㈠ 陰樹脂有什麼特性
一般不對陰、陽離子交換樹脂的特性分開說明,而是一個全面的說明,說明時一般分物理性質和化學性質分開來說明
一、物理性質
離子交換樹脂的物理性質很多,下面只介紹常見的幾種。
1.粒度。樹脂顆粒的大小,對樹脂的交換速度、樹脂層中水流分布的均勻程度、水通過樹脂層的壓力降和反洗時樹脂的流失等,都有很大影響。樹脂顆粒大,離子交換速度小;顆粒小,水流阻力大,而且反洗時容易發生樹脂流失。因此,顆粒的大小應適當,常用的樹脂顆粒為20~40目,國產離子交換樹脂的顆粒為16~50目(粒徑為1.2~0.3毫米)。
2.比重。樹脂的比重對樹脂的用量計算和混合床使用樹脂的選擇很重要。樹脂比重的表示有以下幾種:
(1) 干真比重。干真比重就是樹脂在乾燥狀態下其本身的比重。
此處所指的干樹脂的體積,既不包括顆粒與顆粒之間的空隙,也不包括樹脂本身的網架孔隙。測干樹脂體積時是將一定重量的干樹脂,浸入某種不使樹脂膨脹的液體(如甲苯)中,測量其排出液體的體積,此體積即為該一定重量干樹脂的體積。干真比重一般為1.6左右。
(2) 濕真比重。濕真比重是樹脂在水中經過充分膨脹後,樹脂顆粒的比重。
這里的濕樹脂體積是指顆粒在濕狀態下的體積,包括顆粒中的網孔,但不包括顆粒與顆粒之間的空隙。濕真比重決定了樹脂在水中的沉降速度。因此,樹脂的濕真比重對樹脂的反洗強度和混床再生前樹脂的分層有很大影響。濕真比重一般為1.04~1.3左右。
(3) 濕視比重。濕視比重是指樹脂在水中充分膨脹時的堆積比重。
濕視比重用來計算交換器內裝入一定體積樹脂時,所需濕樹脂的重量。濕視比重一般為0.6~0.85。
3.溶脹性。樹脂的溶脹性是指樹脂由干態變為濕態,或者由一種離子型轉換成為另一種離子型時,所發生的體積變化。前者稱為絕對溶脹,後者稱為體積溶脹。
4.樹脂絕對溶脹度的大小與合成樹脂用的二乙烯苯的數量有關。同一種樹脂如果浸入不同濃度的電解質溶液中,其溶脹度也不同;溶液濃度小,其溶脹度大;溶液濃度大,其溶脹度就小。
因此,當把干樹脂開始濕潤時,不宜用純水浸泡,一般飽和和食鹽水浸泡,以防止樹脂因溶脹過大而碎裂。
樹脂體積溶脹度的大小與可交換離子的水合離子半徑大小有關,樹脂內可交換離子的水合離子半徑越大,其溶脹度越大。
由於樹脂轉型時其體積發生變化,所以轉型前後兩種樹脂的濕真比重也隨之發生變化。當轉型後的樹脂體積增大時,其濕直比重減小;當轉型後的樹脂體積縮小時,其濕真比重增大。這一性質在混床樹脂分層時作用很大。
由於樹脂轉型時發生體積變化,也能使樹脂在交換和再生過程中發生多次脹、縮,致使樹脂顆粒破碎。從這種情況來看,應盡量減少樹脂的再生次數,延長使用時間。
5.機械強度。樹脂的機械強度是指樹脂經過球磨或溶脹後,裂球增加的百分數。
機械強度好的樹脂,應呈均勻的球形,沒有內部裂紋,有良好的抗機械壓縮性以及很低的脆性,在失效和再生時具有足夠的抗裂能力。
6.耐熱性。各種樹脂所能承受的溫度有一定的最高極限,超過這個限度樹脂就會發生迅速降解,交換容量降低,使用壽命減少。
一般陽樹脂可耐100℃左右,陰樹脂中強鹼性樹脂可耐60℃左右,弱鹼性樹脂可耐80℃左右。此外,鹽型樹脂比氫型或氫氧型樹脂耐熱性好些。
二、 化學性質
離子交換樹脂的化學性質有:離子交換、催化、絡鹽形成等。其中用於電廠水處理的,主要是利用它的離子交換性質。所以,這里僅介紹離子交換反應的可逆性、選擇性和表示交換能力大小的交換容量。
1.離子交換反應的可逆性。當離子交換樹脂遇到水中的離子時,能發生離子交換反應。反應結果,樹脂的骨架不變,只是樹脂中交換基團上能解離的離子與水中帶同種電荷的離子發生交換。例如,用8%左右的食鹽水,通過RH樹脂後,出水中的H+濃度增加,Na+濃度減小。這說明食鹽水通過RH樹脂時,樹脂中的H+進入水中,食鹽水中的Na+交換到樹脂上。這一反應為:
RH+NaCl→RNa+HCl
或 RH+Na+→RNa+H+
如果用4%左右的鹽酸通過已經變成RNa的樹脂後,出水中的Na+濃度增加,H+濃度減小。說明樹脂中的Na+進入水中,而鹽酸中的H+交換到樹脂上。這一反應為:
RNa+HCl→RH+NaCl
或 RNa+H+→RH+Na+
對照兩個反應我們知道:離子交換反應是可逆的。這種可逆反應,可用可逆反應式表示:
RH+NaCl RNa+HCl
或 RH+Na+ RNa+H+
2.離子交換反應的選擇性。這種選擇性是指樹脂對水中某種離子所顯示的優先交換或吸著的性能。
同種交換劑對水中不同離子選擇性的大小,與水中離子的水合半徑以及水中離子所帶電荷大小有關;不同種的交換劑由於交換換團不同,對同種離子選擇性大小也不一樣。下面介紹四種交換劑對離子選擇性的順序:
(1) 強酸性陽離子交換劑,對水中陽離子選擇順序:
Fe3+>Al3+>Ca2+>Mg2+>K+> ≈Na+>H+>Li+
(2) 弱酸性陽離子交換劑,對水中陽離子的選擇順序:
H+>Fe3+>Al3+>Ca2+>Mg2+>K+> ≈Na+>Li+
從上述選擇順序來看,強酸性陽離子交換劑對H+的吸著力不強;而弱酸性陽離子交換劑則容易吸著H+。所以,實際應用中,用酸再生弱酸性陽離子交換劑比再生強酸性陽離子交換劑要容易得多。
(3) 強鹼性陰離子交換劑,對水中陰離子的選擇順序:
> >Cl>OH->F-> >
(4) 弱鹼性陰離子交換劑,對水中陰離子的選擇順序:
OH-> > >Cl->
從陰離子交換劑的選擇性來看,用鹼再生弱鹼性陰離子交換劑比再生強鹼性陰離子交換劑容易。但是弱鹼性陰離子交換劑吸著 很弱,不吸著 。因此,弱鹼性陰離子交換劑用於除掉水中強酸根離子。
3.交換劑的交換容量。交換容量是離子交換劑的一項重要技術指標。它定量地表示出一種樹脂能交換離子的多少。交換容量分為全交換容量和工作交換容量。
(1) 全交換容量。全交換容量是指離子交換劑能交換離子的總數量。這一指標表示交換劑所有交換基團上可交換離子的總量。同一種離子交換劑,它的全交換容量是一個常數,常用毫克當量/克來表示。
(2) 工作交換容量。工作交換容量就是在實際運行條件下,可利用的交換容量。在實際離子交換過程中,可能利用的交換容量比全交換容量小得多,大約只有全交換容量的60~70%。某種樹脂的工作交換容量大小和樹脂的具體工作條件有關,如水的pH值、水中離子濃度、交換終點的控制標准、樹脂層的高度和水的流速等條件,都影響樹脂的工作交換容量。工作交換容量常用毫克當量/毫升來表示。
㈡ 陰離子交換樹脂的作用原理是什麼
陰離子交換樹脂的工作原理是什麼
離子交換樹脂是一種高分子化合物,這種材料有著很好的機械強度。離子交換樹脂的化學性質比較穩定,在沒有意外的情況下陰離子交換樹脂的使用可以有很長時間。那麼,離子交換樹脂的工作原理是什麼?
既然是一種陰離子交換樹脂廠家,那麼它的作用環境就是溶液。水溶液中一般還有的是金屬陽離子,這些金屬陽離子可以與材料上的氫離子發生離子交換作用,這樣溶液中的陽離子就會跑到材料上,這樣陽離子就交換完畢。這個過程靠的就是離子交換樹脂的原料的作用。
而陰離子的交換和上面的是一樣的,就是水中的陰離子與材料上的OH-交換,交換到水中的H+與OH-反應生成水,這樣就會使溶液脫鹽。我們生產廠家在多年的生產中,提高了離子交換樹脂 壽命,讓人們從一定程度上節約了成本。離子交換樹脂的定義就是脫鹽,是溶液中的鹽分脫離出來。
陰離子交換樹脂廠家的工作原理是及其簡單的,廠家關鍵是選擇良好的材料才能將這種原理體現出來。如果你需要這種產品,可以到我們廠家進行挑選,保證使用方便,使用時間
一種生產純化的過氧化氫水溶液的方法,包括使含金屬離子雜質的過氧化氫水溶液和H+型陽離子交換樹脂,第二和碳酸根離子(CO32-)型或碳酸氫根離子(HCO3-)型陰離子交換樹脂,第三和H+型陽離子交換樹脂進行接觸另外,一種生產純化的過氧化氫水溶液的方法,包括使含金屬離子雜質的過氧化氫水溶液和H+型陽離子交換樹脂,第二和氟離子(F-)型陰離子交換樹脂,第三和碳酸根離子(CO32-)型或碳酸氫根離子(HCO3-)型陰離子交換樹脂,第四和H+型陽離子交換樹脂接觸。
㈢ 如何用陰離子交換樹脂層析分離混合氨基酸
離子交換樹脂是一種合成的高聚物,不溶於水,能吸水膨脹.高聚物分子由能電離的回極性答基團及非極性的樹脂組成.極性基團上的離子能與溶液中的離子起交換作用,而非極性的樹脂本身物性不變.通常離子交換樹脂按所帶的基團分為強酸(=R=S03H)、弱(=COOH)、強鹼 (=N+=R:)和弱鹼(=NH2=NHR=NR2).
離子交換樹脂分離小分子物質如氨基酸、腺苷、腺苷酸等是比較理想的.但對生物大於物質如蛋白質是不適當的,因為它們不能擴散到樹脂的鏈狀結構中.故如分離生物大子、可選用以多糖聚合物如纖維素、葡聚糖為載體的離子交換劑.
本實驗用磺酸陽離子交換樹脂分離酸性氨基酸(天冬氨酸)、中性氨基酸(丙氨酸)鹼性氨基酸(賴氨酸)的混合液.在特定的pH條件下,它們解離程度不同,通過改變脫液的pH或離子強度可分別洗脫分離.
㈣ 離子交換色譜的原理以及陰陽離子交換樹脂的特性
離子交換樹脂的結構:
離子交換樹脂主要由高分子骨架和活性基團兩部分組成,高分子骨架是惰性的網狀結構骨架,是不溶於酸或鹼的高分子物質,常用的離子交換樹脂是由苯乙烯和二乙烯苯聚合得到樹脂的骨架。
而活性基團不能自由移動的官能團離子和可以自由移動的可交換離子兩部分組成,可交換離子能夠決定樹脂所吸附的離子,比如可交換離子為H型陽離子交換樹脂,那麼這個樹脂能夠吸附的離子,就是H型陽離子,而官能團離子能夠決定樹脂的「酸"、「鹼"性和交換能力的強弱,比如官能團離子是強酸性離子,那麼樹脂就是強酸性離子交換樹脂。
離子交換樹脂的內部結構:
1.凝膠型樹脂是由純單體混合物經縮合或聚合而成的,結構為微孔狀,合成的工藝比較簡單,孔徑大概在1-2nm左右,凝膠型樹脂的操作容量高,產水量高,物理強度好,且再生效率高,被廣泛應用在食品飲料加工,超純水制備,飲用水過濾,硬水軟化,製糖業,制葯等領域。
2.大孔型樹脂的孔徑一般在10nm左右,在樹脂中孔徑是比較大的,所以被稱為大孔型樹脂,且孔徑不會隨著周圍的環境而變化,能夠彌補凝膠型樹脂不能在非水系統中使用的缺點,吸附能力非常強大,不易碎裂,耐氧化好,操作容量高,能夠應用在醫葯領域、除重金屬污染、葯品純化、水處理中除去碳酸硬度、冷凝水精處理等領域。
詳情點擊:網頁鏈接
㈤ 離子交換樹脂適用哪一種進行溶脹
溶脹:當將乾的抄離子交換樹脂浸入襲水中時,其體積常常要變大,這種現象稱為溶脹。
影響溶脹率大小的因素有以下幾種:
(1)溶劑:樹脂在極性溶劑中的溶脹性,通常比在非極性溶劑中強。
(2)交聯度:高交聯度樹脂的溶脹能力較低。
(3)活性基團:此基團愈易電離,樹脂的溶脹性愈強。
(4)交換容量:高交換容量離子交換樹脂的溶脹性要比低交換容量的強。
(5)溶液深度:溶液中電解質濃度愈大,由於樹脂內外溶液的滲透壓差減小,樹脂的溶脹率愈小。
(6)可交換離子的本質:可交換的水合離子半徑愈大,其溶脹率愈大。
詳情點擊:網頁鏈接
㈥ 離子交換樹脂和吸附樹脂使用中應該注意那些問題
影響樹脂使用效果和壽命的因素主要有:
氧化性物質會影響樹脂的強度,版如游離氯、雙氧水、濃硫酸權、硝酸等,降低樹脂時候用壽命,應該盡量避免;
一般樹脂系統都是動態吸附,偏流會影響樹脂的處理效果,致使料液沒有通過全部樹脂,在運行過程中應該定期檢查上下布水是否均勻,避免偏流發生;
焦油類物質和不溶物顆粒會堵塞樹脂孔道,形成結塊等使樹脂吸附效率下降,應加強進水預處理,提前去除不溶物和焦油類物質。
㈦ 離子交換樹脂的貯存及需要注意的事項有哪些
離子交換樹脂的貯存:
離子交換樹脂不能露天存放,不能放在暴曬的地方,存放處的溫度為5-40°C,避免過冷或過熱造成樹脂被凍裂或加速微生物繁殖而影響產品質量,降低產品性能。
當存放處溫度稍低於0°C時,應向包裝袋內加入澄清的飽和食鹽水、浸泡樹脂。此外,當存放處溫度過高時,不但使樹脂易於脫水,還會加速陰樹脂的降解。一旦樹脂失水,使用時不能直接加水,可用澄清的飽和食鹽水浸泡,然後再逐步加水稀釋,洗去鹽分,貯存期間應使其保持濕潤。
防止樹脂失水。出廠的新樹脂都是事態的,其含水量時飽和的,在運輸過程和儲存期間應防止樹脂失水。如果發現樹脂已失水變干,應用10%NaCl溶液浸泡,在逐漸稀釋,以免樹脂因急劇溶脹而破裂。
防止微生物滋長。使用過的樹脂長期在水中存放時,其表面容易滋長微生物,而使樹脂受到污染,尤其是在溫度較高的環境中。為此,長期存放的樹脂,必須定期換水或用水反沖洗。
樹脂存放時,要避免直接接觸鐵容器、氧化劑和油脂類物質,以防樹脂被污染或氧化降解,而造成樹脂劣化。
防止樹脂受熱、受凍。樹脂儲存過程中溫度不宜過高或過低,其環境溫度一般宜在5-40℃.溫度過高,則容易引起樹脂降解,交換基團分解和滋長微生物;若在0℃以下,會因樹脂網孔中水分冰凍使樹脂體積膨大,造成樹脂脹裂。如果溫度低於5℃,又無保溫條件,這時可將樹脂浸泡在一定濃度的食鹽水中,以達到防凍的目的。
注意事項:
1.離子交換樹脂內含有一定量的水分,在貯存和運輸過程中應保持這部分水分。
2.離子交換樹脂在貯存過程中應防止鐵銹、油污、強氧化劑,有機物的污染,以免發生氧化降解、中毒等事故。
3.在溫度很低的時候,若發現樹脂已被凍,則應讓其緩慢自然解凍,切不可用機械力施於樹脂。
㈧ 離子交換樹脂 再生 為什麼用鹼洗
離子交換樹脂產品使用前需要活化,使用後需要再生。而且這兩部都需要用到酸鹼活回化和在生。答
離子交換樹脂分:1、陽離子交換樹脂;2、陰離子交換樹脂;3、螯合樹脂;4、大孔吸附樹脂。其中陽離子交換樹脂又分為強酸和弱酸,陰離子又分為強鹼和弱鹼。離子交換樹脂再生時不光是需要用鹼再生,同時也需要酸,或其他再生劑。產品的用途不同再生工藝也各不相同。常規是酸鹼再生,陽樹脂加酸體積會縮小,加鹼時體積會膨脹;陰樹脂加酸時體積會膨脹,加鹼時體積會縮小。加酸鹼的過程中樹脂體積會膨脹和縮小有利於雜質及污染物的溶出,同時也是活化樹脂注入活性基團。
㈨ 強鹼性陰離子交換樹脂的使用時注意事項
1、保持一定水分
離子交換樹脂含有一定水份,不宜露天存放,儲運過程中應保持濕潤,以免風干脫水,使樹脂破碎,如貯存過程中樹脂脫水了,應先用濃食鹽水(25%)浸泡,再逐漸稀釋,不得直接放入水中,以免樹脂急劇膨脹而破碎。
2、保持一定溫度
冬季儲運使用中,應保持在5-40℃的溫度環境中,避免過冷或過熱,影響質量,若冬季沒有保溫設備時,可將樹脂貯存在食鹽水中,食鹽水濃度可根據氣溫而定。
3、雜質去除
離子交換樹脂的工業產品中,常含有少量低聚合物和未參加反應的單體,還含有鐵、鉛、銅等無機雜質,當樹脂與水、酸、鹼或其它溶液接觸時,上述物質就會轉入溶液中,影響出水質量,因此,新樹脂在使用前必須進行預處理,一般先用水使樹脂充分膨脹,然後,對其中的無機雜質(主要是鐵的化合物)可用4-5%的稀鹽酸除去,有機雜質可用2-4%稀氫氧化鈉溶液除去,洗到近中性即可。如在醫葯制備中使用,須用乙醇浸泡處理。
4、定期活化處理
樹脂在使用中,防止與金屬(如鐵、銅等)油污、有機分子微後逐步稀釋,陰樹脂易受有機物污染,可用10%NaC1+2-5%NaOH混合溶液浸泡或淋洗,必要時可用1%雙氧水溶液泡數分鍾,其它,也可採用酸鹼交替處理法,漂白處理法,酒精處理及各種滅菌法等等。