的可濾性可以在混合液中投加絮凝劑如PAC,不僅可使混合液內的COD迅速降低,減輕膜的負擔;還有助於污泥絮體相互聚集而形成體積更大、強度更高、黏性更小的污泥絮體,從而有效的減小EPS含量,提高混合液的可濾性、改善泥水分離性能、減緩濾餅層的形成。羅虹、顧平等[11]在投加粉末活性炭對膜阻力的影響研究中表明粉末活性炭具有改善混合液的性質和膜表面泥餅層結構的作用,投加粉末活性炭是提高和維持膜通量的有效途徑,並且可以降低運行費用。趙英、於丹丹等[12]在PAC投加量對MBR混合液性質及膜污染的影響中1g/L的PAC投加量足以改善混合液性質和減緩膜污染速率,投加量2g/L時反而回引起不可逆污染,加劇膜污染。目前有關活性炭粒徑大小對膜污染的影響的報道比較少,有待進一步研究。
較高的污泥濃度可提高生物反應器的容積負荷,但混合液中過多的固體物質和溶解性代謝產物(SMP)容易在膜表面沉積,導致過濾阻力增加和膜通透量降低。相反,當污泥濃度太低時,微生物對SMP的吸附和降解能力減弱,使得混合液中的SMP濃度增加,從而容易被膜表面吸附形成凝膠層,導致過濾阻力增加,膜通量下降。張軍[13]等研究表明,復合型MBR能維持較低的懸浮生物量濃度且保證高生物總量,從而有效地減緩膜過濾阻力的上升和膜堵塞.
生物強化技術(Bioaugmentation)又稱生物增強技術,是通過向廢水處理系統中投加篩選的優勢菌種和基因重組合成的高效菌種,以強化原處理系統中生物反應的能力,達到對某一種和某一類有害物質的去除或某方面性能的優化目的,龐金釗等[14]在用MBR處理洗車廢水過程中發現難降解有機物在反應器內累積,混合液的COD比進水COD高幾倍,投加優勢菌種來實現對難降解物的去除,能夠有效減輕膜截留形成的膜污染。生物強化技術不僅可以促進對目標物的降解而且某些特定菌的投加還能抑制絲狀菌膨脹,降低污泥產量和污泥黏度。投加EPS黏性小的優勢菌,可以減緩膜污染。
3.2 優化膜生物反應器的運行條件
控制合理的曝氣強度和抽吸時間可以有效地減少顆粒物質在膜面的沉積,減緩膜污染。膜面沉積層的去除效率可以通過提高空氣流率或曝氣強度來提高,而空氣流率對沉積層的去除效率又受到流速標准差的影響,亦即空氣流的紊流程度的影響[15]。通常曝氣強度越大,膜面流速越高,但N.Devereux[16]等發現,膜面流速的增加使得膜表面污泥層變薄,有可能造成不可逆污染,因此控制合理的曝氣強度可以有效的減緩膜污染。如果膜面沉積較嚴重,應該停止出水進行空曝,空曝是去除膜面沉積層的有效方法之一。除了控制合理的曝氣強度外還包括錯流過濾、定期的反沖或反吹和控制混合液的溫度等措施。Magra和Itoh的實驗結果表明,溫度的變化會引起污水粘度的變化,溫度升高1℃可以使膜的通水量增加2%,但升高溫度會直接影響膜本身的壽命,同時對微生物的生長也產生影響,因此如果情況允許,膜生物反應器應盡量在常溫下運行[6]。
3.3 膜材料的選擇
膜的親疏水性、荷電性會影響到膜與溶質間的相互作用大小,通常應選用孔徑適合,孔隙率高,帶有負電,親水性的膜,自然憎水性的膜要進行膜面改性。膜面改性是在膜表面引入親水基團,或用復合膜手段復合一層親水性分離層,或用陰極噴鍍法在膜表面鍍一層碳[17]。J.Pieracci等研究表明,改性後的膜可以增加 25%的膜通量,減少 49%的生物污染[18]。目前,膜面改性和形成動態膜的防治技術應值得注意。
3.4 膜的清洗
盡管採用合理的設計、操作等措施減緩膜污染,但長期使用後膜表面還可能產生沉積和結垢,使膜孔堵塞,膜出水量下降,因此對污染膜進行定期的清洗是必要的。常用的方法有物理清洗、化學清洗、超聲波清洗以及上述方法的綜合技術。物理清洗的方法主要有空曝氣、高流速水沖洗、海綿球機械擦洗、反沖洗、反向脈沖和電泳等。化學清洗主要是酸洗和鹼洗,酸類清洗劑(常用濃硫酸和鹽酸等)可以溶解並去除礦物質和鹽類,而鹼洗(常用次氯酸鈉和氫氧化鈉等)可以有效地去除蛋白質等有機污染物及膜內微生物,一般兩者結合使用效果更好。超聲波能夠在清洗溶液中形成極大的擾動,並伴有強大的沖擊波和微射流,能與污染膜充分接觸和作用,較常規的物理清洗方法更好,能夠使膜通量恢復54%[19],與超聲波結合的化學清洗效果一般要優於常規化學清洗。採用曝氣清洗、超聲波清洗、NaClO鹼洗、HCl酸洗可有效地使污染膜的通量恢復。黃霞等[20]對污染膜進行物理和化學清洗試驗表明,常規物理清洗可使濾餅層大部分脫落,但對膜過濾性能的恢復效果較差,鹼洗對膜過濾性能的恢復作用顯著,這表明有機污染對膜阻力的貢獻最大。
3.5 其他
在膜過濾設計中,還應注意減少設備結構中的水流死角,以防止滯留物在此變質,擴大膜污染。為防止污泥在中空纖維絲間淤積,中空纖維膜應製成平板狀(而不是成束設計),然後組裝成矩形,且底部曝氣(兼有氣水劇烈沖刷膜表面的作用),這些都可有效地防止膜污染,延長膜的清洗周期[6]。如果膜長期停止使用(5d以上),在保養時需用0.5%甲醛溶液浸泡,膜的保養原則是保持膜的濕潤並針對膜的種類採取不同的方法,如聚碸中空纖維膜須在濕態下保存,並以防腐劑浸泡。
在水資源日益短缺的今天,膜生物反應器作為一種新型的廢水處理技術,特別是在污水資源化的進程中,倍受國內外的普遍關注。但是膜污染仍然是影響膜生物反應器大范圍推廣的主要障礙之一,因此研究膜污染,研發抗污染的膜生物反應器是目前急需的。相信隨著膜污染機理及防治方面研究的不斷深入,膜質量的提高,膜污染控制方法的不斷完善,膜生物反應器將會更好地應用和推廣。
目前,有關投加粉末活性炭控制膜污染的研究和報道較多,但投加顆粒活性炭以及活性炭的投加量的文獻很少,本課題重點研究活性炭粒徑大小及投加量對減緩膜污染的影響,具有很強的實用意義,對控制膜污染、促進膜生物反應器的實際應用起到較重要的作用。
④ 超濾膜在焦化廢水深度處理中對COD有去除作用嗎
有。焦化廢水在生化二沉池後有機物分子量並不大,所以超濾膜在焦化廢水處理中對COD的去除主要體現在了對膠體和微生物上面。
⑤ 用超濾膜處理水樣,監測的指標為,色度、酸度、總鐵、COD
因為超濾不吸收色素、鐵、酸度這些離子。COD偏高應該是誤差或者超濾膜材質的問題
⑥ 膜生物反應器一般cod污泥負荷是多大
膜生物反應器的材料分為有機膜和無機膜兩種。膜生物反應器曾遍採用有機膜內,常用的膜容材料為聚乙烯、聚丙烯等。分離式膜生物反應器通常採用超濾膜組件,截留分子量一般在2—30萬。膜生物反應器截留分子量越大,初始膜通量越大,但長期運行膜通量未必越大。膜-生物反應器(Membrane Bio-Reactor,MBR)為膜分離技術與生物處理技術有機結合之新型態廢水處理系統。以膜組件取代傳統生物處理技術末端二沉池,在生物反應器中保持高活性污泥濃度,提高生物處理有機負荷,從而減少污水處理設施佔地面積,並通過保持低污泥負荷減少剩餘污泥量。主要利用膜分離設備截留水中的活性污泥與大分子有機物。膜生物反應器系統內活性污泥(MLSS)濃度可提升至8000~10,000mg/L,甚至更高;污泥齡(SRT)可延長至30天以上。
膜生物反應器因其有效的截留作用,可保留世代周期較長的微生物,可實現對污水深度凈化,同時硝化菌在系統內能充分繁殖,其硝化效果明顯,對深度除磷脫氮提供可能。
⑦ 納濾能否有效去除水中的COD BOD5和TOC
首先,納濾膜(Nanofiltration Membranes)是80年代末期問世的一種新型分離膜,其截留分子量介於反滲透膜和超濾膜之間,約為-2000Da,由此推測納濾膜可能擁有lnm左右的微孔結構,故稱之為「納濾」。納濾膜大多是復合膜,其表而分離層由聚電解質構成,因而對無機鹽具有一定的截留率。國外已經商品化的納濾膜大多是通過界面縮聚及縮合法在微孔基膜上復合一層具有納米級孔徑的超薄分離層。
納濾膜能截留納米級(0.001微米)的物質。納濾膜的操作區間介於超濾和反滲透之間,截留溶解鹽類的能力為20%-98%之間,對可溶性單價離子的去除率低於高價離子,納濾一般用於去除地表水中的有機物和色素、地下水中的硬度及鐳,且部分去除溶解鹽,在食品和醫葯生產中有用物質的提取、濃縮。納濾膜的運行壓力一般3.5-30bar。
納濾過程的關鍵是納濾膜。對膜材料的要求是:具有良好的成膜性、熱穩定性、化學穩定性、機械強度高、耐酸鹼及微生物侵蝕、耐氯和其它氧化性物質、有高水通量及高鹽截留率、抗膠體及懸浮物污染,價格便宜且採用的納濾膜多為芳香族及聚酸氫類復合納濾膜。復合膜為非對稱膜,由兩部分結構組成:一部分為起支撐作用的多孔膜,其機理為篩分作用;另一部分為起分離作用的一層較薄的緻密膜,其分離機理可用溶解擴散理論進行解釋。對於復合膜,可以對起分離作用的表皮層和支撐層分別進行材料和結構的優化,可獲得性能優良的復合膜。膜組件的形式有中空纖維、卷式、板框式和管式等。其中,中空纖維和卷式膜組件的填充密度高,造價低,組件內流體力學條件好;但是這兩種膜組件的製造技術要求高,密封困難,使用中抗污染能力差,對料液預處理要求高。而板框式和管式膜組件雖然清洗方便、耐污染,但膜的填充密度低、造價高。因此,在納濾系統中多使用中空纖維式或卷式膜組件。
在我國,對納濾過程的理論研究比較早,但對納濾膜的開發尚處於初步階段。在美國、日本等國家,納濾膜的開發已經取得了很大的進展,達到了商品化的程度,如美國Filmtec公司的NF系列納濾膜、日本日東電工的NTR-7400系列納濾膜及東麗公司的UTC系列納濾膜等都是在水處理領域中應用比較廣泛的商品化復合納濾膜。
對於一般的反滲透膜,脫鹽率是膜分離性能的重要指標,但對於納濾膜,僅用脫鹽率還不能說明其分離性能。有時,納濾膜對分子量較大的物質的截留率反而低於分子量較小的物質。納濾膜的過濾機理十分復雜。由於納濾膜技術為新興技術,因此對納濾的機理研究還處於探索階段,有關文獻還很少。但鑒於納濾是反滲透的一個分支,因此很多現象可以用反滲透的機理模型進行解釋。關於反滲透的膜透過理論[2]有朗斯代爾、默頓等的溶解擴散理論;里德、布雷頓等的氫鍵理論;舍伍德的擴散細孔流動理論;洛布和索里拉金提出的選擇吸附細孔流動理論和格盧考夫的細孔理論等。
納濾膜的過濾性能還與膜的荷電性、膜製造的工藝過程等有關。不同的納濾膜對溶質有不同的選擇透過性,如一般的納濾膜對二價離子的截留率要比一價離子高,在多組分混合體系中,對一價離子的截留率還可能有所降低。納濾膜的實際分離性能還與納濾過程的操作壓力、溶液濃度、溫度等條件有關。如透過通量隨操作壓力的升高而增大,截留率隨溶液濃度的增大而降低等。
所以,納濾膜可以去除大部分COD及BOD和TOC
⑧ 為什麼一些工廠用mbr膜生物反應器而不用超濾反滲透
首先你需要知道這兩種膜的區別
膜生物反應器( MBR )、超濾( UF )作為反滲透( RO)的預處理工藝在實際中的應用日益廣泛。為給RO工藝提供優質、穩定的水質,比較了兩個工藝的出水水質和運行穩定性。
工藝部分
UF系統由於選用了內壓式中空纖維膜, 為防止懸浮固體干擾其正常運行, 故對二沉池出水進行了氣浮、過濾等預處理, 並以預處理後的出水作為UF系統的進水。
UF系統的工藝參數:設計膜通量為68L/(m2/h),循環倍比為2系統回收率為90%,跨膜壓力為0.04~ 0.12MPa。
MBR系統由於選用了外壓式中空纖維膜, 無需單獨增設預處理設備,只用常規格柵分離後進行調解處理後的出水作為MBR系統的進水。
MBR系統的工藝參數:設計膜通量為40L/(m2/h),平均污泥濃度(MLSS)6.66g/L,水力停留時間(HRT)為7~ 8h氣水比為16:1跨膜壓力為0.016~ 0.02MPa。
結論與建議
MBR與UF系統用於深度處理廢水,其出水水質良好。UF系統出水濁度平均為0.18NTU, COD平均為22.1mg /L, SDI平均為2.50; MBR系統出水濁度平均為0.14 NTU, COD平均為20.1 mg /L, SDI平均為2.22。
在對濁度的去除上, MBR系統無論是出水濁度平均值還是出水濁度的穩定性均優於UF系統。在對 COD的去除上, UF系統對預處理工藝出水的COD去除效果不明顯; MBR系統耐COD沖擊負荷的能力較強, 但對經純氧曝氣工藝處理後的剩餘難生物降解COD的去除效果不佳。
針對廢水的水質特點,為滿足RO工藝對進水水質及其穩定性的要求,可在純氧曝氣池後設置一個水力停留時間較短的膜分離池(池內維持較高的污泥濃度)代替二沉池,以提高系統的出水水質和抗沖擊負荷能力。
⑨ 在線監測COD 是否可以過濾過濾孔徑最小是多少
過濾掉的雜質的粒徑大小決定過濾孔徑。
那能過濾掉多少COD呢?不好說專,主要看該被過濾物屬質對該水體的COD貢獻率是多少。
你提的問題太抽象,不過一般而言,MBR工藝(中空纖維過濾)單獨使用時對COD的過濾
是沒有意義的,主要還是依靠生化處理~
⑩ 反滲透進水對COD的要求
COD只要求處理到500就不要用反滲透了 反滲透的進水COD要求都在幾十以下 厭氧 催化氧化 混凝沉澱都可以