❶ 重慶印染廢水處理的基本方法有哪些
印染廢水的處理方法及工藝流程目前,國內的印染廢水處理手段以生物法為主,輔以物理法與化學法。由於近年來化纖織物的發展和印染後整理技術的進步,使新型染料、PAV漿料、新型助劑等難生化降解有機物大量進入印染廢水,給處理增加了難度。原有的生物處理系統COD去除率大都由原來的70%下降到50%左右,甚至更低。色度的去除是印染廢水處理的一大難題,舊的生化法在脫色方面一直不能令人滿意。此外,PAV等化學漿料造成的COD佔印染廢水總COD的比例相當大,但由於它們很難被普通微生物所利用而使其去除率只有20%~30%。針對上述問題,國內外都開展了一些研究工作,主要是新的生物處理工藝和高效專門細菌以及新型化學葯劑的探索和應用研究。其中具有代表性的有:厭氧-好氧生物處理工藝、高效脫色菌和PVA降解菌的篩選與應用研究、光降解技術研究、高效脫色混凝劑的研製等。
1、印染廢水常用處理技術
印染廢水的常用處理方法可分為物理法、化學法與生物法三類。物理法主要有格柵與篩網、調節、沉澱、氣浮、過濾、膜技術等,化學法有中和、混凝、電解、氧化、吸附、消毒等,生物法有厭氧生物法、好氧生物法、兼氧生物法。
2、印染廢水處理單元的選擇系列
(1)調節:對水質水量變化大的廢水,調節池應考慮停留時間長些。一般情況下後續處理單元為水解酸化或厭氧處理時,調節時不應採用曝氣方式攪拌混合。
(2)混凝反應:廢水中含疏水性染料較多時,混凝反應工藝放在生化前面,以去除不溶性染料物質,減輕後續生物處理的負荷。混凝葯劑可根據染料性質選用鹼式氯化鋁(PAC)、硫酸亞鐵(FeSO4)等,混凝反應方式採用機械攪拌易於調整水力條件,保證反應充分,反應時間應在25~30min之間。考慮脫色效應時,應把反應時間再適當延長。
(3)中和:原水pH值高時通常用H2S04或HCl中和,為節省葯劑用量,可在調節以後。如採用煙道氣中和,應考慮脫硫及除灰。
(4)沉澱(氣浮):分離物化投葯反應由於污泥量大,應優先考慮沉澱〔斜管沉澱易堵不宜採用),通常的輻流沉澱池適用於大水量、豎流沉澱池適用於小水量,當有地皮可利用時,平流沉澱池採用吸泥方式時也可採用。投葯量大時泥量也大,輻流池可能會引起異重流,新穎的周邊進出水沉澱池可克服這一缺點。如廢水中表面活性劑含量高,應選擇氣浮法,氣浮法中壓力溶氣氣浮技術成熟,可考慮選用。
(5)過濾:當出水要求澄清或回用時,應採用砂濾或煤砂兩層過濾。
(6)電解法:鈦鍍釕惰性電極電解法處理酸性染料印染廢水脫色效果好,去除COD時,對硫化染料、還原染料、酸性染料、活性染料等均有很高的去除率。金屬陽極電解法因泥量較多採用較少。
(7)厭氧水解:印染廢水有機物含量COD高,且B/C低,應考慮水解酸化,並增加填料掛膜,池底應設水力攪拌機,保證懸浮活性污泥與水中有機物廣泛接觸。池體較大時,應設串聯系統,以免短路。印染廢水較少採用純厭氧技術,只有當退漿廢水等高濃度廢水單獨分出時可考慮純厭氧處理。
(8)好氧生物降解:對水量大、濃度高的印染廢水優先採用活性污泥法,如氧化溝、間歇式活性污泥法(SBR)、循環式活性污泥法(CSTR)等。對水量小、濃度低的廢水可考慮生物接觸氧化法,但填料應保證密集度和體積率,並以多級串聯方法為宜。曝氣方式如採用鼓風曝氣,應選用膜片式微孔曝氣頭或微孔曝氣管等,保證充氧效率。
(9)脫色:採用Cl2需保證脫色氧化時間不少於1h,Cl2脫色兼有回調pH值的功能。小規模可選用ClO2、NaClO漂白粉【Ca(ClO)2】、紫外線等。脫色反應池可採用回轉隔板或折板,不宜採用機械攪拌或壓縮空氣反應。
(10)活性炭吸附:活性炭對陽離子染料、直接染料、酸性染料、活性染料等水溶性染料的廢水具有良好的吸附性能(對硫化染料、還原染料等不溶性染料的廢水效果較差)。生物活性炭(BAC)法是活性炭吸附的衍生技術,利用加入的微生物所分泌的外酶滲入到炭的微孔結構,使活性炭所吸附的有機物不斷分解成CO2、H2O或合成新的細胞,最後滲出炭的結構而被去除。BAC技術需保證進水有一定溶解氧,炭床微生物需接種培育,BAC運行周期遠高於活性炭吸附。
(11)硅藻土吸附:硅藻土在印染廢水中既有混凝作用,又有吸附作用,起到良好的脫色效果。通常,活化硅藻土對親水性染料脫色效果不一,對疏水性染料效果較好。當廢水中表面活性劑和勻染劑較多時,效果將顯著下降。
(12)氧化:臭氧氧化對直接染料、酸性染料、鹼性染料、活性染料等親水性染料脫色速度快,效果好;對於還原染料、冰染染料(納夫妥)、氧化染料、硫化染料、分散染料等疏水性染料,則脫色效果較差,臭氧用量也大。臭氧脫色不會產生「三致物」,可保證廢水出水的安全指標。Fenton催化氧化法在去除殘余COD方面效率顯著,可用於較小水量。TiO2催化氧化法可去除出水的殘余色度,是有前景的光催化氧化技術。
(13)膜分離技術
①超濾法:由於超濾膜具有精密的精細孔,可截留水中的大分子等微粒,且操作壓力低,設備簡單,可用於染料的回收或出水的深度處理。採用醋酸纖維半透膜超濾法回收染料已有成果。
②納濾法:是用納濾膜截留污染物的一種新技術,分離壓力一般為0.5~2.0MPa,處理水溶性(親水性)染料廢水,可回收有用染料。採用納濾膜回收直接黑、活性艷紅、酸性橙Ⅱ和酸性大紅染料廢水,已取得成果。
廈門威士邦一直以來專注於印染廢水冶理與回用的相關技術研發及應用。2008年4月,基於「Flow Split?SMFTM+HAP ROTM」雙膜法技術的盛虹集團印染廢水萬噸回用系統率先在環太湖流域建成並通過相關部分驗收。該工程的建成一舉改變了印染企業以往耗水大戶、排水大戶、污染大戶的負面名聲,為環太湖流域及至全國其他印染企業起到至關重要的示範作用,並正式宣告印染行業全面進入節水減排、資源回用的新時代。
3、印染廢水處理工藝流程
總結印染廢水的處理工藝,充分的調節時間是必要的,物化、生化相結合的處理工藝是目前採用的合理工藝。物化法主要用於去除懸浮物、色度及部分COD,投葯混凝反應是物化處理的重要環節,分離工藝氣浮法具有突出的優點,生化法主要採用厭氧水解-好氧氧化串聯工藝,厭氧水解工藝是解決印染廢水COD值高、可生化性差及色度高的難題的有效前置技術,經厭氧水解後大部分難降解有機物已被分解為易生物降解小分子有機物,可以提高廢水可生化性,保障廢水好氧生物處理的效率和出水水質。好氧氧化工藝有多種方式,如氧化溝、間歇式活性污泥法、生物接觸氧化等,後者由於易於管理、產泥量少、污泥不易發生膨脹現象及運行成本低等特點,是目前小型印染廢水常用的好氧生物處理方法之一,但各個印染企業選用好氧方法時應根據本身廢水的特點做出優選,必要時盡可能採取綜合治理技術。下面列舉幾種典型流程。
3.1 水解酸化-生物接觸氧化-生物炭印染廢水處理工藝
處理印染廢水通常採用水解酸化-生物接觸氧化-生物炭為主的處理工藝,見圖3-1。該處理工藝是近幾年來在印染廢水處理中採用較多、較成熟的工藝流程。水解酸化的目的是對印染廢水中可生化性很差的某些高分子物質和不溶性物質通過水解酸化,降解為小分子物質和可溶性物質,提高可生化性和B/C。值,為後續好氧生化處理創造條件。同時好氧生化處理產生的剩餘污泥經沉澱池全部迴流到厭氧生化段,進行厭氧消化,減少整個系統剩餘污泥排放,即達到自身的污泥平衡。厭氧水解酸化池和生物接觸氧化池中均安裝填料,屬生物膜法處理;生物炭池裝活性炭並供氧,兼有懸浮生長和附著生長法特點;脈沖進水的作用是對厭氧水解酸化池進行攪拌。
各部分的水力停留時間一般如下。調節池:8~12h;厭氧水解酸化池:8~10h;生物接觸氧化池:6~8h;生物炭池:1~2h;脈沖發生器間隔時間:5~10min。
該處理工藝系統,對於CODcr≤1000mg/L的印染廢水,處理後的出水可達到國家排放標准,如進一步深度處理則可回用。
3.2 缺氧水解-生物好氧-混凝組合工藝處理印染污水
廢水水量26000m3/d。廢水水質為:BOD 200~250mg/L,COD 750~850mg/L,pH值9~11,色度850倍。廢水水質要求為:BOD≤30mg/L,COD≤100mg/L,pH值為6~9,色度≤100倍。
組合工藝處理節染廢水工藝流程見圖3-2。
該組合工藝流程的特點是;①好氧生物處理構築物前採用缺氧水解池以提高廢水的可生化性(如以機織混紡織物或化纖織物為主的降解性較差的印染污水);②沉澱池後設置混凝沉澱池和氧化池,作為三級處理,可獲得較好的出水水質,達到處理要求;③廢水SS較低,不設置初沉池;④缺氧水解池內設置填料。
該組合工藝的運行數據見表3-6。
3.3 電化學+氣浮+水解酸化+兩級接觸氧化+二級生物炭塔+過濾處理印染廢水
該工藝以生化、物化、深度處理相結合,工藝流程見圖3-3。
該工藝設計水量5000m3/d。主要水質指標為:COD 1000~1500mg/L,BOD 300~500mg/L,S2-≤35mg/L,色度≤1000倍。要求處理後出水為:COD≤100mg/L,BOD≤30mg/L,色度≤50倍,S2-≤0.5mg/L。
其主要參數為:加酸中和至pH=6~9;水解酸化池水力停留時間4.3h,表面負荷率1m3/(m2.h),設YDT彈性立體填料;—、二級生物接觸氧化池水力停留時間分別為4.8h和2.3h,氣水比分別為20:1和15:1,中間沉澱池上清液按1:1迴流到一級生物接觸氧化池始端;中間沉澱池表面負荷率4m3/(m2.h),二沉池表面負荷率3m3/(m2.h);普通化濾池(清水池設在濾池下面,有效容積95m3),流速10m/h,反沖洗強度15L、(m2.s),沖洗時間5min;生物炭池為二級串聯,前級為升流式,後級為降流式,過濾速度為3m/h,氣水比為5:1,反沖洗強度9L/(m2.s),反沖洗時間5min,3~5d沖洗一次;總調節池水力停留時間11.5h,底部設7條排泥溝,每條溝內設1根DN300mm的穿孔排泥管』污泥排入集泥井後用潛污泵抽至污泥濃縮池。
❷ 污水處理廠設計的問題
僅供參考:生化磁分離工藝
BFMS水處理工藝技術
20000噸/日市政污水處理技術建議書
1、工程概況
污水處理廠的日處理能力為20000噸/日,設計出水水質達到一級B標准(暫)
2、工程規模
正常處理量:20000噸/日
峰值處理量:24000噸/日
3、設計進出水水質
1)進水水質(需業主提供實際數據)
PH=6~9;CODcr≤500mg/L;BOD5≤280mg/L;
懸浮物≤300mg/L;總磷≤5.0mg/L;氨氮≤40.0mg/L
2)出水水質(需業主提供出水標准,暫定為一級B)
PH=6~9;CODcr≤60mg/L;BOD5≤20mg/L;
懸浮物≤20mg/L;總磷≤1.0mg/L;氨氮≤15.0mg/L;
總氮≤20.0mg/L;糞大腸桿菌≤10000/L。
4、載入絮凝磁分離(簡稱BFMS)工藝原理和優勢
BFMS技術是在傳統的絮凝工藝中,加入磁粉,以增強絮凝的效果,形成高密度的絮體和加大絮體的比重,達到高效除污和快速沉降的目的。磁粉的離子極性和金屬特性,作為絮體的核體,大大地強化了對水中懸浮污染物的絮凝結合能力,減少絮凝劑用量,在去除懸浮物,特別是在去除磷、細菌、病毒、油、重金屬等方面的效果比傳統工藝要好。由於磁粉的比重高達5.0×10³kg/m³,大約是砂子的兩倍,混有磁粉的絮體比重增大,絮體快速沉降,速度可達20米/時以上,整個水處理從進水到出水可在10分鍾左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓進行分離後回收並在系統中循環使用。高梯度磁過濾器捕集流過水中的殘余微小顆粒,磁過濾器依照設定的要求被自動清洗,以達到高度凈化出水的目的。根據在美國採用BFMS作深度水處理的報告,磁過濾器可達到去除26納米病菌的結果。下面圖示說明了BFMS工藝的處理過程。
BFMS Process 載入絮凝磁分離工藝
絮凝/ + 載入絮凝+ 沉澱分離+磁過濾
Coagulation+Baiiasted Flocculation+Solids Separation+Magnetic Separation
該工藝以前在工程中應用很少,原因是磁種的回收技術一直沒有很好的解決,而現在這一技術難點已成功地被突破,磁種的回收率達到99%以上,該工藝技術在美國也進行了項目示範和商業項目運行。我們公司已在國內申請多項專利,形成了公司的自主知識產權。在過去三年中,我們公司用250噸/日的中試車已在城市污水處理、中水回用、地表水和地下水以及自來水處理、江水、湖水、河道水處理、高磷廢水處理、造紙廢水處理、采礦廢水處理、煉油和油田廢水處理方面成功的做了多項不同運行參數的試驗,取得很好的結果;10000噸/日的中試車已於2007年5月在青島李村河入海口的城市污水投入運行一個月,運行良好。在北京金源經開污水處理廠的出水進行除高磷深度處理運行月余,處理效果佳。作為奧運會應急城市污水處理工程,在北京清河污水廠安裝了4×10000噸/日和2×5000噸/日共6組BFMS系統,綜合處理效果好。該技術在勝利油田應用於處理採油廢水的東營勝利油田一期工程(5000噸/日)已經投入使用,油田500噸/日地下水BFMS項目和30000噸/日採油水BFMS項目也在實施中。
與其他工藝相比,磁分離技術具有以下優點:
1) BFMS工藝能應用於城市污水的一級、二級、三級、中水和各種工業污水以及飲用水。
2) 處理效果好,其出水質與超濾膜出水相媲美,BFMS工藝能有效地從水中除去微粒污染物、微生物污染物和部分已溶解於水中的污染物,如:COD、BOD、懸浮物、總磷、色度、濁度等,特別是對磷有強大的去除效果。也能結合生物工藝非常有效和經濟地脫氮。
3) 耐沖擊負荷能力強,對水質的沖擊有獨特的耐沖擊能力。當前段工序出現故障時,或其他有害金屬離子進入污水處理系統,污水可直接進入磁分離系統,系統仍然能夠保持較高的去除效果,大幅度去除水中污染物。
4) 佔地極小,20000噸/日BFMS系統的佔地約為400㎡左右,另加走道、加葯及操作設施總佔地約700㎡左右。
5) 投資低,比膜處理有明顯的優勢。
6) 運行成本低,設備使用壽命長,除了正常的維護外,不用更換部件而造成高昂的二次投資。
7) 運行管理方便,啟動快捷,運行管理簡單。
5、污水處理廠工藝設計建議
根據工程運行經驗,去除污水中的漂浮物和泥砂,保證污水廠的連續運行,進入BFMS系統的污水進行預處理是必備的。依據BFMS系統的工作原理,常規預處理即可,即粗、細格柵和沉澱池。預處理也可考慮採用污水粉碎泵。
BFMS技術具有強大除磷和懸浮物能力,同時對其他指標(氮除外)也有較強的去除能力。對處理城市污水,因BFMS技術脫氮能力較差,建議後續的生化工藝(如BAF、SBR、A/O等)僅按氨氮負荷進行設計,通過調整BFMS系統的加葯量即可保證剩餘的CODcr和BOD5達到排放要求。因生化脫氮需要必須的碳源,若BFMS系統去除率太高會導致生化系統的碳源不足,微生物生長緩慢,脫氮能力達不到,因此建議對污泥貯池鋪設備用管道系統,迴流污泥作為備用碳源。
6、工藝流程
考慮市政污水的水質特點,結合BFMS技術的工藝優點,綜合考慮投資和運行效果,建議污水處理廠的工藝流程如下:
市政污水
定期外運
達標排放
BFMS技術是污水廠處理工藝的重要部分,對BFMS系統排除的剩餘污泥必須進行處理。
下圖僅為BFMS工藝流程圖:
污水廠來水 出水
污泥脫水系統
BFMS系統平面圖布置如下:
7、BFMS系統設計
1)BFMS系統共2套,單套處理量10000噸/日。
2)其他
(1)BFMS系統建議放在室內,設備空間要求L30×W20×H10米,採用輕鋼結構形式。
(2)污泥處理建議不採用濃縮池,直接採用污泥貯池和污泥濃縮脫水一體機,處理BFMS系統排出的剩餘污泥。在正常運行時BFMS系統排除的污泥的含水率在98-99%。
(3)配套電壓為380V,每套BFMS系統裝機容量為61KW(不含進水泵),運行負荷為40KW。總裝機容量為122KW,總運行負荷為80KW。
(4)每套BFMS系統配套操作人員每班1人,4班3運轉,均應經過上崗培訓。
(5)污泥產量:0.4kgGS/m³廢水。
8、BFMS系統水處理成本
1)直接運行成本:0.2446元/噸污水
A葯劑:
絮凝劑乾粉(29%純度):2500元/噸;投加濃度以20ppm(AL2O3)計,成本為0.17元/噸污水;
PAM晶體:25000元/噸;投加濃度以1ppm計,成本為0.025元/噸污水.
B電耗
0.041度/噸污水,電費以0.57元/度計,則成本為0.0234元/噸污水.
C人工:0.014元/噸污水
D維修、維護0.012元/噸污水
2)總成本:0.3244元/噸污水
A直接運行成本:0.252元/噸污水
B固定資產折舊(平均年限法)15年:0.052元/噸污水
C經營管理及其他費用:0.031元/噸污水
9、20000噸/日BFMS系統投資
本工程共需2套10000噸/日BFMS系統,20000噸/日BFMS系統投資為********元(包括設計、安裝、調試及系統設備)。
10、說明:
*由於對實際污水狀況不了解,未進行水的測試,故BFMS系統的運行費用只是估算,具體數據需待做試驗後再確定。
*本文內容僅供內部使用。
❸ 超濾膜在焦化廢水深度處理中對COD有去除作用嗎
有。焦化廢水在生化二沉池後有機物分子量並不大,所以超濾膜在焦化廢水處理中對COD的去除主要體現在了對膠體和微生物上面。
❹ 如何進行水質檢測
自來水是從自來水管里流出來的,因此人們往往顧名思義,以為自來水是自來的。其實,自來水是經過多道工藝流程由自來水職工製造出來的。首先必須把源水從江河湖泊中抽取到水廠,然後經過沉澱、過濾、消毒、入庫(清水庫),再由送水泵高壓輸入自來水管道,最終分流到用戶龍頭。整個過程要經過多次水質化驗,有的地方還要經過二次加壓、二次消毒才能進入用戶家庭,所以自來水並非自來。
確定飲用水的消毒效果及防止二次污染的能力。
過去家庭使用井水、河水一般是使用明礬沉澱水體中的泥沙,現在水廠一般都是大規模生產自來水,使用明礬成本高、效果不好,因此,水廠使用的沉澱葯劑一般都是三氯化鐵或聚合氯化鋁,盡管這些都是化學葯品,但在水體中溶解、浠釋,與泥沙共沉澱後剩餘微量鐵、鋁元素、對人體無害,盡可放心飲用。
放出的自來水有白色氣泡,尤其以早晨第一次放水時最為時顯,這是因為自來水管中滲進了空氣,空氣溶解在水中,形成微小的氣泡,放水時就與自來水一起流出來,當你把水放置一會後,這此氣泡就會自行消失。
引起黃水的原因是因為自來水管管材不符合要求。現在市場上充斥著許多劣質鍍鋅管,劣質鍍鋅管容易內部銹蝕使水質受到污染。用戶在發現水管放出黃水時要多放一會兒,使黃水流凈。用戶在安裝室內自來水管時,一定要請教內行,不要被劣質管材坑害了。現在有城市已禁止使用鍍鋅管作自來水水管,並以塑料管、不銹鋼管來替代鍍鋅管。
自來水管里有空氣,水管中的壓力又較大,空氣與水在壓力的作用下一起流動,就會碰撞自來水管管壁,發出咚咚聲。消除這種聲音只要把水多放一會兒就行了。
二次供水設施選址、設計、施工及所用材料,應保證不使飲用水水質受到污染,並有利於清洗和消毒。各類蓄水設備要加強衛生防護,定期清洗和消毒。從事二次供水設施清洗消毒的單位必須取得當地人民政府衛生行政部門的衛生許可,方可從事清洗消毒工作。清洗消毒人,必須經衛生知識培訓和健康檢查,取得體檢合格證後方可上崗。
(1)水質發黃原因有兩個。一是從用戶總表後第一個閥門至用戶家中的鍍鋅管道因長年使用或管材質量問題造成銹蝕而形成的自來水二次污染。這種現象在早晨尤為突出。二是使用二次供水設施水的用戶,因產權單位未按規定定期清刷、清毒水池及水箱,容易造成自來水的二次污染。(2)水質發渾主要是因道路上的供水管道,因不可抗力造成的突發性爆管事故引起的。在搶修過程中帶入泥沙可能造成局部、短時出現渾水現象。遇此情況放凈渾水後即可恢復正常。(3)水質發白是自來水中溶入了氣體,經壓力作用分解成微小氣泡,看起來水為乳白色,待靜止數分鍾後,氣泡會自行消失,水質變清,這種現象不會影響水質。
❺ 能不能給一份污水外運方案
中國環保頻道網有點
我是BFMS工藝設備銷售員,下面是我們的建議書(圖片粘帖不上)
BFMS水處理工藝技術
20000噸/日市政污水處理技術建議書
1、工程概況
污水處理廠的日處理能力為20000噸/日,設計出水水質達到一級B標准(暫)
2、工程規模
正常處理量:20000噸/日
峰值處理量:24000噸/日
3、設計進出水水質
1)進水水質(需業主提供實際數據)
PH=6~9;CODcr≤500mg/L;BOD5≤280mg/L;
懸浮物≤300mg/L;總磷≤5.0mg/L;氨氮≤40.0mg/L
2)出水水質(需業主提供出水標准,暫定為一級B)
PH=6~9;CODcr≤60mg/L;BOD5≤20mg/L;
懸浮物≤20mg/L;總磷≤1.0mg/L;氨氮≤15.0mg/L;
總氮≤20.0mg/L;糞大腸桿菌≤10000/L。
4、載入絮凝磁分離(簡稱BFMS)工藝原理和優勢
BFMS技術是在傳統的絮凝工藝中,加入磁粉,以增強絮凝的效果,形成高密度的絮體和加大絮體的比重,達到高效除污和快速沉降的目的。磁粉的離子極性和金屬特性,作為絮體的核體,大大地強化了對水中懸浮污染物的絮凝結合能力,減少絮凝劑用量,在去除懸浮物,特別是在去除磷、細菌、病毒、油、重金屬等方面的效果比傳統工藝要好。由於磁粉的比重高達5.0×10³kg/m³,大約是砂子的兩倍,混有磁粉的絮體比重增大,絮體快速沉降,速度可達20米/時以上,整個水處理從進水到出水可在10分鍾左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓進行分離後回收並在系統中循環使用。高梯度磁過濾器捕集流過水中的殘余微小顆粒,磁過濾器依照設定的要求被自動清洗,以達到高度凈化出水的目的。根據在美國採用BFMS作深度水處理的報告,磁過濾器可達到去除26納米病菌的結果。下面圖示說明了BFMS工藝的處理過程。
BFMS Process 載入絮凝磁分離工藝
絮凝/ + 載入絮凝+ 沉澱分離+磁過濾
Coagulation+Baiiasted Flocculation+Solids Separation+Magnetic Separation
該工藝以前在工程中應用很少,原因是磁種的回收技術一直沒有很好的解決,而現在這一技術難點已成功地被突破,磁種的回收率達到99%以上,該工藝技術在美國也進行了項目示範和商業項目運行。我們公司已在國內申請多項專利,形成了公司的自主知識產權。在過去三年中,我們公司用250噸/日的中試車已在城市污水處理、中水回用、地表水和地下水以及自來水處理、江水、湖水、河道水處理、高磷廢水處理、造紙廢水處理、采礦廢水處理、煉油和油田廢水處理方面成功的做了多項不同運行參數的試驗,取得很好的結果;10000噸/日的中試車已於2007年5月在青島李村河入海口的城市污水投入運行一個月,運行良好。在北京金源經開污水處理廠的出水進行除高磷深度處理運行月余,處理效果佳。作為奧運會應急城市污水處理工程,在北京清河污水廠安裝了4×10000噸/日和2×5000噸/日共6組BFMS系統,綜合處理效果好。該技術在勝利油田應用於處理採油廢水的東營勝利油田一期工程(5000噸/日)已經投入使用,油田500噸/日地下水BFMS項目和30000噸/日採油水BFMS項目也在實施中。
與其他工藝相比,磁分離技術具有以下優點:
1) BFMS工藝能應用於城市污水的一級、二級、三級、中水和各種工業污水以及飲用水。
2) 處理效果好,其出水質與超濾膜出水相媲美,BFMS工藝能有效地從水中除去微粒污染物、微生物污染物和部分已溶解於水中的污染物,如:COD、BOD、懸浮物、總磷、色度、濁度等,特別是對磷有強大的去除效果。也能結合生物工藝非常有效和經濟地脫氮。
3) 耐沖擊負荷能力強,對水質的沖擊有獨特的耐沖擊能力。當前段工序出現故障時,或其他有害金屬離子進入污水處理系統,污水可直接進入磁分離系統,系統仍然能夠保持較高的去除效果,大幅度去除水中污染物。
4) 佔地極小,20000噸/日BFMS系統的佔地約為400㎡左右,另加走道、加葯及操作設施總佔地約700㎡左右。
5) 投資低,比膜處理有明顯的優勢。
6) 運行成本低,設備使用壽命長,除了正常的維護外,不用更換部件而造成高昂的二次投資。
7) 運行管理方便,啟動快捷,運行管理簡單。
5、污水處理廠工藝設計建議
根據工程運行經驗,去除污水中的漂浮物和泥砂,保證污水廠的連續運行,進入BFMS系統的污水進行預處理是必備的。依據BFMS系統的工作原理,常規預處理即可,即粗、細格柵和沉澱池。預處理也可考慮採用污水粉碎泵。
BFMS技術具有強大除磷和懸浮物能力,同時對其他指標(氮除外)也有較強的去除能力。對處理城市污水,因BFMS技術脫氮能力較差,建議後續的生化工藝(如BAF、SBR、A/O等)僅按氨氮負荷進行設計,通過調整BFMS系統的加葯量即可保證剩餘的CODcr和BOD5達到排放要求。因生化脫氮需要必須的碳源,若BFMS系統去除率太高會導致生化系統的碳源不足,微生物生長緩慢,脫氮能力達不到,因此建議對污泥貯池鋪設備用管道系統,迴流污泥作為備用碳源。
6、工藝流程
考慮市政污水的水質特點,結合BFMS技術的工藝優點,綜合考慮投資和運行效果,建議污水處理廠的工藝流程如下:
市政污水
定期外運
達標排放
BFMS技術是污水廠處理工藝的重要部分,對BFMS系統排除的剩餘污泥必須進行處理。
下圖僅為BFMS工藝流程圖:
污水廠來水 出水
污泥脫水系統
BFMS系統平面圖布置如下:
7、BFMS系統設計
1)BFMS系統共2套,單套處理量10000噸/日。
2)其他
(1)BFMS系統建議放在室內,設備空間要求L30×W20×H10米,採用輕鋼結構形式。
(2)污泥處理建議不採用濃縮池,直接採用污泥貯池和污泥濃縮脫水一體機,處理BFMS系統排出的剩餘污泥。在正常運行時BFMS系統排除的污泥的含水率在98-99%。
(3)配套電壓為380V,每套BFMS系統裝機容量為61KW(不含進水泵),運行負荷為40KW。總裝機容量為122KW,總運行負荷為80KW。
(4)每套BFMS系統配套操作人員每班1人,4班3運轉,均應經過上崗培訓。
(5)污泥產量:0.4kgGS/m³廢水。
8、BFMS系統水處理成本
1)直接運行成本:0.2446元/噸污水
A葯劑:
絮凝劑乾粉(29%純度):2500元/噸;投加濃度以20ppm(AL2O3)計,成本為0.17元/噸污水;
PAM晶體:25000元/噸;投加濃度以1ppm計,成本為0.025元/噸污水.
B電耗
0.041度/噸污水,電費以0.57元/度計,則成本為0.0234元/噸污水.
C人工:0.014元/噸污水
D維修、維護0.012元/噸污水
2)總成本:0.3244元/噸污水
A直接運行成本:0.252元/噸污水
B固定資產折舊(平均年限法)15年:0.052元/噸污水
C經營管理及其他費用:0.031元/噸污水
9、20000噸/日BFMS系統投資
本工程共需2套10000噸/日BFMS系統,20000噸/日BFMS系統投資為********元(包括設計、安裝、調試及系統設備)。
10、說明:
*由於對實際污水狀況不了解,未進行水的測試,故BFMS系統的運行費用只是估算,具體數據需待做試驗後再確定。
*本文內容僅供內部使用。
❻ 超濾系統工藝流程圖
超濾是以壓力為推動力的膜分離技術之一。以大分子與小分子分離為目的,膜孔徑在20-1000A°之間。中空纖維超濾器(膜)具有單位容器內充填密度高,佔地面積小等優點。以下是我為大家整理的關於超濾系統工藝流程圖,給大家作為參考,歡迎閱讀!
超濾膜的最小截留分子量為500道爾頓,在生物制葯中可用來分離蛋白質、酶、核酸、多糖、多肽、抗生素、病毒等。超濾的優點是沒有相轉移,無需添加任何強烈化學物質,可以在低溫下操作,過濾速率較快,便於做無菌處理等。所有這些都能使分離操作簡化,避免了生物活性物質的活力損失和變性。
由於超濾技術有以上諸多優點,故常被用作:
(1)大分子物質的脫鹽和濃縮,以及大分子物質溶劑系統的交換平衡。
(2)大分子物質的分級分離。
(3)生化制劑或其他制劑的去熱原處理。
超濾技術已成為制葯工業、食品工業、電子工業以及環境保護諸領域中不可缺少的有力工具[2] 。
濾膜
超濾技術的關鍵是膜。膜有各種不同的類型和規格,可根據工作的需要來選用。早期的膜是各向同性的均勻膜,即常用的微孔薄膜,其孔徑通常是0.05mm 和0.025mm。近幾年來生產了一些各向異性的不對稱超濾膜,其中一種各向異性擴散膜是由一層非常薄的、具有一定孔徑的多孔"皮膚層"(厚約0.1mm~1.0mm),和一層相對厚得多的(約1mm)更易通滲的、作為支撐用的"海綿層"組成。皮膚層決定了膜的選擇性,而海綿層增加了機械強度。由於皮膚層非常薄,因此高效、通透性好、流量大,且不易被溶質阻塞而導致流速下降。常用的膜一般是由乙酸纖維或硝酸纖維或此二者的混合物製成。近來為適應制葯和食品工業上滅菌的需要,發展了非纖維型的各向膜,例如聚碸膜、聚碸醯胺膜和聚丙烯腈膜等。這種膜在pH 1~14都是穩定的,且能在90℃下正常工作。超濾膜通常是比較穩定的,若使用恰當,能連續用1~2年。暫時不用,可浸在1%甲醛溶液或0.2%NaN3中保存。超濾膜的基本性能指標主要有:水通量[cm3/(cm2?h)];截留率(以百分率%表示);化學物理穩定性(包括機械強度)等。
裝置
超濾裝置一般由若干超濾組件構成。通常可分為板框式、管式、螺旋卷式和中空纖維式四種主要類型。由於超濾法處理的液體多數是含有水溶性生物大分子、有機膠體、多糖及微生物等。這些物質極易粘附和沉積於膜表面上,造成嚴重的濃差極化和堵塞,這是超濾法最關鍵的問題,要克服濃差極化,通常可加大液體流量,加強湍流和加強攪拌。
廢水處理
在生物製品中應用超濾法有很高的經濟效益,例如供靜脈注射的25%人胎盤血白蛋白(即胎白)通常是用硫酸銨鹽析法、透析脫鹽、真空濃縮等工藝制備的,該工藝流程硫酸銨耗量大,能源消耗多,操作時間長,透析過程易產生污染。改用超濾工藝後,平均回收率可達97.18%;吸附損失為1.69%;透過損失為1.23%;截留率為98.77%。大幅度提高了白蛋白的產量和質量,每年可節省硫酸銨6.2噸,自來水16000噸。目前國外生產超濾膜和超濾裝置最有名的廠家是美國的Milipore公司和德國的Sartorius公司。國內的知名廠家有立升。
超濾在廢水處理中的應用
(1)還原性染料廢水處理;
(2)電泳塗漆廢水處理;
(3)含乳化油廢水處理;
(4)生活污水處理
凈水器
一種孔徑規格一致,額定孔徑范圍為0.001-0.02微米的微孔過濾膜。採用超濾膜以壓力差為推動力的膜過
濾方法為超濾膜過濾。超濾膜大多由醋酯纖維或與其性能類似的高分子材料製得。最適於處理溶液中溶質的分離和增濃,也常用於其他分離技術難以完成的膠狀懸浮液的分離,其應用領域在不斷擴大。以壓力差為推動力的膜過濾可區分為超濾膜過濾、微孔膜過濾和逆滲透膜過濾三類。它們的區分是根據膜層所能截留的最小粒子尺寸或分子量大小。以膜的額定孔徑范圍作為區分標准時,則微孔膜(MF)的額定孔徑范圍為0.02~10μm;超濾膜(UF)為0.001~0.02μm;逆滲透膜(RO)為0.0001~0.001μm。由此可知,超濾膜最適於處理溶液中溶質的分離和增濃,或採用其他分離技術所難以完成的膠狀懸浮液的分離。超濾膜的制膜技術,即獲得預期尺寸和窄分布微孔的技術是極其重要的。孔的控制因素較多,如根據制膜時溶液的種類和濃度、蒸發及凝聚條件等不同可得到不同孔徑及孔徑分布的超濾膜。超濾膜一般為高分子分離膜,用作超濾膜的高分子材料主要有纖維素衍生物、聚碸、聚丙烯腈、聚醯胺及聚碳酸酯等。超濾膜可被做成平面膜、卷式膜、管式膜或中空纖維膜等形式,廣泛用於如醫葯工業、食品工業、環境工程等。我們都知道篩子是用來篩東西的,它能將細小物體放行,而將個頭較大的截留下來。可是,您聽說過能篩分子的篩子嗎?超膜--這種超級篩子能將尺寸不等的分子篩分開來!那麼,到底什麼是超濾膜呢? 超濾膜是一種具有超級“篩分”分離功能的多孔膜。它的孔徑只有幾納米到幾十納米,也就是說只有一根頭發絲的1‰!在膜的一側施以適當壓力,就能篩出大於孔徑的溶質分子,以分離分子量大於500道爾頓、粒徑大於2~20納米的顆粒。超濾膜的結構有對稱和非對稱之分。前者是各向同性的,沒有皮層,所有方向上的孔隙都是一樣的,屬於深層過濾;後者具有較緻密的表層和以指狀結構為主的底層,表層厚度為0.1微米或更小,並具有排列有序的微孔,底層厚度為200~250微米,屬於表層過濾。工業使用的超濾膜一般為非對稱膜。超濾膜的膜材料主要有纖維素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚碸、聚丙烯腈、聚醯胺、聚碸醯胺、磺化聚碸、交鏈的聚乙烯醇、改性丙烯酸聚合物等等。
超濾廚飲用兩用機:①PP棉濾芯、②活性碳、③納米膜表超濾膜濾芯、④復合濾芯,五級過濾設備多加了一個後置活性炭,六級的多加了一個礦化濾芯就成立市場上見到的直飲水機。更多級的就加更多針對性的濾芯。
配套設備
(1)增壓泵超濾膜以力差為推動力進行過濾,當原水的水壓不能滿足過濾需求時,系統需要增加泵加壓,以實現超濾膜分離作用,由於超濾膜的工作壓力較低,一般小於O·7MPa,故在系統設計時,一般選用離心泵,選擇離心泵的主要依據是揚程、流量、泵體材質,其次是泵的體積大小、外觀造型和價格等。
①揚程和流量的選擇根據超濾系統設計中所需要的進水工作壓力,跨膜壓差和通水流量,來選擇泵的揚程和流量。一般選擇水泵的揚程和流量應當等於或略大於設計供水量和工作壓力,以滿足超濾系統的正常運行。
②泵體材質的選擇根據原水水質的情況來選擇合適的泵體材質以減少投資成本,其材質不能與原水中的成分產生任何反應,也不能有溶解現象。當原水的pH值為6.5~8.5時可選用鑄鐵泵體;當原水為海水時,應選耐海水腐蝕的塑料泵體;醫葯和食品工業水處理卻一般選擇使用不銹鋼泵體。
化學清洗泵一般選擇耐化學葯劑的泵體。
(2)減壓閥 當原水水壓大於系統設計水壓時,要對原水進行減壓。一般採用可減靜壓的減壓閥來實現,減壓閥減壓的精度視超濾系統而定。另根據原水的水質選擇適合材質的減壓閥,一般可選的材質為銅、不銹鋼、鐵、塑膠。
(3)物理清洗和化學清洗系統 清洗系統主要由配葯箱、凈水箱、循環泵組成,採用氣水混合清洗的還包括空壓機,一般物理清洗分為等壓沖洗和反沖洗。等壓沖洗時是關閉產水閥,全開濃水閥,使原水以快於正常工作狀態時的流速沖刷膜表面,去除污垢。反沖洗是關閉原水閥採用循環泵,將凈水箱中的水從產水口打入膜組件。使凈水按正常過濾的反方向透過膜,沖刷掉膜表面的污染物,並使其從濃水口排出,反沖洗後,馬上進行等壓沖洗。能更有效地將被截留的污染物排出,為了加強清洗效果,順沖時,可採用氣水混合液進行沖洗。
化學清洗系統是用循環泵將配葯箱內的清洗液送入超濾系統,進行循環清洗和浸泡,靠化學葯品的作用去除膜表面的污垢,以恢復膜的產水能力,維持設計流量要求。
(4)消毒滅菌系統超濾的消毒滅菌系統所用設備和操作程序與化學清洗系統相同,僅需要將清洗液換成滅菌液即可,一般使用的滅菌劑為次氯酸鈉和過氧化氫,在選擇滅菌劑時要考慮劑膜的材質和滅菌劑濃度。例如Ps材質膜不能採用含有陰離子表面活性劑的滅菌劑,否則會對膜造成不可逆的通量損失。
(5)自動化計量、監控和儀表
①計量水流量採用流量表來計量,流量計有轉子流量計、浮子流量計、電磁流量計、掙針式流量計等。在超濾系統中大多採用玻璃浮子(轉子)流量計,主要是顯示直觀,價格低,一台超濾系統最少需要設置兩個流量計以便觀察,一個是產水流量計,一個是濃水流量計或原水進水流量計。 流量計規格的選擇是根據系統的流量大小而定,浮子流量計的選擇通常選用的量程為1.5~2倍的實際最大測量流量。
②監控系統及儀表超濾系統在運行時,必須嚴格按照設計參數進行操作,這需要系統的相關參數進行監控,其中主要的監控項目是水質、流量、壓力,可以手動操作,也可採用儀表和可編程式控制制器對系統進行自動控制。
對水質的監控可採用水質監測儀進行,對水壓的監控可採用壓力開關和壓力表進行,對流量的控制可採用電子流量計進行監測,並將監測信號反饋到PLC中,然後來控制泵,閥門及清洗系統,從而實現系統的自動化。
❼ 淺談垃圾滲濾液處理設計要點
通過分析垃圾滲濾液的特點及處理難點,提出針對性的解決措施,以便在設計中能優化方案,更好的解決垃圾滲濾液對環境帶虛大搏來的危害。
根據垃圾滲濾液的特點和處理的一般規律,垃圾滲濾液的設計難點在於如何應對水質水量的變化對系統的影響、高濃度有機物及氨氮的穩定高效去除、出水持續達標及次生污染物的無害化、減量化處理。
針對以上問題,結合目前常用處理工藝,即「調節池+厭氧系統+MBR系統+深度膜處理系統(納濾+反滲透)」為核心的處理工藝。參照實際工程案例的運行情況,綜合設計經驗考慮應對措施概括如下:
垃圾滲濾液處理
(一)水質波動應變能力論述
1)工藝中MBR系統採用外置管式超濾膜進行泥水分離,與普通的MBR相比,生化池能保持更高的活性污泥濃度(大於15g/L),這無疑增強了系統對水質變化的耐沖擊負荷;而雨季導致的系統進水有機負荷降低可以通過改變管式膜迴流來調節系統污泥濃度,保證系統運行穩定;
2)針對運行水質突然惡化(垃圾的季節性變化導致滲濾液污染物含量變化,可能出現厭氧出水碳氮比不足等)導致生化池污泥生長異常、脫氮效果差的情況,設置厭氧超越管,保證生化池內碳氮比滿足生物脫氮的要求,生化段出水指標滿足工藝單元出水目標;
3)MBR生化段採用A/O工藝,硝化液迴流比在10倍以上,強化了脫氮效果。同時,生化進水與迴流硝化液充分混合,也可有效緩沖進水污染負荷變化,減小瞬間沖擊;
4)針對生化反應導致生化池溫度過高影響反應器正常運行的情況,設置冷卻系統來嚴格控制各工藝段的運行水溫。
5)針對系統受沖擊時污泥性狀惡化,曝氣產生大量泡沫的情況設置了消泡系統,包括添加消泡劑;
6)膜生化反應器曝氣風機設計為變頻控制,可有效地應對水質波動,避免曝氣量過大加速污泥老化,曝氣量太小導致硝化反應不充分。
(二)水量波動應變能力論述
滲濾液水量隨著季節或天氣的變化而波動,一般冬季乾旱時節水量較少,污染物濃度高;夏季多雨季節水量較多仿銷,污染物濃度較低。因此,在項目設計中,全工藝流程所有工藝單元、處理設備均有一定餘量差祥,可應變一定范圍內的水量沖擊,滿足水量季節或天氣變化的要求。
(三)高濃度有機污染物去除能力論述
滲濾液中有機污染物濃度高即COD、BOD濃度高是其處理難點之一,傳統的處理工藝難以達到較好並且穩定的出水水質。
針對滲濾液高COD、BOD的水質特點,選擇容積負荷率高,工藝成熟,運行穩定的高效厭氧反應器,保證高效厭氧去除有機物的同時,解決了厭氧反應器處理垃圾滲濾液常出現的問題,保證85%的有機物在厭氧階段得到有效降解。
同時,外置式膜生化反應工藝採用了生化與超濾膜相結合的方式,使微生物菌群被完全被截留在生物反應器內,生化池中能保持更高的活性污泥濃度,大大提高了氨氮、總氮的去除效果。保證了較好的出水水質,且水質穩定。
(四)高濃度氨氮去除能力論述
生化工藝針對高濃度氨氮化合物選擇A/O為主體的工藝,確保生化階段保留足夠的停留時間。
硝化系統中進行脫氮的硝化微生物(硝化菌)屬於自養微生物,其微生物繁殖速度較慢,即世代周期較長,在實際設計和工程運用中體現為硝化泥齡必須很長,傳統的反硝化、硝化工藝受制於反應器的尺寸、污泥流失等因素在處理高濃度氨氮的廢水時往往不能夠硝化完全,而MBR膜生化反應器工藝由於其對微生物完全截留,使微生物的泥齡遠超過了硝化微生物生長所需的時間,並且可以繁殖、聚集達到完全硝化所需的微生物濃度,這樣使得氨氮能夠完全硝化。工程實例表明,兩級A/O+外置式膜生化反應工藝的氨氮去除效果可以達到95%以上。
(五)夏、冬季不同氣候特點應對措施
1)溫度控制
採用中溫厭氧,在厭氧進水前採用蒸汽對滲濾液加熱,將溫度控制在35~38℃。
夏季高溫主要對膜生化反應器影響較大,當反應器溫度高於40攝氏度時,好氧微生物將會死亡,氧利用率變低,因此膜生化反應器設有配套的冷卻系統,當反應器內反應溫度過高時,冷卻系統啟動對生化進行冷卻,將溫度降至30~35攝氏度。
冬季氣溫較低時,由於膜生化反應器為高負荷生化反應,生化降解過程中,有機物、氨氮的氧化過程,部分化學能轉化為熱能,溫度有所升高;動力設備風機、水泵運行過程機械能轉化為熱能,也使溫度有所升高,超濾混合液迴流到生化池循環維持液體相對穩定的溫度。
根據熱平衡計算以及部分工程實例均表明,膜生化反應器採用保溫設計後,生化反應溫度可維持在30攝氏度以上,不需要輔以額外的加熱措施。
膜處理設備安裝在室內,基本不受氣溫變化影響。
2)夏、冬季水質水量變換的控制措施
滲濾液水量水質隨著季節或天氣的變化而波動,一般情況下,夏季雨量大,滲濾液量大,濃度相對較低,厭氧進水濃度相對較低,低於40000mg/L,冬季雨量少,滲濾液量小,濃度較高,當滲濾液量減少時可以只開一組進行運行,節約運行費用。
(六)預處理除渣能力論述
垃圾滲濾液水中泥沙、懸浮物、纖維物含量較高,若沒有在預處理期間得到有效控制,進入後續膜系統後會造成堵塞超濾橫截面,影響膜通量的情況。設計時採用配有自動高壓反沖洗和刮渣系統的固液分離除渣機,柵距小於1mm,能有效將泥沙、毛發、纖維等有效截流,從而保證後續生化及膜系統的穩定運行。
(七)系統耐腐蝕能力論述
垃圾滲濾液水質復雜,腐蝕性強,滲濾液處理系統的抗腐蝕性關繫到系統的處理效果及使用壽命。設計時針對系統的抗腐蝕性提出多項措施,所有與滲濾液接觸的設備、管道、閥門均採用耐腐蝕材質,並做防腐處理,保證整個滲濾液處理系統具有優良的防腐蝕性能。
綜上所述,通過分析垃圾滲濾液的特點,結合實際工程項目中遇到的問題,針對性的優化設計方案,以達到更為穩定、可靠、高效的處理效果,起到保護環境減少污染的目的。
❽ 污水cod超標怎麼處理
1、物理法:是利用物理作用來分離廢水中的懸浮物或乳濁物,可去除廢水中的COD。常見的有格柵、篩濾、離心、澄清、過濾、隔油等方法。
2、化學法:是利用化學反應的作用來去除廢水中的溶解物質或膠體物質,可去除廢水中的COD。常見的有中和、沉澱、氧化還原、催化氧化、光催化氧化、微電解、電解絮凝、焚燒等方法。
3、物理化學法:是利用物理化學作用來去除廢水中溶解物質或膠體物質。可去除廢水中的COD。常見的有格柵、篩濾、離心、澄清、過濾、隔油等方法。
污水中的cod超標反應了水中還原性物質受污染的程度,cod的含量越高,則水中的需要消耗的溶解氧就越多,從而造成水中缺氧,而水中缺氧就會導致大量水中的動植物因缺氧而死亡,加速水質惡化。
企業生產過程中cod的產生可是不可避免的,例如食品廠中多餘食物的殘留與水體、化工廠中還原性物質S離子和氯離子等及電鍍廢水在酸洗過程中都是污水COD超標原因。
(8)超濾膜進水水質生化指標要求擴展閱讀:
人類生產活動造成的水體污染中,工業引起的水體污染最嚴重。如工業廢水,它含污染物多,成分復雜,不僅在水中不易凈化,而且處理也比較困難,工業廢水為工業污染引起水體污染的最重要的原因。
生活污水、畜禽飼養場污水以及製革、洗毛、屠宰業和醫院等排出的廢水,常含有各種病原體,如病毒、病菌、寄生蟲。水體受到病原體的污染會傳播疾病,如血吸蟲病、霍亂、傷寒、痢疾、病毒性肝炎等。歷史上流行的瘟疫,有的就是水媒型傳染病。
在水資源中,有機物帶入蒸汽系統和凝結水中,使pH降低,造成系統腐蝕,在循環水系統中有機物含量高會促進微生物繁殖。因此,不管對除鹽、爐水或循環水系統,COD都是越低越好,但並沒有統一的限制指標。
❾ 鍏充簬瓚呮護鑶滅殑璇︾粏浠嬬粛
涓銆佷粈涔堟槸瓚呮護鑶
瓚呮護鑶滄槸杈冩棭寮鍙戠殑楂樺垎瀛愯啘涔嬩竴錛屾槸
涓縐嶉濆畾瀛斿緞鑼冨洿涓0.001~0.02寰綾崇殑寰瀛旇繃婊よ啘
銆傚湪鑶滅殑涓渚ф柦鍔犻傚綋鍘嬪姏錛屾憾娑蹭腑鐨勬憾鍓備互鍙婁竴閮ㄥ垎鍒嗗瓙閲忚緝浣庣殑婧惰川浠庤秴婊よ啘鐨勫井灝忓瓟闅欎腑絀塊忓埌鑶滅殑鍙︿竴杈癸紝鑰屽垎瀛愰噺杈冮珮鐨勬憾璐ㄦ垨涓浜涗鉤鍖栬兌鏉熷洟琚鎴鐣欙紝浠庤岃揪鍒拌繃婊ゅ垎紱葷殑鏁堟灉銆
鍦ㄦ按澶勭悊棰嗗煙錛岃秴婊よ啘鎶鏈鐩稿逛簬鍏朵粬榪囨護鎶鏈鏉ヨ達紝
榪囨護鏉傝川鐨勬晥鐜囨洿楂
錛岃兘鍘婚櫎姘翠腑鐨勭粷澶ч儴鍒嗘湁瀹崇墿璐錛涘苟涓斾嬌鐢ㄥ緢灝戞垨涓嶄嬌鐢ㄥ寲瀛﹁嵂鍓傦紝鏈夋晥
閬垮厤姘磋川鍙楀埌浜屾℃薄鏌
錛屽洜姝ゅ勭悊鍚庣殑姘磋川鏇村ソ銆備粠鎿嶄綔灞傞潰鏉ヨ達紝鍩轟簬瓚呮護鑶滄妧鏈鐨勮繃婊ょ郴緇熻嚜鍔ㄥ寲紼嬪害楂橈紝
榪愯岀畝鍗曞彲闈
錛屽彧鏈夊紑銆佸叧涓ょ嶆搷浣溿傜敱浜庤秴婊よ啘鐨勬潗鏂欏寲瀛︾ǔ瀹氭у己錛屾姉閰哥⒈鑵愯殌錛岃愰珮娓╋紝鍥犳
鍙浠ラ珮娓╂秷姣掞紝閫傜敤鎬у緢騫
銆
1銆佽秴婊よ啘鎶鏈鍙婄壒鐐
瓚呮護鑶滄妧鏈鍘熺悊
瓚呮護鑶滄妧鏈鏄涓縐嶈啘閫忚繃鍒嗙繪妧鏈錛屽叾婊よ繃鑳藉姏浠嬩簬綰蟲護鍜屽井婊や箣闂達紝鍏跺伐浣滃師鐞嗘槸錛
鍦ㄦ憾娑查氳繃涓縐嶅崐閫忚啘鐨勬椂鍊欙紝鍦ㄥ帇鍔涚殑浣滅敤涓嬶紝婧跺墏鍜屾憾璐ㄤ腑鐨勫皬鍒嗗瓙鐗╄川鍙閫氳繃婊よ啘鍒拌揪鑶滅殑鍙︿竴渚э紝鑰屾憾璐ㄤ腑鐨勫ぇ鍒嗗瓙鐗╄川鍜岃兌浣撳垯鐢變簬鏃犳硶閫氳繃婊よ啘瀛旀礊鑰岃鎷︽埅涓嬫潵錛岄殢鐫婧舵恫涓嶆柇嫻佽繃錛岃啘涓婅鎷︽埅鐨勭墿璐ㄤ篃瓚婃潵瓚婂氾紝鍥犳よ佹兂瀹炵幇瓚呮護浣滅敤灝卞緱瀵規憾鍓傛柦鍔犳洿澶х殑鍘嬪姏錛屼笌姝ゅ悓鏃跺湪鑶滅殑琛ㄩ潰褰㈡垚鐨勭墿璐ㄤ篃灞曠幇鍑轟竴瀹氱殑鍖栧︾壒鎬э紝瀵逛簬涓浜涙薄鏌撶墿涔熷叿鏈夋埅鐣欏拰鍒嗚В鐨勪綔鐢錛屼粠鑰屽疄鐜版按鐨勫噣鍖栥
闅忕潃澶у垎瀛愮墿璐ㄤ笉鏂楂橀泦鍦ㄨ啘琛ㄩ潰婊よ繃鐨勯熷害涓嶆柇闄嶄綆錛屽嚭鐜扳滄祿搴︽瀬鍖栤濈殑鐜拌薄錛屼負浣胯秴婊よ兘澶熸寔緇鏈夋晥鍦拌繘琛岋紝瀹為檯宸ヤ綔涓甯鎬嬌鐢ㄦ悈鎺掑紡瓚呮護瑁呯疆鏉ユ秷闄も濇祿搴︽瀬鍖栤濈殑鐜拌薄銆
瓚呮護鑶滄妧鏈鐨勭壒鐐
鐩稿逛簬鍏朵粬姘村勭悊鎶鏈鑰岃█錛岃秴婊よ啘鎶鏈鍏鋒湁寰堝氭棤鍙姣旀嫙鐨勪紭鍔匡細
絎涓錛岃秴婊よ啘鍖栧︾ǔ瀹氭ч珮錛屽彲鑰愰珮娓┿佽愰吀銆佽愮⒈錛屽洜姝ゅ硅繘姘存按璐ㄨ佹眰涓嶉珮錛岄氱敤鎬у己錛
絎浜岋紝瓚呮護鑶滄妧鏈鍘熺悊綆鍗曪紝瀹規槗瀹炵幇鑷鍔ㄥ寲榪愯漿錛岃妭綰﹀姵鍔ㄥ姏錛屼笖鎿嶄綔綆渚褲佹槗浜庣淮鎶わ紝榪愯屽畨鍏ㄧǔ瀹氾紱
絎涓夛紝瓚呮護鑶滄妧鏈灞炰簬鐗╃悊鏂規硶錛屽湪姘村勭悊榪囩▼涓騫朵笉闇鍔犱換浣曞寲瀛﹁嵂鍓傦紝鍥犳ら槻姝㈡按浣撶殑鍑虹幇浜屾℃薄鏌撶殑鎯呭喌錛
絎鍥涳紝瓚呮護鑶滄妧鏈鏁堢巼楂橈紝澶勭悊姘撮噺澶э紝灝ゅ叾鏄瀵規薄鏌撹緝灝忕殑鍩庡競楗鐢ㄦ按澶勭悊錛屽睍鐜板嚭浣滄晥鐜囷紱
瓚呮護鑶滄妧鏈鍦ㄧ幆淇濆伐紼嬫按澶勭悊涓鐨勫簲鐢
鍩庡競楗鐢ㄦ按鍑鍖
闅忕潃紺句細鐨勫彂灞曪紝浜轟滑瀵歸ギ鐢ㄦ按瀹夊叏瑕佹眰瓚婃潵瓚婇珮錛屼絾涓庢ゅ悓鏃舵垜鍥藉煄甯傜敤姘存簮鍦扮殑奼℃煋涔熸棩鐩婁弗閲嶏紝鐩存帴鍙栨按鐨勬按璐ㄨ秺鏉ヨ秺鏃犳硶婊¤凍楗鐢ㄦ按鐨勬爣鍑嗭紝鍥犳ゅ繀闇瑕佸瑰煄甯傞ギ鐢ㄦ按榪涜屽噣鍖栥
鍩庡競楗鐢ㄦ按涓昏佹潵婧愪簬鍦頒笅姘村拰鍦伴潰姘翠袱縐嶏紝涓ょ嶆按婧愮殑奼℃煋鏈虹悊涓嶅悓錛岄ギ鐢ㄦ按鐨勬潵婧愪富瑕佷絾鎹鍦頒笅姘村拰鍦伴潰姘翠袱縐嶏紝涓ょ嶆按婧愮殑奼℃煋鏈虹悊涓嶅悓錛屼絾奼℃煋鐗╅兘涓昏佷負鏃犳х敓鐗┿佺粏鑿岋紝鐪熻弻銆佺棶姣掋佹偓嫻鐗╃瓑銆
浼犵粺鐨勯ギ鐢ㄦ按鍑鍖栨柟娉曞彲瀹炵幇瀵瑰井鐢熺墿鍜岃弻綾葷殑鐏媧誨噣鍖栵紝浠ュ強瀵瑰井綾崇駭鎮嫻鐗╅楃矑鐨勫噣鍖栵紝鑰岃秴婊よ啘鎶鏈鍦ㄦゅ熀紜涓婅繕鍙瀹炵幇瀵圭撼綾崇駭棰楃矑鐨勬湁鏁堝幓闄わ紝鍥犳ゅ嚭姘存按璐ㄦ洿楂橈紝瀵瑰煄甯傚眳姘戦ギ姘村仴搴峰叿鏈夐噸瑕佹剰涔夈
嫻鋒按娣″寲
涓嶅彲鍐嶇敓璧勬簮錛屽湴鐞冧笂鍙渚涗漢綾婚ギ鐢ㄧ殑娣℃按璧勬簮鏃ョ泭鏋絝錛屾按璧勬簮鐭緙哄凡緇忔垚涓哄綋浠d漢綾婚潰涓寸殑杈冪揣榪闂棰樹箣涓銆傛搗姘存貳鍖栬璁や負鏄瑙e喅楗鐢ㄦ按鍗辨満鐨勬湁鏁堥斿緞錛岀洰鍓嶅湪涓栫晫鑼冨洿鍐呯爺絀惰緝澶氱殑嫻鋒按璋堝寲鎶鏈鏄鐢墊笚鏋愭妧鏈錛岃櫧鐒剁數娓楁瀽琚璁や負鏄鍙浠ヤ嬌嫻鋒按娣″寲鐨勬湁鏁堟柟娉曪紝浣嗗叾榪愯屾垚鏈楂樻槀涓斿洖鏀剁巼浣庯紝闅忕潃鎶鏈鐨勫彂灞曪紝瓚呮護鑶滄妧鏈寮濮嬭鐢ㄤ簬鍙嶉忔搗姘存貳鍖栦腑錛屽叾浼樺紓鐨勫垎紱繪ц兘鍜岀墿鍖栨ц兘浣垮緱嫻鋒按娣″寲鐨勬晥鐜囪繘涓姝ユ彁鍗囷紝鍚屾椂灝嗚楄兘澶у箙闄嶄綆銆
鐢甸晙搴熸按鐨勫勭悊
鐢靛伐涓氫駭鐢熺殑搴熸按閲忓法澶э紝鑰屼笖鍚鏈夊ぇ閲忕殑鍏浠烽摤銆侀摐銆侀晬絳夐噸閲戝睘錛屽嵄瀹蟲ф瀬寮猴紝鍙鐢熷寲鎬ф瀬浣庯紝瀹為檯宸ヤ綔涓甯擱噰鐢ㄩ搧姘у寲娉曠數瑙f硶絳夌瓑錛屼絾閾佹哀鍖栨硶浼氫駭鐢熷ぇ閲忕殑奼℃償錛岃繖浜涙薄娉ヨ繕闇榪涗竴姝ュ勭悊錛氱數瑙f硶鉶界劧鍙浠ュ緢濂藉湴澶勭悊鐢靛簾姘達紝浣嗚繍琛屾垚鏈杈冮珮錛屼笉閫傚悎澶ц寖鍥存帹騫褲傝屽皢瓚呮護璐鎶鏈鍜屽弽娓楅忔妧鏈鑱斿悎浣跨敤琚璁や負鏄鐢靛簾姘村勭悊鐨勬湁鏁堟柟娉曪紝鍏跺埄鐢ㄤ袱縐嶈啘鎶鏈鑳藉熶嬌鐢甸晙搴熸按涓澶ч儴鍒嗙殑閲嶉噾灞炪佹湁鏈虹⒊鍜岀濋吀鐩愯鍘婚櫎錛屽苟涓旇秴婊よ啘鐨勪嬌鐢ㄤ篃闄嶄綆浜嗘笚閫忚啘鐨勬薄鏌擄紝鎻愰珮浣跨敤瀵垮懡銆
鍚娌瑰簾姘寸殑澶勭悊
鍚娌瑰簾姘寸殑涓昏佹潵婧愬寘鎷鍘熸補娉勬紡銆佸睜瀹板満搴熸按浠ュ強鐢熸椿搴熸按絳夛紝鍏朵富瑕佹垚鍒嗘槸嫻娌廣佸垎鏁f補銆佷鉤鍖栨補鍜岄噸娌圭瓑錛屽父鐢ㄧ殑鍚娌瑰簾姘村勭悊瑁呯疆鏄闅旀補奼狅紝浣嗗叾瀵逛鉤鍖栨補鍗存棤娉曞勭悊錛屽洜姝ゅ父閲囩敤姘旀誕娉曡繘琛岃醬鍔╁勭悊銆傜敱浜庝鉤鍖栨補鍒嗗瓙涓鑸杈冨ぇ錛屽洜姝ゅ彲閲囩敤瓚呮護鑶滄妧鏈浣垮惈娌瑰簾姘村湪鍔犲帇鐨勬潯浠朵笅閫氳繃瓚呮護鑶滐紝涔沖寲娌瑰強鍏朵粬澶у垎瀛愭薄鏌撶墿灝變細琚鎴鐣欎笅鏉ワ紝鍘婚櫎鏁堢巼杈冮珮銆
鍩庡競奼℃按鍥炵敤
鍩庡競奼℃按鍥炵敤鏄緙撹В鍩庡競鐢ㄦ按鍘嬪姏鐨勯噸瑕佹帾鏂斤紝灝嗗煄甯傜敓媧繪薄姘寸粡榪囧勭悊杈懼埌鍥炵敤鏍囧噯鍚庡皢鍏剁敤浜庡煄甯傜豢鍖栫敤姘翠互鍙婂煄甯備腑姘寸郴緇熴備嬌鐢ㄨ秴婊よ啘鎶鏈鍙蹇閫熷皢鍩庡競奼℃按澶勭悊杈炬爣錛岀敱浜庡煄甯傛薄姘翠竴鑲″彲鐢熷寲鎬ц緝濂斤紝鍦ㄥ疄闄呭伐浣滀腑錛屼負浜嗘彁楂樺嚭姘存按璐錛屽父灝嗗懆鏈熷驚鐜媧繪ф薄娉ユ硶錛圕ASS錛変笌瓚呮護鑶滄妧鏈鍚屾椂浣跨敤銆傚湪姘村姏浣滅敤鏃墮棿涓12灝忔椂鐨勬潯浠朵笅錛岃ユ硶COD鍘婚櫎鐜囪揪鍒86錛呬互涓婏紟姘ㄦ愛鐨勫幓闄ょ巼杈懼埌90錛呬互涓婏紝鍑烘按鐨刾H鍊艱寖鍥翠負7.25錛7.89錛岃揪鍒頒簡鍩庡競姘村洖鐢ㄦ爣鍑嗐
椋熷搧宸ヤ笟搴熸按鍥炴敹
瓚呮護鑶滄妧鏈闄や簡鍙浠ユ彁楂樺嚭姘存按璐ㄥ栵紝榪樿兘灝嗗ぇ閲忕殑鏈夌敤鍥烘佺墿璐ㄦ祿緙╁洖鏀訛紝杈冨吀鍨嬬殑搴旂敤灝辨槸鍦ㄩ熷搧宸ヤ笟棰嗗煙銆傞熷搧宸ヤ笟浜х敓鐨勫簾姘翠腑鍚鏈夊ぇ閲忕殑鑴傝偑銆佽泲鐧借川銆佹穩綺夈侀叺姣嶇瓑錛岃繖浜涚墿璐ㄥ傛灉鎺掓斁鍒板栫晫鐜澧冧腑涓嶄絾浼氶犳垚鐜澧冪殑奼℃煋錛岃屼笖榪樹細閫犳垚澶ч噺鐨勬氮璐癸紝鍥犳ら噰鐢ㄨ秴婊ゆā鎶鏈灝嗗簾姘翠腑鐨勬湁鐢ㄦ垚鍒嗘埅鐣欎笅鏉ワ紝鍚屾椂姘翠腑鐨凚OD鍜孋OD絳変篃浠庢按涓琚鍒嗙誨嚭鏉ワ紝灝嗗垎紱誨嚭鐨勫懆鎬佺墿璐ㄧ粡榪囨彁鍙栧洖鏀訛紝鍙涓轟紒涓氬甫鏉ョ粡嫻庢晥鐩娿
緇撴潫璇
緇間笂鎵榪幫紝瓚呮護鑶滄妧鏈鏄鐜淇濆伐紼嬫按澶勭悊鐨勪竴欏歸噸瑕佹妧鏈錛屽叾鍦ㄥ煄甯傛薄姘村勭悊鍜屽悇縐嶅伐涓氬簾姘村勭悊浠ュ強鏈夌敤鐗╄川鍥炴敹絳夋柟闈㈤兘鍏鋒湁搴旂敤銆傜洰鍓嶏紝瓚呮護鑶滄妧鏈鐨勭爺絀舵柟鍚戜竴涓鏄鍙戞槑鏇存晥鐜囩殑瓚呮護瑁呯疆錛屽彟涓涓鏄鏍規嵁榪涙按姘磋川鐗圭偣涓庡叾浠栨按澶勭悊鎶鏈鐩哥粨鍚堬紝鎻愰珮鍑烘按璐ㄩ噺銆
浜屻佽秴婊ょ殑榪愯屾柟寮
1.1.2 閿欐祦榪囨護
褰撹秴婊よ繘姘存偓嫻鐗┿佹祳搴﹁緝楂樻椂錛屾瘮濡傛薄姘存垨鑰呮薄姘村洖鐢ㄥ勭悊搴旂敤錛岃秴婊ゅ彲鎸夌収閿欐祦榪囨護妯″紡榪愯屻傝繘姘磋繘鍏ヨ秴婊よ啘緇勪歡錛岄儴鍒嗛忚繃鑶滆〃闈㈡垚涓轟駭姘達紝鍙︿竴閮ㄥ垎鍒欏す甯︽偓嫻鐗╃瓑鏉傝川鎺掑嚭鑶滅粍浠舵垚涓烘祿姘達紝鎺掑嚭鐨勬祿姘撮噸鏂板姞鍘嬪悗鍙堝驚鐜鍥炲埌鑶滅粍浠跺唴錛屼繚鎸佽啘琛ㄩ潰杈冮珮嫻侀熶駭鐢熺殑鍓鍒囧姏錛屾妸鑶滆〃闈涓婃埅嫻佺殑鎮嫻鐗╃瓑鏉傝川甯﹁蛋錛屼粠鑰屼嬌瓚呮護鑶滅粍浠剁殑奼℃煋灞備繚鎸佸湪涓涓杈冭杽鐨勬按騫熾
1.1.3 嫻撴按鎺掓斁榪囨護
褰撹秴婊よ繘姘存偓嫻鐗╁惈閲忚緝浣庢椂錛岃秴婊ゅ彲鎸夌収嫻撴按鎺掓斁榪囨護妯″紡鏉ユ搷浣溿傝繘姘磋繘鍏ヨ秴婊よ啘緇勪歡錛屼互杈冧綆姣斾緥鐨勬祿姘撮噺鎺掑嚭鑶滅粍浠訛紝閫氬父5-10%鐨勮繘姘撮噺錛屽ぇ閮ㄥ垎鐨勮繘姘撮忚繃鑶滆〃闈㈡垚涓轟駭姘翠駭鍑恆
嫻撴按鎺掓斁榪囨護鍜岄敊嫻佽繃婊ゆā寮忔搷浣滃悓鏍烽渶瑕佸畾鏃舵按鍙嶆礂銆佸寲瀛﹀姞寮哄弽媧椾互鍙婂畾鏈熺殑鍖栧︽竻媧楁潵鎮㈠嶈秴婊よ啘榪囨護鎬ц兘銆傚叏嫻佽繃婊ゆā寮忚兘鑰椾綆銆佹搷浣滃帇鍔涗綆錛屽洜鑰岃繍琛屾垚鏈鏇翠綆錛涜岄敊嫻佽繃婊ゆā寮忓垯鑳藉勭悊鎮嫻鐗╁惈閲忔洿楂樼殑榪涙按銆傚叿浣撴ā寮忕殑閫夋嫨闇瑕佹牴鎹榪涙按涓鐨勬偓嫻鐗╁惈閲忋佹祳搴﹀拰COD鏉ョ『瀹氥
2銆佽秴婊よ啘奼℃煋
2.1 瓚呮護鑶滆繍琛屼腑鐨勬嫻
涓轟簡媯楠岃秴婊よ呯疆鐨勮繍琛屾晥鏋滃拰鑶滃彂鐢熸薄鍫電殑鍙鑳芥э紝闇瑕佸湪瓚呮護瑁呯疆鐨勮繍琛岃繃紼嬩腑鐩戞祴涓浜涘叧閿鎬у弬鏁般
2.1.1 嫻婂害錛氭槸鎸囨按涓鐨勬償鐮傘佺矇灝樸佺粏寰鏈夋満鐗┿佹誕娓哥敓鐗╃瓑鎮嫻鎬х墿璐ㄥ強鑳朵綋鐗╄川絳夛紝閮戒細瀵艱嚧姘磋川鍙樺緱嫻戞祳鑰屽憟鐜板嚭鐨勪竴瀹氱▼搴︾殑嫻戞祳搴︺傞氬父榪欎簺鎮嫻鎬х墿璐ㄥ強鑳朵綋鐗╄川涔熶細瀵勭敓緇嗚弻鍜岀棶姣掔瓑銆備緥濡傜敓媧婚ギ鐢ㄦ按鐨勬祳搴︿竴鑸瑕佹眰涓嶅緱瓚呰繃1 NTU錛岃秴婊よ啘鐨勫嚭姘存祳搴︿竴鑸瑕佹眰涓嶅緱瓚呰繃0.1 NTU銆
2.1.2 TSS錛堟繪偓嫻鍥轟綋錛夛細鏄鎸囨按鏍烽氳繃瀛斿緞涓0.45渭m 鐨勬護鑶滐紝鎴鐣欏湪婊よ啘涓婂苟浜103鈩冿綖105鈩冪儤騫茶嚦鎮掗噸鐨勫滻浣撶墿璐ㄣ傛繪偓嫻鍥轟綋鏄琛¢噺姘翠綋姘磋川奼℃煋紼嬪害鐨勯噸瑕佹寚鏍囦箣涓錛岃ュ弬鏁頒竴鑸姣旀祳搴︽洿鍔犵簿紜錛堟祳搴﹂氬父鏃犳硶媯嫻嬪嚭鏋佺粏寰鐨勯楃矑錛夈
2.1.3 SDI錛堟筏縐瀵嗗害鎸囨暟錛夛細鏄鍙嶆笚閫忔按澶勭悊緋葷粺鐨勯噸瑕佹按璐ㄦ寚鏍囧弬鏁頒箣涓錛孲DI 鍊間唬琛ㄤ簡姘翠腑棰楃矑銆佽兌浣撳拰鍏朵粬鑳介樆濉炲悇縐嶆按鍑鍖栬懼囩殑鐗╄川鍚閲忥紝閫氬父閲囩敤璇ュ弬鏁版潵鍒ゆ柇姘翠腑棰楃矑鍙婅兌浣撶瓑鐗╄川闃誨炲悇縐嶆按鍑鍖栬懼囩殑鍙鑳芥э紙瑙佷笅鍥撅級銆
SDI 鐨勬祴瀹氭槸鍦ㄧ洿寰勪負47mm 瀛斿緞涓0.45渭m 鐨勫井瀛旀護鑶滀笂榪炵畫鍔犲叆涓瀹氬帇鍔涳紙30PSI錛岀浉褰撲簬2.1kg/cm錛夌殑琚嫻嬪畾姘存牱錛岃板綍婊ゅ緱500ml 姘存墍闇鐨勬椂闂碩i錛堢掞級鍜岃繛緇榪囨護15 鍒嗛挓(T)鍚庡啀嬈℃護寰500ml 姘存墍闇鐨勬椂闂碩f錛堢掞級錛岄氳繃鍏寮忚$畻SDI 鍊礆紱涓鑸瑕佹眰鍙嶆笚閫忓叆鍙o紙鍗寵秴婊や駭姘達級鐨凷DI鏁板間笉寰楄秴榪5銆
2.1.4 TOC錛堟繪湁鏈虹⒊錛夛細璇ュ弬鏁拌緝甯哥敤浜庢祴瀹氭按涓鐨勬湁鏈虹墿鍚閲忥紝鎸囨按浣撲腑婧惰В鎬у拰鎮嫻鎬ф湁鏈虹墿鍚紕崇殑鎬婚噺錛屽寘鎷澶╃劧鏈夋満鐗╁拰鍚堟垚鏈夋満鐗┿傛繪湁鏈虹⒊涓鑸鐢ㄦ潵璇勪及瓚呮護榪涙按涓鍙鑳藉艱嚧鑶滃彂鐢熸湁鏈烘薄鍫靛拰鐢熺墿奼″牭鐨勫彲鑳芥у拰瓚嬪娍銆傚綋瓚呮護鑶滆繘姘碩OC 澶т簬2 mg/L 鏃訛紝鍒欒〃紺鴻秴婊よ啘琛ㄩ潰鍙戠敓鐢熺墿奼″牭鐨勫彲鑳芥у緢楂樸
2.1.5 DOC錛堟憾瑙f湁鏈虹⒊錛夛細鎬繪湁鏈虹⒊錛圱OC錛変腑鑳芥憾瑙d簬姘寸殑閮ㄥ垎錛屼竴鑸鎸囪兘閫氳繃瀛斿緞涓0.45寰綾蟲護鑶溿佸苟鍦ㄥ垎鏋愯繃紼嬩腑鏈钂稿彂澶卞幓鐨勬湁鏈虹⒊銆傞櫎奼℃按澶栵紝澶ч儴鍒嗚嚜鐒舵按浣撴憾瑙f湁鏈虹⒊錛圖OC錛夊崰鎬繪湁鏈虹⒊錛圱OC錛夌殑姣斾緥綰︿負80~95%銆
2.1.6 閾佸拰閿幫細閾佸拰閿扮殑姘у寲褰㈡佸彲浠ヨ瓚呮護鑶滅郴緇熸埅鐣欙紝浣嗗悓鏃朵篃浼氶犳垚鑶滅殑奼″牭銆傞搧紱誨瓙涓鑸澶╃劧瀛樺湪錛堝傚湴涓嬫按絳夛級銆佹垨鐢辮秴婊ゅ墠澶勭悊綆¢亾鎴栬懼囩殑鑵愯殌浜х敓錛屾垨鍦ㄨ秴婊ら勫勭悊鐨勬販鍑濇緞娓呰懼囦腑鎶曞姞緄鍑濆墏孌嬬暀閫犳垚絳夈
2.1.7 閽欏拰闀侊細姘寸殑紜搴︿富瑕佹潵鑷閽欑誨瓙鍜岄晛紱誨瓙銆傛牴鎹紜搴︾殑涓嶅悓鍙灝嗘按鍒嗕負杞姘達紙浠CaCO3 璁¤緝楂樹笉瓚呰繃60mg/L錛夈佺‖姘達紙浠CaCO3 璁¤緝楂樹笉瓚呰繃180mg/L錛夊拰鏋佺‖姘達紙浠CaCO3 璁¤秴榪180mg/L錛夈傜‖搴﹀逛漢浣撳仴搴鋒病鏈夊嵄瀹籌紝浣嗘按涓紜搴﹁繃楂橈紝姘村勭悊榪囩▼涓浼氬艱嚧綆¢亾銆佽懼囨垨鑶滆〃闈㈢粨鍨銆
2.1.8 鐢靛肩巼錛氭按鐨勭數瀵肩巼涓庢繪憾瑙e滻浣(TDS)鍛堢嚎鎬у叧緋伙紝琛ㄧず姘寸殑瀵肩數鑳藉姏銆
2.1.9 pH 鍊礆細鐢ㄤ簬琛ㄧず姘寸殑閰哥⒈鍊肩殑澶у皬銆俻H 鍊煎皬浜7 涓洪吀鎬э紝pH 鍊煎ぇ浜7 涓虹⒈鎬с傜函姘寸殑pH 鍊兼槸7涓轟腑鎬с傞珮pH鍊間細瀵艱嚧姘存湁鑻﹀懗錛屽苟瀹規槗瀵艱嚧姘寸″拰璁懼囩粨鍨錛宲H鍊間綆鐨勬按浼氳厫鋩鎴栨憾瑙i噾灞炲拰鍏跺畠璁懼囥
2.1.10 浜屾哀鍖栫咃細鍒嗕負媧繪т簩姘у寲紜咃紙婧惰В紜咃級鎴栭潪媧繪т簩姘у寲紜咃紙鑳朵綋紜咃級銆備竴鑸鎯呭喌涓嬭兌浣撶呬細鍔犻熼犳垚瓚呮護鑶滅殑奼″牭銆
2.3 瓚呮護鑶滄薄鏌撶殑縐嶇被
2.3.1 鑳朵綋奼℃煋錛氳兌浣撲富瑕佹槸瀛樺湪浜庡湴琛ㄦ按涓錛岀壒鍒鏄闅忕潃瀛h妭鐨勫彉鍖栵紝姘翠腑鍚鏈夊ぇ閲忕殑鎮嫻鐗╁傜矘鍦熴佹筏娉ョ瓑鑳朵綋錛屽潎瀛樺湪浜庢按浣撲腑錛屽畠瀵硅秴婊よ啘鐨勫嵄瀹蟲ф瀬澶с傚洜涓哄湪榪囨護榪囩▼涓錛屽ぇ閲忚兌浣撳井綺掗殢閫忚繃鑶滅殑浜ф按嫻佹穠鑷寵啘琛ㄩ潰錛岃鑶滄埅鐣欎笅鏉ョ殑寰綺掑規槗褰㈡垚鍑濊兌灞傦紝鏇存湁涓閮ㄥ垎涓庤啘瀛斿緞澶у皬鐩稿綋鍙婂皬浜庤啘瀛斿緞鐨勭矑瀛愪細娓楀叆鑶滃瓟鍐呴儴鍫靛炴祦姘撮氶亾鑰屼駭鐢熶笉鍙閫嗙殑鍙樺寲鐜拌薄銆傚彟澶栵紝姘翠腑閾併侀敯浠ュ強鍦ㄨ秴婊ら勫勭悊涓鍔犲叆閾佹垨鑰呴摑緋繪販鍑濆墏褰㈡垚鐨勮兌浣擄紝閮芥湁鍙鑳藉湪鑶滆〃闈㈠艦鎴愬嚌鑳跺眰銆
2.3.2 鏈夋満鐗╂薄鏌擄細姘翠腑鐨勬湁鏈虹墿錛屾湁鐨勬槸鍦ㄦ按澶勭悊榪囩▼涓浜哄伐鍔犲叆鐨勶紝濡傝〃闈㈡椿鎬у墏銆佹竻媧佸墏鍜岄珮鍒嗗瓙鑱氬悎鐗╃誕鍑濆墏絳夛紝鏈夌殑鍒欐槸澶╃劧姘翠腑灝卞瓨鍦ㄧ殑錛涜繖浜涚墿璐ㄤ篃鍙浠ュ惛闄勪簬鑶滆〃闈㈣屾崯瀹寵啘鐨勬ц兘銆
2.3.3寰鐢熺墿奼℃煋錛氬井鐢熺墿奼℃煋瀵硅秴婊よ啘鐨勫畨鍏ㄨ繍琛屼篃鏄涓涓鍗遍櫓鍥犵礌銆備竴浜涜惀鍏葷墿璐ㄨ鑶滄埅鐣欒岀Н鑱氫簬鑶滆〃闈錛岀粏鑿屽湪榪欑嶇幆澧冧腑榪呴熺箒孌栵紝媧葷殑緇嗚弻榪炲悓鍏舵帓娉勭墿璐錛屽艦鎴愬井鐢熺墿綺樻恫鑰岀揣緔х矘闄勪簬鑶滆〃闈錛岃繖浜涚矘娑蹭笌鍏朵粬娌夋穩鐗╃浉緇撳悎錛屾瀯鎴愪簡涓涓澶嶆潅鐨勮嗙洊灞傦紝鍏剁粨鏋滀笉浣嗗獎鍝嶅埌鑶滅殑閫忔按閲忥紝涔熷寘鎷浣胯啘浜х敓涓嶅彲閫嗙殑奼″牭銆
3.1 姘旀場瑙傚療娉
灝嗚啘緇勪歡涓鍏呮弧嫻嬭瘯鎵鐢ㄧ殑娑蹭綋錛屼嬌鑶滀笣瀹屽叏嫻告鼎錛岃啘涓濇墍鏈夌殑瀛斾腑閮藉厖婊′簡娑蹭綋銆傚湪鑶滅粍浠剁殑榪涙按渚х紦鎱㈤氬叆鏃犳補鍘嬬緝絀烘皵錛屼笖閫愭笎鎻愰珮榪涙皵鍘嬪姏錛屽悓鏃墮氳繃瑙傚療浜ф按渚ф槸鍚︽湁姘旀場榪炵畫婧㈠嚭錛堜駭姘撮榾闂ㄥ勪簬鎵撳紑鐘舵侊級銆傞氬父閫氬叆絀烘皵鐨勫帇鍔涗粠0bar 寮濮嬶紝閫愭笎澧炲ぇ鍒1.5bar銆傚傛灉鍦1.5bar 鐨勬潯浠朵笅錛屾湁榪炵畫鐨勬皵娉′駭鐢燂紝琛ㄦ槑鑶滅粍浠跺瓨鍦ㄧ己闄楓
3.2鍘嬪姏琛板噺娉
灝嗚啘緇勪歡涓鍏呮弧嫻嬭瘯鎵鐢ㄧ殑娑蹭綋錛屼嬌鑶滀笣瀹屽叏嫻告鼎錛岃啘涓濇墍鏈夌殑瀛斾腑閮藉厖婊′簡娑蹭綋銆傚湪鑶滅粍浠剁殑榪涙按渚х紦鎱㈤氬叆鏃犳補鍘嬬緝絀烘皵錛屼笖閫愭笎鎻愰珮榪涙皵鍘嬪姏鑷寵懼畾鍊礆紙浜ф按闃闂ㄥ勪簬鎵撳紑鐘舵侊級錛屽逛簬澶栧帇寮忚秴婊よ啘緇勪歡錛屾祴璇曞帇鍔涚殑璁懼畾鍊間負2.0bar銆
杈冨垵鏃訛紝榪涙皵渚х殑娑蹭綋浼氬湪鍘嬪姏浣滅敤涓嬮忚繃鑶滀笣榪涘叆浜ф按渚э紝鍥犳や細鏈変竴瀹氶噺鐨勬恫浣撴帓鍑猴紙澶х害浼氭寔緇2 鍒嗛挓錛夈傜瓑寰呭帇鍔涚ǔ瀹氬湪璁懼畾鍊兼椂錛屽仠姝㈣繘姘旓紙浜ф按渚ч榾闂ㄥ勪簬鎵撳紑鐘舵侊級錛屽苟瀵嗗皝榪涙皵渚т繚鎸佹祴璇曞帇鍔涳紝闈欐淇濇寔鍘嬪姏10 鍒嗛挓銆
姝ゆ椂鑶滅粍浠剁殑榪涙按渚у厖婊″甫鍘嬬殑絀烘皵錛屽苟涓庡栫晫闅旂粷錛涗駭姘翠晶鍏呮弧娑蹭綋錛屼笖涓庡ぇ姘旂浉閫氥傚傛灉淇濇寔鍘嬪姏嫻嬭瘯10 鍒嗛挓鍚庤繘姘斾晶鍘嬪姏闄嶄笉澶т簬0.2bar錛岃〃鏄庤啘緇勪歡瀹屾暣錛涘傛灉鍘嬪姏闄嶅ぇ浜0.2bar錛屽垯琛ㄦ槑鑶滅粍浠舵湁緙洪櫡錛堟柇涓濇垨娉勬紡絳夛級銆
鍘嬪姏琛板噺嫻嬭瘯鍗沖彲浠ラ拡瀵瑰崟涓鑶滅粍浠惰繘琛岋紝涔熷彲浠ラ拡瀵規暣濂楄啘瑁呯疆榪涜岋紝鏄涓縐嶅湪鐜板満綆渚挎槗琛岀殑鏂規硶銆
4銆佺粨鏉熻
4.1 瓚呮護緋葷粺鐨勮繍琛岀$悊
4.1.1 鑷沖皯姣忓懆鐩戞祴騫惰板綍瓚呮護棰勫勭悊鐨勮繘鍑烘按COD銆佹祳搴︿互鍙婇搧/閿伴噾灞炵瓑錛
4.1.2 姣忓懆鏌ョ湅涓嬈¢勫勭悊鎵鐢ㄧ誕鍑濆墏銆佸姪鍑濆墏鍙婂叾浠栧寲瀛﹁嵂鍝佺殑娑堣楅噺錛
4.1.3 鑷沖皯姣忎笁涓鏈堟牎姝d竴嬈″悇縐嶄華琛錛
4.2 瓚呮護緋葷粺鐨勪繚鍏
4.2.1 瓚呮護緋葷粺鐭鏈熷仠榪1-2澶╋紝鍙姣忓ぉ榪愯30-60 鍒嗛挓鎴栬呰繘琛屼竴嬈″崟鐙鐨勫弽媧楋紱
4.2.2 瓚呮護緋葷粺鍋滆繍2-7澶╋紝榪涜屽交搴曠殑鍙嶆礂鍚庯紝鍏抽棴榪涘嚭鍙i榾闂ㄤ繚瀛橈紱姣忓ぉ鍙榪愯30-60 鍒嗛挓鎴栬呰繘琛屼竴嬈″弽媧楀悗錛屾敞鍏ヤ繚鎶ゆ恫錛0.5-1.0%NaHSO3 婧舵恫錛夛紝鍏抽棴榪涘嚭鍙i榾闂ㄤ繚瀛橈紱
4.2.3 瓚呮護緋葷粺闀挎湡鍋滅敤7 澶╀互涓婏紝鍋滄満鍓嶈繘琛屼竴嬈″姞寮哄弽媧楀悗錛屾敞鍏ヤ繚鎶ゆ恫錛0.5-1.0%NaHSO3 婧舵恫錛夛紝鍏抽棴榪涘嚭鍙i榾闂ㄤ繚瀛樸傛瘡鏈堟鏌ヤ竴嬈′繚鎶ゆ恫鐨刾H鍊礆紝濡傛灉pH3 鏃跺簲鍙婃椂鏇存崲淇濇姢娑詫紱
4.2.4 瓚呮護緋葷粺闀挎椂闂村仠鏈哄悗閲嶆柊鎶曞叆榪愯屾椂錛屽簲灝嗚秴婊よ呯疆榪涜岃繛緇鍐叉礂鑷蟲帓鏀炬按鏃犳場娌錛屽皢淇濇姢娑插啿媧楀共鍑銆
4.3 鍖栧︽竻媧楃殑娉ㄦ剰浜嬮」
鍖栧︽竻媧楁槸瑙e喅鑶滄薄鏌撻棶棰樿緝鏈夋晥鐨勬柟娉曪紝閽堝圭壒瀹氱殑奼℃煋錛屽彧鏈夐噰鍙栫浉搴旂殑娓呮礂鏂規硶錛屾墠鑳借揪鍒板ソ鐨勬晥鏋滐紝鑻ラ敊璇鍦伴夋嫨娓呮礂鍖栧﹁嵂鍝佸拰鏂規硶錛屾湁鏃朵細浣挎儏鍐墊伓鍖栥傚洜姝わ紝鍦ㄦ竻媧椾箣鍓嶉渶鍏堢『瀹氳啘琛ㄩ潰鐨勬薄鍨㈢墿縐嶇被銆
鏃ュ父鎿嶄綔鏃跺繀欏諱弗鏍肩洃鎺ц秴婊ょ郴緇熺殑榪愯屾ц兘錛屽寘鍚榪愯屽帇宸鍜屼駭姘存祦閲忥紝闅忕潃瓚呮護鑶滅殑奼℃煋錛屽帇宸灝嗗崌楂橈紝浜ф按嫻侀噺涓嬮檷銆傚綋鏍囧噯鍖栦駭姘撮噺涓嬮檷25%錛屾垨鏍囧噯鍖栬法鑶滃帇宸涓婂崌1.0-2.0bar鏃訛紝灝卞繀欏昏佽繘琛屽寲瀛︽竻媧楁潵鎮㈠嶅叾鎬ц兘錛涗絾鏄闇瑕佹敞鎰忕殑鏄錛屽傛灉榪涙按娓╁害涓嬮檷錛岃秴婊よ啘浜ф按嫻侀噺涔熶細涓嬮檷錛岃繖鏄姝e父鐜拌薄騫墮潪鑶滄薄鏌撴墍鑷達紝姝ゆ椂瓚呮護鑶滃彲鑳藉苟涓嶉渶瑕佹竻媧椼
鎬諱箣瓚呮護瑁呯疆鏄榪勪粖涓烘㈣緝鏈夋晥鐨勫弽娓楅忛勫勭悊鎶鏈錛屽彧鏈夊湪瀹為檯榪愯岀殑榪囩▼涓寰楀埌浜嗗悎鐞嗙殑榪愯屾帶鍒訛紝浠ラ嚲鍒惰啘奼″牭鐜拌薄鐨勫彂鐢燂紝鎵嶈兘鏈夋晥淇濊瘉瓚呮護鑶滅殑浣跨敤瀵垮懡銆
❿ 反滲透和超濾有什麼區別
1.UF(超濾)
UF能截留0.002~0.1微米之間的顆粒和雜質,UF膜允許小分子物質和溶解性固體(無機鹽)等通過,但將有效阻擋住膠體、蛋白質、微生物和大分子有機物,用於表徵UF膜的切割分子量一般介於1,000~100,000之間,RO膜兩側的運行壓力一般為0.2~7bar。
2.RO(反滲透)
RO是最精密的膜法液體分離技術,它能阻擋所有溶解性鹽及分子量大於100的有機物,但允許水分子透過,醋酸纖維素RO膜脫鹽率一般可大於95%,RO復合膜脫鹽率一般大於98%。它們廣泛用於海水及苦成水淡化,鍋爐給水、工業純水及電子級超純水制備,飲用純凈水生產,廢水處理及特種分離等過程,在離子交換前使用RO可大幅度地降低操作費用和廢水排放量。RO膜的運行壓力,當進水為苦鹹水時一般大於5bar,當進水為海水時,一般低於84bar。
一、處理細菌效果不同
由於反滲透膜的孔徑更為狹小,能夠對水中的雜質和細菌數量得到有效的控制。反滲透膜處理過的水菌落總數比超濾膜凈化後的菌落總數少許多,因此反滲透膜處理水中細菌的能力要比超濾膜性能更為優越。
二、凈化後的水使用方向不同
常情況下反滲透膜凈化後的水分為兩種,一種純水可供飲用,一種濃水可供洗滌使用。使用超濾凈水器凈化的水通常只能做洗滌用水,其水質不符合飲用水的標准。
三、化學污染物處理效果不同
反滲透膜的孔隙僅超濾膜的百分之一,因此能夠有效地去除水中的重金屬和農葯的化學污染物,不僅能夠去除其中的顆粒污染物及較大的雜質,在化學處理方面反滲透膜效果比超濾膜更為突出。