① 哪位有環氧樹脂固化劑的配方
環氧樹脂固化劑是由苯酚、甲醛、乙二胺、對叔丁基苯酚、正丁醇縮水甘油醚版、聚丙二醇縮水甘油醚等權原料組分配比製成。
環氧樹脂固化劑用作基於環氧樹脂的粘合劑的材料技術領域。提供具有在低溫、水下等特殊條件下特殊性能的環氧樹脂固化劑。
特徵是由苯酚、甲醛、乙二胺、對叔丁基苯酚、正丁醇縮水甘油醚、聚丙二醇縮水甘油醚等原料組分配比製成。優於一般固化劑,有低溫固化,水中固化,快速固化,耐油,耐焰,韌性好,使用方便等積極效果。
(1)環氧樹脂做油漆固化劑新能擴展閱讀:
環氧樹脂固化體系中含有活性極大的環氧基、羥基以及醚鍵、胺鍵、酯鍵等極性基團,賦予環氧固化物對金、陶瓷、玻璃、混凝士、木材等極性基材以優良的附著力。
環氧樹脂固化時基本上不產生低分子揮發物,所以可低壓成型或接觸壓成型。能與各種固化劑配合製造無溶劑、高固體、粉末塗料及水性塗料等環保型塗料。
② 環氧樹脂用固化劑的特點是什麼
環氧樹脂是建築腔黏劑中的一種主要黏料,作為環氧樹脂的固化劑具有以下特點:
(1)品種繁多,類型各異。不同品種的固化劑所給予的粘接性能不同,並且固化反應機理也不相同。即使同是胺類固化劑
,其脂盼皓接與掇胺(三級璉)韻反應帆理就不一樣。因此應特剮認識這一點。
(2)有可供選擇的固化條件。有的工程或粘接件需在常溫進行固化(建築施工用膠),可選用常溫固化劑
,還可選用潛伏性固化莉,將膠黏荊配製成使用方便的單組舟環氧膠等。如果粘搓後的物件需要高溫使用,可選用加溫固化荊,也就是選用耐溫膠。還可以通過對固化劑的選擇,改變膠黏劑的固化時問,快則幾分鍾就固化了(如多硫醇),慢則可長達有幾天的適用期。這些均給膠黏劑工藝在使用中帶來很大方便。
(3)大多數環氧樹脂的固化劑
,可以進行化學改性,使之在性能上更加完善、優良,在施工工藝性能上更加方便,價格上更加低廉,並且可具有獨特的功能。如將固體酸酐、固體芳胺固化劑進行液體化,使用方便;叉如利用化學改性胺類固化劑
,通常可達到性能更優、使用更方便、價格更便宜、毒性更低的長處。有的經過改性可調節固化的快慢速度,有的則賦予新的功能,如可以水下固化、可更耐高溫等。固化劑的改性工作近年來發展很快,現在已有了固化劑與主料共混的單組分室溫固化的環氧膠,這得益於新型改性固化劑的發明。
(4)環氧樹脂固化劑大多數來源廣泛,價格適中,有較大的選擇空間。
③ 環氧樹脂的固化劑有哪些
環氧樹脂的固化劑主要是多元胺和多元酸或酸酐。
1)多元胺固化劑主要是二乙烯三胺和三乙烯四胺,和環氧基反應速度快,交聯密度高。
2)使用多元酸的也很常見,例如偏苯三酸或偏苯三酸酐,均苯四甲酸或均苯四甲酸二酐等。
3)氨基樹脂和羧基樹脂也可以作為環氧樹脂的固化劑。
④ 環氧樹脂固化劑
環氧樹脂是一類具有良好的粘接性、電絕緣性、化學穩定性的熱固性高分子材料,作為膠粘劑、塗料和復合材料等的樹脂基體,廣泛應用於建築、機械、電子電氣、航空航天等領域。環氧樹脂使用時必須加入固化劑,並在一定條件下進行固化反應,生成立體網狀結構的產物,才會顯現出各種優良的性能,成為具有真正使用價值的環氧材料。因此固化劑在環氧樹脂的應用中具有不可缺少的,甚至在某種程度上起著決定性的作用。環氧樹脂潛伏性固化劑是近年來國內外環氧樹脂固化劑研究的熱點。所謂潛伏性固化劑,是指加入到環氧樹脂中與其組成的單組分體系在室溫下具有一定的貯存穩定性,而在加熱、光照、濕氣、加壓等條件下能迅速進行固化反應的固化劑,與目前普遍採用的雙組分環氧樹脂體系相比,由潛伏性固化劑與環氧樹脂混合配製而成的單組分環氧樹脂體系具有簡化生產操作工藝,防止環境污染,提高產品質量,適應現代大規模工業化生產等優點。
環氧樹脂潛伏性固化劑的研究一般通過物理和化學的手段,對普通使用低溫和高溫固化劑的固化活性加以改進,主要採取以下兩種改進方法:一是將一些反應活性高而貯存穩定性差的固化劑的反應活性進行封閉、鈍化;二是將一些貯存穩定性好而反應活性低的固化劑的反應活性提高、激發。最終達到使固化劑在室溫下加入到環氧樹脂中時具有一定的貯存穩定性,而在使用時通過光、熱等外界條件將固化劑的反應活性釋放出來,從而達到使環氧樹脂迅速固化的目的。本文就國內外環氧樹脂潛伏性固化劑的研究進展作一基本概述。
1 環氧樹脂潛伏性固化劑
1.1 改性脂肪族胺類
脂肪族胺類固化劑如乙二胺、己二胺、二乙烯三胺、三乙烯四胺等是常用的雙組分環氧樹脂室溫固化劑,通過化學改性的方法,將其與有機酮類化合物進行親核加成反應,脫水生成亞胺是一種封閉、降低其固化活性,提高其貯存穩定性的有效途徑。
這種酮亞胺型固化劑與環氧樹脂組成的單組分體系通過濕氣和水分的作用而使酮亞胺分解成胺因此在常溫下即可使環氧樹脂固化。但一般固化速度不快,使用期也較短,原因是亞胺氮原子上的孤對電子仍具有一定的開環活性。為解決這一問題,武田敏之用羰基兩端具有立體阻礙基團的酮3-甲基-2 -丁酮與高活性的二胺1,3 二氨甲基環己烷反應得到的酮亞胺不僅具有較高的固化反應活性,而且貯存穩定性明顯改善。另外日本專利報道採用聚醚改性的脂肪族胺類化合物與甲基異丁基酮反應得到的酮亞胺也是一種性能良好的環氧樹脂潛伏性固化劑。脂肪族胺類固化劑通過與丙烯腈、有機膦化合物,過渡金屬絡合物的反應,也可使其固化反應活性降低,從而具有一定的潛伏性。
1.2 芳香族二胺類
芳香胺由於具有較高的Tg而受到重視,但由於其的劇毒性而限制了應用。經改性製得的芳香族二胺類固化劑則具有Tg高、毒性低、吸水率低、綜合性能好的優點。近年來研究較多的芳香族二胺類固化劑有二胺基二苯碸(DDS)、二胺基二苯甲烷(DDM)、間苯二胺(m PDA)等,其中以DDS研究得最多最成熟,成為高性能環氧樹脂中常用的固化劑。DDS用作環氧樹脂潛伏性固化劑時,與MP DA、DDM等芳香二胺相比,由於其分子中有強吸電子的碸基,反應活性大大降低,其適用期也增長。在無促進劑時,100克環氧樹脂配合物的適用期可達1年,固化溫度一般要達到200℃。為了降低其固化溫度,常加入促進劑以實現中溫固化。近年來為了改善體系的濕熱性能和韌性,對DDS進行了改性,開發出多種聚醚二胺型固化劑,使得它們在乾燥時耐熱性有所降低,這些二胺因兩端胺基間的距離較長,造成吸水點氨基減少,並且具有優良的耐沖擊性。
1.3 雙氰胺類
雙氰胺又稱二氰二胺,很早就被用作潛伏性固化劑應用於粉末塗料、膠粘劑等領域。雙氰胺與環氧樹脂混合後室溫下貯存期可達半年之久。雙氰胺的固化機理較復雜,除雙氰胺上的4個氫可參加反應外,氰基也具有一定的反應活性。雙氰胺單獨用作環氧樹脂固化劑時固化溫度很高,一般在150~170℃之間,在此溫度下許多器件及材料由於不能承受這樣的溫度而不能使用,或因為生產工藝的要求而必須降低單組分環氧樹脂的固化溫度。解決這個問題的方法有兩種,一種是加入促進劑,在不過分損害雙氰胺的貯存期和使用性能的前提下,降低其固化溫度。這類促進劑很多,主要有咪唑類化合物及其衍生物和鹽、脲類衍生物、有機胍類衍生物、含磷化合物,過渡金屬配合物及復合促進劑等,這些促進劑都可以使雙氰胺的固化溫度明顯降低,理想的固化溫度可降至120℃左右,但同時會使貯存期縮短,而且耐水性能也會受到一定的影響。
另一種降低單組分環氧樹脂固化溫度的有效方法是通過分子設計的方法對雙氰胺進行化學改性。在雙氰胺分子中引入胺類,特別是芳香族胺類結構,以制備雙氰胺衍生物,如瑞士Ciba Geigy公司開發的HT 2833,HT 2844是一種用3,5 二取代苯胺改性的雙氰胺衍生物,其化學結構式如下:
據報道,此類固化劑與環氧樹脂相溶性較好,貯存期長,固化速度快,在100℃下固化1h,剪切強度可達25MPa,150℃固化30min,剪切強度可達27MPa。日本旭化成工業公司研製的粉末塗料專用固化劑AEHD-610,AEHD-210也是一種改性雙氰胺衍生物。另外,日本有採用芳香族二胺如4,4』 二氨基二苯甲烷(DDM),4,4』 二氨基二苯醚(DDE),4,4』 二氨基二苯碸(DDS),對二甲苯胺(DMB)分別與雙氰胺反應製得其衍生物的報道。上述引入苯環後的雙氰胺衍生物與雙酚A型環氧樹脂的相溶性與雙氰胺相比明顯增加,與E 44環氧樹脂組成的單組分體系在室溫貯存期長達半年之久,固化溫度均低於雙氰胺。
國內有關對雙氰胺進行化學改性得到雙氰胺衍生物的報道較少,溫州清明化工採用環氧丙烷與雙氰胺反應製得了雙氰胺MD 02,其熔點154~162℃,比雙氰胺的熔點(207~210℃)低了45℃左右,採用100份E 44環氧樹脂,15份MD 02和0 5份2 甲基咪唑組成的配方,150℃下凝膠的時間為4min。用苯胺 甲醛改性雙氰胺所得的衍生物與雙酚A型環氧樹脂混溶性增加,在丙酮和酒精的混合溶液中有良好的溶解性,且反應活性增加,貯存性也較長。
1.4 咪唑類
咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑等咪唑類固化劑是一類高活性固化劑,在中溫下短時間即可使環氧樹脂固化,因此其與環氧樹脂組成的單組分體系貯存期較短,必須對其進行化學改性,在其分子中引入較大的取代基形成具有空間位阻的咪唑類衍生物,或與過渡金屬Cu、Ni、Co、Zn等的無機鹽反應生成相應的咪唑鹽絡合物,才能成為在室溫下具有一定貯存期的潛伏性固化劑。對咪唑類固化劑進行化學改性的方法很多,從反應機理上來看,主要有兩種:一種是利用咪唑環上1位仲胺基氮原子上的活潑氫對其進行改性,這類改性劑有異氰酸酯、氰酸酯、內酯等,改性後所得的咪唑類衍生物具有較長的貯存期和良好的機械性能。另一種方法是利用咪唑環上3位N原子的鹼性對其改性,使它與具有空軌道的化合物復合,這類物質包括有機酸、金屬無機鹽類、酸酐、TCNQ、硼酸等。其中金屬無機鹽類一般是含具有空軌道的過渡金屬離子,如Cu2+、Ni2+、Zn2+、Cd2+、Co2+等,它們與咪唑形成配位絡合物,具有很好的貯存性,而在150~170℃迅速固化,但無機鹽類、有機酸及其鹽類等的引入,將會破壞原咪唑固化產物的耐水解性和耐濕熱性。
國內對咪唑類潛伏性固化劑的研究較少,國外市場則相對較多。日本第一工業制葯株式會社將各種咪唑與甲苯二異氰酸酯(TDI)、異佛爾酮二異氰酸酯(IPDI)、六次甲基二異氰酸酯(HDI)反應製成封閉產物,減弱了咪唑環上胺基的活性,有較長使用期,當溫度上升到100℃以上,封閉作用解除,咪唑恢復活性,環氧樹脂固化。
1.5 有機酸酐類
有機酸酐類固化劑與雙氰胺相似,具有較好的貯存穩定性,盡管固化溫度較高,可是固化產物的力學性能、介電性能和耐熱性能均較好。不過這類固化劑由於酸酐鍵容易水解的緣故而耐濕性較差,並且不容易進行化學改性,因此一般採用添加促進劑的方法降低有機酸酐類固化劑的固化溫度。有機酸酐類固化劑常用的固化促進劑包括叔胺和叔胺鹽,季膦鹽,路易斯酸-胺絡合物,乙醯丙酮過渡金屬絡合物等。
1.6 有機醯肼類與雙氰胺一樣,有機醯肼也是一種高熔點固體,但其固化溫度比雙氰胺低。有機醯肼與環氧樹脂組成的單組分環氧樹脂膠體系的貯存期可達4個月以上,常用的有機醯肼化合物有:琥珀酸醯肼、己二酸二醯肼、癸二酸醯肼、間苯二甲酸醯肼和對羥基安息香酸醯肼(POBH)等。不同種類的有機醯肼固化溫度不盡相同,由於其固化溫度較高,故常加入促進劑來降低固化溫度,所用的促進劑與雙氰胺基本相同。
1.7 路易斯酸
胺絡合物類路易斯酸 胺絡合物是一類有效的環氧樹脂潛伏性固化劑,由BF3、AlCl3、ZnCl2、PF5等路易斯酸與伯胺或仲胺形成絡合物而成。作為環氧樹脂的固化劑,這類絡合物常溫下相當穩定,而在120℃時則快速固化環氧樹脂,其中研究最多的是三氟化硼-胺絡合物。據報道,一種合成的新型三氟化硼-胺絡合物BPEA-2具有良好的潛伏性、粘接性能和韌性。路易斯酸 胺絡合物也是酸酐類和芳香胺類潛伏性固化劑常用的促進劑。
1.8 微膠囊類
微膠囊類環氧樹脂潛伏性固化劑實際上是利用物理方法,將室溫雙組分固化劑採用微細的油滴膜包裹,形成微膠囊,加入到環氧樹脂中後將固化劑的固化反應活性暫時封閉起來,而通過加熱、加壓等條件使膠囊破裂,釋放出固化劑,從而使環氧樹脂固化。微膠囊類環氧樹脂潛伏性固化劑的成膜劑包括纖維素、明膠、聚乙烯醇、聚酯、聚碸等,由於制備工藝要求嚴格,膠囊膜的厚度對貯存、運輸和使用會帶來不同程度影響。
2 結語
雖然環氧樹脂潛伏性固化劑的種類很多,但是每種類型的固化劑都有一定的優點和缺點,到目前為止,仍然沒有發現一種性能特別優良,十分理想的潛伏性固化劑。目前環氧樹脂潛伏性固化劑的研究主要集中在雙氰胺類,咪唑類和芳香族二胺類固化劑。同時在達到潛伏性固化劑使用中降低固化溫度、縮短固化時間、延長適用期的要求的基礎上,進一步解決環氧樹脂固化產物耐水、耐熱,以及提高韌性等問題,也是今後環氧樹脂潛伏性固化劑研究的重點。不僅如此,隨著人們對環境保護意識的提高,低毒和無毒的環保型環氧樹脂潛伏固化劑的研究也是必然的趨勢。
⑤ 環氧樹脂怎麼固化
問題一:環氧樹脂的固化原理 環氧樹脂硬化反應的原理,目前尚不完善,根據所用硬化劑的不同,一般認為它通過四種途徑的反應而成為熱固性產物。
(1)環氧基之間開環連接;
(2)環氧基與帶有活性氫官能團的硬化劑反應而交聯;
(3)環氧基與硬化劑中芳香的或脂肪的羥基的反應而交聯;
(4)環氧基或羥基與硬化劑所帶基團發生反應而交聯。
不同種類的硬化劑,在硬化過程中其作用也不同。有的硬化劑在硬化過程中,不參加到本分子中去,僅起催化作用,如無機物。具有單反應基團的胺、醇、酚等,這種硬化劑,叫催化劑。多數硬化劑,在硬化過程中參與大分子之間的反應,構成硬化樹脂的一部分,如含多反應基團的多元胺、多元醇、多元酸酐等化合物。
1、胺類硬化劑
胺類硬化劑―般使用比較普遍,其硬化速度快,而且黏度也低,使用方便,但產品耐熱性不高,介電性能差,並且硬化劑本身的毒性較大,易升華。胺類硬化劑包括;脂肪族胺類、芳香族胺類和胺的衍生物等。胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三個氫可逐步地被烷基取代,生成三種不同的胺。即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N)。
由於胺的種類不同,其硬化作用也不同:
(1)伯胺和仲胺的作用
含有活潑氫原子的伯胺及仲胺與環氧樹脂中的環氧基作用。使環氧基開環生成羥基,生成的羥基再與環氧基起醚化反應,最後生成網狀或體型聚合物。
(2)叔胺的作用與伯胺、仲胺不同,它只進行催化開環,環氧樹脂的環氧基被叔胺開環變成陰離子,這個陰離子又能打開一個新的環氧基環,繼續反應下去,最後生成網狀或體型結構的大分子。
2、酸酐類硬化劑
酸酐是由羧酸(分子結構中含有羧基―COOH)與脫水劑一起加熱時,兩個羧基除去一個水分子而生成的化合物。
酸酐類硬化劑硬化反應速度較緩慢,硬化過程中放熱少,使用壽命長,毒性較小,硬化後樹脂的性能(如力學強度、耐磨性、耐熱性及電性能等)均較好。但由於硬化後含有酯鍵,容易受鹼的侵蝕並且有吸水性,另外除少數在室溫下是液體外。絕大多數是易升華的固體,而且一般要加熱固化。
酸酐和環氧樹脂的硬化機理,至今尚未完全闡明,比較公認的說法如下:
酸酐先與環氧樹脂中的羥基起反應而生成單酯,第二步由單酯中的羥基和環氧樹脂的環氧基起開環反應而生成雙酯,第三步再由其中的差悔羥基對環氧基起開環作用,生成醚基,所以可得到既含醚差慶腔鍵,又含有酯基的不溶不熔的體型結構。
除了上述反應之外,第一步生成的單酸中的羧基也可能與環氧樹脂分子上的羥基起酯化反應,生成雙酯。但這不是主要的反應。
3、樹脂類硬化劑
含有硬化基團的一NH一,一CH2OH,一SH,一COOH,一OH等的線型合成樹脂低聚物,也可作為環氧樹脂的硬化劑。如低分子聚醯胺.酚醛樹脂,苯胺甲醛樹脂,三聚氰胺甲醛樹脂,糠醛樹脂,硫樹脂,聚酯等。它們分別能對環氧樹虛衫脂硬化物的耐熱性,耐化學性,抗沖擊性,介電性,耐水性起到改善作用。常用的是低分子聚醯胺和酚醛樹脂。
(1)低分子聚醯胺不同於尼龍型的聚醯胺。它是亞油酸二聚體或是桐油酸二聚體與脂肪族多元胺,如乙二胺、二乙烯三胺反應生成的一種琥珀色粘稠狀樹脂。由於原材料的性質,反應組分的配比和反應條件不同,低分子聚醯胺的性質差別很大。它們的分子量在500~9000之間,有熔點很高,胺值很低的固態樹脂,亥有胺值為300的液態樹脂。其中胺值是低分子聚醯胺活性的描述,胺值高的活性大......>>
問題二:環氧樹脂為什麼不固化?怎麼急救? 1601環氧樹脂是一種無定形黏稠液體,加熱呈塑性,沒有明顯的熔點,受熱變軟,逐漸熔化而發黏,不溶於水,本身不會硬化,因此它幾乎沒有單獨的使用價值,只有和固化劑反應生成三維網狀結構的不溶不熔聚合物才有應用價值。當加入一定量固化劑後,就逐漸固化,形成性能各異的化學物質,因此,必須加入固化劑,組成配方樹脂,並且在一定條件下進行固化反應,生成立體網狀結構的產物,才會顯現出各種優良的性能,成為具有真正使用價值的環氧材料。工程中常用胺類固化劑:乙二胺、二乙烯多胺、多乙烯多胺等。
環氧固化劑650
一、性能:
本品為環氧樹脂的優良固化劑和壇韌劑。它毒性低,揮發性小,和環氧樹脂配用比例寬,操作簡便,可常溫固化,粘接力強,韌性好,明顯地優越於一般的單體胺類固化劑。
二、 用途:
本品與環氧樹脂配合,廣泛地應用於粘接各種金屬和非金屬材料(如鋼鐵、鋁材、陶瓷、玻璃、塑料等),配製環氧聚醯胺防腐塗料,糊制玻璃鋼,澆鑄電器,密封電子元件等)
三、使用方法:
本品用量為環氧樹脂重量的40%-100%,均有良好的固化效果,將聚醯胺樹脂與環氧樹脂混合均勻即可使用,根據不同用途的要求,可在混合樹脂中添加適量的填充劑(如瓷粉、鐵粉、鋁粉等)、顏料和稀釋劑(如醇類、酮類、芳烴類等)。澆鑄時可用硅油、凡士林、石蠟等作脫模劑。用於粘接材料時,常溫固化三至五天可達最佳性能,升溫固化則可縮短固化時間。
你廠補池用的1601樹脂和650固化劑原則上應該會固化,不固化可能是
1:天氣溫度過低,溫度低固化速度要成倍加長,一般指的常溫都是20度左右.
2:水分或濕度過高,池中水分過重(醋池未乾燥,水分會存在在水泥池內部,會嚴重降低固化速度.其次天氣濕度過大,也會引入水分對固化不利.
3:稀釋劑乙醇選擇不當,乙醇是一種和水任意比稀釋的溶劑,乙醇做稀釋劑(無水乙醇吸水)會造成整個體系不幹燥.
4:固化劑加入量和固化速度有一曲線關系,但50%不固化,你可以考慮多加少許.
我的建議
整個體系必須乾燥,否則永遠不會有好的效果,加熱烘乾是最有效的辦法,如果能夠辦到就要從著方面下手,650加入的量不是不固化的絕對因素,其次稀釋劑考慮改芳烴溶劑(苯,甲苯),芳烴是不容水的,如果很多條件不允許,又想不浪費前面的原料,你只能小試一下其他固化劑,固化劑的種類你上中國樹脂網的club.resin/showbbs_p1_61_937_1看下,也許對你有幫助.希望你能解決好問題.
問題三:環氧樹脂固化問題,懂的人來。 環氧和固化劑的用量是有比例的,這個量可以在一定范圍內調整,但不能過大,調整過大了會帶來問題。如果固化劑過多,環氧樹脂固化後會發脆,如果試樣體積大,甚至會固化後直接開裂。如果固化劑過少,固化會不完全,有可能出現你說的不幹的情況。
其實你的問題,只要減少催化劑的量就可以了。不要改變固化劑的量。催化劑少了,反應速度就慢了。
根據你的描述,沒有判定你的用量是否正確。根據我的一般經驗,催化劑用量是很少的。
問題四:環氧樹脂怎樣乾的快 1,提高溫度,理論上溫度每升高10℃,固化速度快1倍。
2,提高促進劑用量,促進劑越多,固化越快。
3,改變促進劑類型,使用活性更高的促進劑。不過活性更高,通常潛伏性就差,如果是單組份的產品,要找一個平衡,雙組份的不用考慮這點。
4,固化劑加量,但改變固化劑量就會改變固化物結構,進而改變漆膜或者塗層或者製品的性能,此法要慎重。
5,改變固化劑類型,使用更高活性的固化劑,此法風險如上3,4條,有風險,需謹慎,要提前試驗。
6,樹脂中加入高活性成分,比如用鄰甲酚醛型環氧替換雙酚A型環氧,但風險如上3,4.
7,使用高固分環氧或者粉末環氧,減少溶劑揮發時間。
問題五:如何去除固化的環氧樹脂 10分 我弄得也是環氧樹脂,你若是在不會,買本孫曼靈- 環氧樹脂應用原理與技術[M]. 機械工業出版社,裡面對工藝及不同固化劑配比介紹了。
你就沒說你用的什麼固化劑,另外建議增加固化時間,否則換固化劑,稀釋劑也可以換下
對於氣泡,是環氧樹脂中沒有解決的問題,你可以試加消泡劑,另外抽真空是目前取氣泡最好的方法。還有,氣泡出不來,是由於粘度太大,你可以加稀釋劑,另外在澆鑄前把模具預熱下再澆鑄,這樣效果能好點。
你體系的黏度太大,可以加稀釋劑,氣泡不可能完全消除,只能減少。
你的環氧樹脂固化不完全,可以加促進劑(一般為叔胺類),另外你裡面加填料沒?若有,進行下表面改性試下。
求採納為滿意回答。
問題六:環氧樹脂與胺如何固化 首先你要說出作什麼之用,環氧樹脂與胺的固化方式應該幾種方式。我想應該有人知道…。
問題七:固化的環氧樹脂如何軟化 環氧樹脂是熱固性樹脂,完全固化後不溶不熔,
問題八:如何將環氧樹脂固化成型脫模 如何將環氧樹脂固化成型脫模
樹脂從模具流出,是因為模具合模面不平整所致,需要重新打磨合模表面,做到嚴絲合縫,或者四周加密封圈。
澆注前,需要在模具表面塗脫模劑,試試浚通達脫模劑,效果不錯。
問題九:環氧樹脂固化有哪些常見的固化體系 最常用的的環氧樹脂是雙酚A型環氧樹脂,最常用的是E44/E51兩種牌號。另外環氧樹脂有雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚S型環氧樹脂、雙酚H型環氧樹脂、酚醛環氧樹脂、多官能縮水甘油醚環氧樹脂、多官能縮水甘油胺環氧樹脂、鹵化環氧樹脂等等。
常用的固化劑也有很多種:脂肪胺/改性脂肪胺固化劑,脂環胺/改性脂環胺固化劑,低分子聚醯胺固化劑、芳香胺/改性芳香胺固化劑,酚醛胺固化劑,酸酐類固化劑,咪唑類固化劑,硫醇類固化劑等等。
問題十:環氧樹脂的固化原理 環氧樹脂硬化反應的原理,目前尚不完善,根據所用硬化劑的不同,一般認為它通過四種途徑的反應而成為熱固性產物。
(1)環氧基之間開環連接;
(2)環氧基與帶有活性氫官能團的硬化劑反應而交聯;
(3)環氧基與硬化劑中芳香的或脂肪的羥基的反應而交聯;
(4)環氧基或羥基與硬化劑所帶基團發生反應而交聯。
不同種類的硬化劑,在硬化過程中其作用也不同。有的硬化劑在硬化過程中,不參加到本分子中去,僅起催化作用,如無機物。具有單反應基團的胺、醇、酚等,這種硬化劑,叫催化劑。多數硬化劑,在硬化過程中參與大分子之間的反應,構成硬化樹脂的一部分,如含多反應基團的多元胺、多元醇、多元酸酐等化合物。
1、胺類硬化劑
胺類硬化劑―般使用比較普遍,其硬化速度快,而且黏度也低,使用方便,但產品耐熱性不高,介電性能差,並且硬化劑本身的毒性較大,易升華。胺類硬化劑包括;脂肪族胺類、芳香族胺類和胺的衍生物等。胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三個氫可逐步地被烷基取代,生成三種不同的胺。即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N)。
由於胺的種類不同,其硬化作用也不同:
(1)伯胺和仲胺的作用
含有活潑氫原子的伯胺及仲胺與環氧樹脂中的環氧基作用。使環氧基開環生成羥基,生成的羥基再與環氧基起醚化反應,最後生成網狀或體型聚合物。
(2)叔胺的作用與伯胺、仲胺不同,它只進行催化開環,環氧樹脂的環氧基被叔胺開環變成陰離子,這個陰離子又能打開一個新的環氧基環,繼續反應下去,最後生成網狀或體型結構的大分子。
2、酸酐類硬化劑
酸酐是由羧酸(分子結構中含有羧基―COOH)與脫水劑一起加熱時,兩個羧基除去一個水分子而生成的化合物。
酸酐類硬化劑硬化反應速度較緩慢,硬化過程中放熱少,使用壽命長,毒性較小,硬化後樹脂的性能(如力學強度、耐磨性、耐熱性及電性能等)均較好。但由於硬化後含有酯鍵,容易受鹼的侵蝕並且有吸水性,另外除少數在室溫下是液體外。絕大多數是易升華的固體,而且一般要加熱固化。
酸酐和環氧樹脂的硬化機理,至今尚未完全闡明,比較公認的說法如下:
酸酐先與環氧樹脂中的羥基起反應而生成單酯,第二步由單酯中的羥基和環氧樹脂的環氧基起開環反應而生成雙酯,第三步再由其中的羥基對環氧基起開環作用,生成醚基,所以可得到既含醚鍵,又含有酯基的不溶不熔的體型結構。
除了上述反應之外,第一步生成的單酸中的羧基也可能與環氧樹脂分子上的羥基起酯化反應,生成雙酯。但這不是主要的反應。
3、樹脂類硬化劑
含有硬化基團的一NH一,一CH2OH,一SH,一COOH,一OH等的線型合成樹脂低聚物,也可作為環氧樹脂的硬化劑。如低分子聚醯胺.酚醛樹脂,苯胺甲醛樹脂,三聚氰胺甲醛樹脂,糠醛樹脂,硫樹脂,聚酯等。它們分別能對環氧樹脂硬化物的耐熱性,耐化學性,抗沖擊性,介電性,耐水性起到改善作用。常用的是低分子聚醯胺和酚醛樹脂。
(1)低分子聚醯胺不同於尼龍型的聚醯胺。它是亞油酸二聚體或是桐油酸二聚體與脂肪族多元胺,如乙二胺、二乙烯三胺反應生成的一種琥珀色粘稠狀樹脂。由於原材料的性質,反應組分的配比和反應條件不同,低分子聚醯胺的性質差別很大。它們的分子量在500~9000之間,有熔點很高,胺值很低的固態樹脂,亥有胺值為300的液態樹脂。其中胺值是低分子聚醯胺活性的描述,胺值高的活性大......>>
⑥ 環氧樹脂的固化原理
原理:環氧樹脂固化劑是與環氧樹脂發生化學反應,形成網狀立體聚合物,把復合材料骨材包絡在網狀體之中。 使線型樹脂變成堅韌的體型固體的添加劑。
一般認為它通過四種途徑的反應而成為熱固性產物。
(1)環氧基之間開環連接;
(2)環氧基與帶有活性氫官能團的硬化劑反應而交聯;
(3)環氧基與硬化劑中芳香的或脂肪的羥基的反應而交聯;
(4)環氧基或羥基與硬化劑所帶基團發生反應而交聯。
(6)環氧樹脂做油漆固化劑新能擴展閱讀:
對環氧樹脂膠黏劑的分類在行業中還有以下幾種分法:
1、按其主要組成 分為純環氧樹脂膠黏劑和改性環氧樹脂膠黏劑;
2、按其專業用途 分為機械用環氧樹脂膠黏劑、建築用環氧樹脂膠黏劑、電子環氧樹脂膠黏劑、修補用環氧樹脂膠黏劑以及交通用膠、船舶用膠等;
3、按其施工條件 分為常溫固化型膠、低溫固化型膠和其他固化型膠;
4、按其包裝形態 可分為單組分型膠、雙組分膠和多組分型膠等;
還有其他的分法,如無溶劑型膠、有溶劑型膠及水基型膠等。但以組分分類應用較多。
其它類型
(1)縮水甘油酯類環氧樹脂 縮水甘油酯類環氧樹脂和二酚基丙烷環氧化樹脂比較,它具有粘度低,使用工藝性好;反應活性高;粘合力比通用環氧樹脂高,固化物力學性能好;電絕緣性好;耐氣候性好,並且具有良好的耐超低溫性。
在超低溫條件下,仍具有比其它類型環氧樹脂高的粘結強度。有較好的表面光澤度,透光性、耐氣候性好。
(2)縮水甘油胺類環氧樹脂 國內外已利用縮水甘油胺環氧樹脂優越的粘接性和耐熱性,來製造碳纖維增強的復合材料(CFRP)用於飛機二次結構材料。
(3)脂環族環氧樹脂 這類環氧樹脂是由脂環族烯烴的雙鍵經環氧化而製得的,前者環氧基都直接連接在脂環上,而後者的環氧基都是以環氧丙基醚連接在苯核或脂肪烴上。脂環族環氧樹脂的固化物具有以下特點:
①較高的壓縮與拉伸強度;
②長期暴置在高溫條件下仍能保持良好的力學性能;
③耐電弧性、耐紫外光老化性能及耐氣候性較好。
(4)脂肪族環氧樹脂